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Current test strategies to identify thyroid hormone (TH) system disruptors are
inadequate for conducting robust chemical risk assessment required for
regulation. The tests rely heavily on histopathological changes in rodent
thyroid glands or measuring changes in systemic TH levels, but they lack
specific new approach methodologies (NAMs) that can adequately detect TH-
mediated effects. Such alternative test methods are needed to infer a causal
relationship between molecular initiating events and adverse outcomes such as
perturbed brain development. Although some NAMs that are relevant for TH
system disruption are available–and are currently in the process of regulatory
validation–there is still a need to develop more extensive alternative test batteries
to cover the range of potential key events along the causal pathway between initial
chemical disruption and adverse outcomes in humans. This project, funded under
the Partnership for the Assessment of Risk from Chemicals (PARC) initiative, aims
to facilitate the development of NAMs that are specific for TH system disruption by
characterizing in vivo mechanisms of action that can be targeted by in embryo/
in vitro/in silico/in chemico testing strategies. We will develop and improve
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human-relevant in vitro test systems to capture effects on important areas of the
TH system. Furthermore, we will elaborate on important species differences in TH
system disruption by incorporating non-mammalian vertebrate test species
alongside classical laboratory rat species and human-derived in vitro assays.

KEYWORDS

PARC, endocrine disruption, thyroid disruption, non-animal test methods, regulatory
toxicology, adverse outcome pathways, chemicals

1 Introduction

Within current European regulatory testing frameworks,
chemical compounds that can cause adverse effects in vivo through
thyroid hormone (TH) system disruption are primarily assessed in
laboratory rodents. Assessments typically focus on gross effects on the
thyroid gland itself, including changes in weight or histopathology, or
by measuring levels of circulating THs (ECHA/EFSA, 2018).
Although these measurements are informative, they are inadequate
when it comes to identifying the broad suite of potential TH system
disruptors (Noyes et al., 2019; Couderq et al., 2020; Kortenkamp et al.,
2020). For instance, it is recognized that many potential TH system
disruptors can act via a number of different mechanisms that are not
detected by analyzing the thyroid gland itself, nor by measuring
systemic levels of the THs triiodothyronine (T3) and thyroxine
(T4) (Noyes et al., 2019; Gilbert et al., 2020). This is because
changes in, for instance, deiodinase activity or membrane transport
of THs, will not necessarily affect circulating levels of TH, but could
still have a large impact on TH availability and action in target tissues
(Landers and Richard, 2017; Gilbert et al., 2020; Köhrle and Frädrich,
2022). Lastly, TH-mediated adverse effects in target tissues peripheral
to the thyroid gland are not addressed by current test methods,
including TH-mediated developmental neurotoxicity.

By early 2023, more than 22,000 unique industrial chemicals were
registered under the European REACH regulation (Registration,
Evaluation, Authorisation and restriction of Chemicals) (Directorate-
General for Environment, 2023). The REACH standard information
requirements are based on the tonnage level of combined import and
production per registrant, but the same chemical can be imported or
produced by several different registrants. Based on today’s information
requirements, this means that in vivo tests that aim to determine
whether chemicals possess TH system disrupting properties in
mammals are not performed for chemicals at the 1–10 tonnes/year
level (per registrant). From 10 tonnes and above, endpoints and
biomarkers such as TH concentrations and thyroid histopathology
are included in some rodent tests but, as already discussed, these are
insufficient in identifying all TH system disruptors. Although pesticides
and biocides (under the plant protection products or biocidal products
regulations) are subject to much stronger testing requirements despite
low tonnage levels, the tests, biomarkers, and endpoints are the same as
for REACH registered chemicals. There is thus a pressing need to
establish additional measurable endpoints or biomarkers for testing
purposes including new approach methods.

Decades of research into the hypothalamic-pituitary-thyroid
(HPT) axis, and the biological functions of the THs, has
identified a complex network of endocrine regulation and
highlighted multiple entry points for possible disruption by
chemical substances. These include TH synthesis, transport and

receptor binding, as well as local tissue uptake and metabolism
(Figure 1) (OECD, 2014; Noyes et al., 2019; Gilbert et al., 2020). The
potential molecular initiating events (MIEs) for TH system
disruptors can be tested for by various new approach
methodologies (NAMs), including in silico approaches, in
chemico and in vitro assays as well as information from chemical
exposure for hazard assessment (European Chemicals Agency,
2016). Indeed, a number of newly developed NAMs have already
shown great promise for future implementation in international test
guideline programmes and hence are currently in the process of
regulatory validation within the framework of the Organization for
Economic Co-operation and Development (OECD) (Joint Research
Centre, 2023). However, even with these new additions to a broader
testing battery of methods relevant for assessing TH system
disruption, not all critical steps between a MIE and an adverse
outcome (AO) in adverse outcome pathways (AOPs) are covered.

A major challenge in developing new NAMs for TH system
disruption is the lack of fundamental biological knowledge of key
aspects of TH-mediated developmental processes. Thus, current efforts
aimed at improving our capacity to safeguard human and ecological
health from TH system disrupting chemicals should include efforts to
better understand the complex biology of toxicological effects in vivo.
And these efforts should leverage the knowledge we already possess to
devise a broad NAM-based screening battery capable of identifying key
events (KEs) of TH-mediated causal pathways. In this project, that we
are performing under the European Union (EU)-funded Partnership
for the Assessment of Risk from Chemicals (PARC, 2023) programme
(Marx-Stoelting et al., 2023; PARC), we aim to provide both novel
biological knowledge of how THs may regulate development and how
TH system disruptors can perturb these processes, in order to establish
and develop NAMs to be incorporated in regulatory decision making
for the identification of TH system disruptors.

2 Background

2.1 Thyroid hormone system disruption and
the developing organism

THs are involved in the differentiation, growth, and function of
virtually all vertebrate tissues and organs (Yen, 2001). They play distinct
roles throughout life and exert specific actions in a spatiotemporal
manner through both systemic and local regulation of TH signaling.
This is achieved by a fine-tuned regulation of an intricate network of TH
synthesis, feedback mechanisms, serum distribution, membrane
transporters, metabolizing enzymes, receptors and more (Zoeller
et al., 2007; Ortiga-Carvalho et al., 2016). The different components
all work in concert to deliver THs to target cells where they regulate
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gene expression through interactions with nuclear TH receptors (TRs)
or through non-genomic mechanisms (Ortiga-Carvalho et al., 2016;
Taylor and Heyland, 2022).

TH action is critical for the development of the central nervous
system where THs help regulate crucial events such as neuronal
differentiation, migration, synaptogenesis and myelination.
Deficiency in THs during these events can thus have profound
and irreversible effects on the developing brain. Worryingly, many
environmental chemicals have been shown to act as TH system
disruptors and can thus potentially affect brain development with
significant consequences for life-long cognition (Gilbert et al., 2020;
Marty et al., 2022). In this context, it is also important to consider the
regulatory networks that finetune TH action in complex organisms.
For instance, THs can act directly on the developing liver and
control processes such as lipid metabolism, but the liver itself may
also modify systemic TH regulation. Deciphering these mechanisms
of effects and function will be critical if we are to faithfully capture
potential TH system disrupting chemicals by use of alternative test
method batteries.

2.2 Pregnant women are uniquely sensitive
to thyroid hormone system disruption

The developing mammalian fetus does not synthesize THs
during early stages of gestation and is therefore dependent on
maternal supply at critical stages of neuronal development
(Figure 2). In humans, the fetal thyroid gland starts producing
THs by the second trimester, but maternal supply continues to be
important throughout gestation until birth (Morreale de Escobar
et al., 2004). Consequently, fetal brain development is dependent on
maternal thyroid function, something that is evident from numerous
epidemiological studies linking low maternal T4 levels to child
neurodevelopmental effects (Henrichs et al., 2010; Román et al.,
2013; Ghassabian et al., 2014; Modesto et al., 2015; Gyllenberg et al.,
2016; Korevaar et al., 2016). From the second trimester of
pregnancy, a correct iodine supply from the mother to the fetus
is also essential, so that the fetus can produce its own THs (De La
Vieja and Santisteban, 2018). Therefore, amongst other things, the
presence of membrane transporters of both iodide and THs in the

FIGURE 1
The thyroid hormone (TH) system and tests to assess chemical effects that may lead to altered TH-signaling and adverse effects. The TH system has
many components and molecules that can be targeted by environmental chemicals in one and/or all tissues. Targets can be grouped into classes
according to the type of assay that can be used to test for potential effects of chemicals, e.g., by developing enzyme activity assays where each assay tests
the activity of one enzyme, TPO, DIO1, DIO2, DEHAL1 etc. In vivo, each interactionmay lead to altered TH-signalingwith potential adverse effects on
development and physiology. Abbreviations: DEHAL1: iodothyrosine dehalogenase, DIO: deiodinase, HPT: hypothalamic-pituitary-thyroid, MCT:
monocarboxylate transporter, NIS: Sodium/Iodide Symporter, OATPs: organic-anion-transporting polypeptides, rT3: reverse T3, RXR: retinoid X
receptor, SULTs: sulfotransferases, T2: 3,5-diiodo-L-thyronine, T3: triiodothyronine, T4: thyroxine, TBG: thyroxine-binding globulin, Tg: thyroglobulin,
TH: thyroid hormone, TPO: thyroperoxidase, TR: thyroid receptor, TRE: thyroid response element, TRH: thyrotropin releasing hormone, TSH: thyroid
stimulating hormone, TSHR: thyroid stimulating hormone receptor, TTR: transthyretin, UGTs: Uridine 5′-diphospho-glucuronosyltransferases.
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placenta throughout pregnancy is essential to maintain the correct
balance of mother-fetus TH levels.

During pregnancy, both total and free T4 levels increase
during the first trimester to reach a steady state that is

maintained for the remainder of the gestational period.
Although these absolute changes to TH levels are relatively
small, there is a net loss of THs and an increase in hormone
production by the thyroid gland. This is because there is a net

FIGURE 2
The thyroid hormone system and fetal development. Maternal (A) and fetal (B) TH levels during human pregnancy. In this period the requirement for
iodine in the mother’s diet increases considerably, as does the net demand for TH production by the maternal thyroid gland. Before the onset of fetal
thyroid function the fetus is critically dependent on TH transferred from the maternal to the fetal circulation. Timing of ontogeny (C), function and
autoregulation (D) of the fetal thyroid gland during pregnancy. (E)Maternal TH fully supply fetal requirements until fetal TH secretion begin at around
15 weeks of gestation after which fetal TH levels come from both the maternal and the fetal thyroid gland. (F) Timing of some TH mediated
neurodevelopmental processes in the fetal brain. Early neuronal proliferation and migration is dependent on maternal TH in the first trimester of
pregnancy. Also in the first trimester, inactivating type 3 deiodinase (DIO3) enzyme expression drops and development of the thyroid gland begins. In the
second and third trimesters, the brain continues to develop, now increasingly relying on T4 produced by both the fetus and the mother. As the fetal
hypothalamic-pituitary axis develops, a surge in thyroid-stimulating hormone (TSH) secretion occurs, initiating fetal TH production, expression of the
activating enzyme deiodinase type 2 (DIO2), and increasing thyroid hormone nuclear receptors occupancy by T3. DIO: deiodinase, hCG: human
chorionic gonadotropin, T3: triiodothyronine, T4: thyroxine, TBG: thyroxine-binding globulin, TH: thyroid hormone, TRH: thyrotropin releasing
hormone, TSH: thyroid stimulating hormone, (Burrow et al., 1994; Howdeshell, 2002; López-Márquez et al., 2021).
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increase in plasma volume as the fetus grows, so that more TH
must be produced to keep steady state conditions, but also due
to an increase in renal excretion of iodine that potentially
reduces available iodine in the thyroid gland. Furthermore,
during the first trimester, human chorionic gonadotropin
(hCG) stimulates TH production in the thyroid gland and
the presence of estrogen causes an increase in thyroxine-
binding globulin (TBG). Later in gestation there are also
changes to peripheral TH metabolism (Howdeshell, 2002;
Morreale de Escobar et al., 2004). Combined, all these factors
increase the net demand for TH synthesis in the thyroid gland;
demands that can be met by a healthy and robust TH system, but
not necessarily by a compromised TH system.

2.3 Identification of thyroid hormone system
disrupting compounds

Current chemical legislation in the EU mandate the testing of
potential endocrine disrupting properties for pesticides, biocides
and REACH-regulated chemicals produced at high tonnage levels.
These assessments typically include evaluation of estrogenic,
androgenic, thyroid, and steroidogenesis (EATS) modalities using
various test assays and animal toxicity studies in a tiered process
(ECHA/EFSA, 2018; OECD, 2018). Of the five tiers, the first two can
be performed animal-free, whereas the last three tiers require animal
testing. In many ways, the EATS modalities have, to a large extent,
defined the types of assays that are used to test for endocrine
disruption. As already discussed, a challenge with respect to the
thyroid (T) modality is that current OECD test methods remain
inadequate when it comes to identifying TH system disruption and
its adverse effects on the developing organism (Gilbert et al., 2020;
Kortenkamp et al., 2020); not only because we do not have an
adequate battery of NAMs to capture all potential MIEs and KEs,
and lack sensitive in vivo tests for TH-mediated adversity, but also
because current regulation requires in vivo evidence to support
indicative NAMs data. Notably, the REACH §44 (1) risk concept
mentions explicitly structural similarity and the relevance of
transformation products, thus pointing to in silico (e.g., read-
across, ligand-receptor docking) and in chemico (compound
transformation to active or inactive metabolites) approaches to
support compound evaluation, but the regulatory frameworks
still have a way to go in incorporating non-animal test data for
chemical regulation.

2.4 Current state of AOPs for thyroid
hormone system disruption

TH system disruption has been identified as one of the priority
areas for AOP and integrated approaches for testing and assessment
(IATA) development within PARC. In this context, there is close
interaction with the work on AOP development for endocrine and
metabolic disruption (PARC Task 5.3.2) and the development of
IATAs for endocrine disruption (PARC Task 6.1.1). All experimental
data on TH system disruption that are generated in PARC are being
mapped to the AOP network, either for improving or expanding
existing AOPs, or for the development of new AOPs. The PARC

endocrine disruption AOP and IATA development processes are
closely aligned to ensure that the methods that are considered for
inclusion in the IATAs are supported by KE descriptions of well-
developed AOPs. The development of TH system disruption IATAs
for both human and environmental health has been initiated, and
since these IATAs are based on the conservation of pathways across
vertebrates, envisioned to share a number of early KE, the work on
assay development and cross-species comparison and extrapolation
will be highly relevant to support these activities.

At time of writing this report, there are around 30 AOP pages for
TH system disruption already available in the AOP-Wiki, together
including 50 linear AOPs. A limited number of AOPs have been
developed to the level where they have been endorsed by the OECD
Working Party on Hazard Assessment and the Working Group of
National Coordinators of the Test Guidelines Programme (WPHA/
WNT). This includes the AOP initiated by inhibition of
thyroperoxidase (TPO) and leading to adverse
neurodevelopmental outcomes in mammals (Crofton et al., 2019)
and the AOP leading from inhibition of the Na+/I- symporter (NIS)
to learning and memory impairment in mammals (Rolaki et al.,
2019). Five AOPs linking TPO and deiodinase inhibition to
impaired swim bladder inflation in fish have recently been
endorsed (Vergauwen et al., 2022a; Vergauwen et al., 2022b;
Vergauwen et al., 2022c; Vergauwen et al., 2022d; Vergauwen
et al., 2022e). A multitude of other AOPs describing TH system
disruption with applicability to different taxa are in varying stages of
development. When combining these AOPs in one large AOP
network, a cross-species AOP network emerges (Knapen et al.,
2018; Noyes et al., 2019; Knapen et al., 2020).

As a first step in using this AOP network to support cross-
species extrapolation and sharing of knowledge between human and
environmental health, the taxonomic domain of applicability of the
MIEs and the AOs in the network was investigated in the context of
altered TH levels. This effort, which was part of the Horizon
2020 ERGO project (Holbech et al., 2020), was based on both an
analysis of target conservation (for the MIEs) using the US
Environmental Protection Agency’s Sequence Alignment to
Predict Across Species Susceptibility (SeqAPASS) tool, and
empirical evidence from the literature for the MIEs and AOs.
While most AOPs typically are initially developed for one species
or taxonomic group, evidence was found that multiple molecular
initiating events and adverse outcomes are in fact applicable across
different vertebrate taxa. This analysis provides a basis for
developing case studies to investigate responses to TH system
disrupting chemicals across species, and the development of
approaches for AOP network-based cross-species extrapolation.

3 The project: to improve and develop
NAMs for human health-relevant risk
assessment of thyroid hormone system
disruptors

Despite previous activities at the OECD level and in various EU
initiatives on the identification, development and evaluation of
in vitro methods addressing the thyroid hormone system (OECD,
2014), we still lack key knowledge about the many MIEs and
downstream KEs that can lead to TH-mediated AOs. To address
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this challenge, this specific project under the PARC programme,
aims to provide newmechanistic knowledge that will facilitate NAM
development (Figure 3). Specifically, we will address key
characteristics of TH system disruption such as TH system
regulation and specific points of vulnerability to chemical
disruption. This will include direct effects on the developing
brain by diminished TH levels, but also effects mediated through
other targets such as the liver. Thus, direct versus indirect
perturbation of the TH axis by exogenous chemical substances
will be scrutinized by use of sophisticated NAMs that build on,
for instance, human stem cell-based in vitro assays. We will develop
and mature in vitro and in silico tests to capture effects on key
components of the TH system, such as TH transport across
physiologic barriers. Importantly, we will include the
characterization of evolutionary conservation of the TH system
axis between rats and humans, but also mammalian and non-
mammalian vertebrates (e.g., fish and amphibians) and conserved

elements of the thyroid-like system that exist in some invertebrate
phyla (e.g., mollusks) to allow for additional NAMs that can inform
on human health hazards. The project will focus on the following
three areas and align activities with the AOP framework to fill
essential data gaps necessary for improved risk assessment regimens
for TH system disruptors.

3.1 From in vivo rodent toxicogenomics to
human-relevant NAMs

We will address considerable knowledge gaps about how TH
system disruptors act in the developing organism. It still remains
poorly understood how different MIEs cause effects throughout the
organism. This is partly because THs exert specific spatiotemporal
functions during development; functions that are not well
characterized. Another uncertainty relates to how chemical

FIGURE 3
The project: New approach methodologies (NAMs) for improved human health risk assessment. Building upon the adverse outcome pathway
(AOP)-framework the project develops NAMs relating to specific molecular initiating events (MIE) and key events (KE) for thyroid hormone system
disruption. Some of these relations are shown. The project also includes a number of activities to translate and/or validate assays, including leveraging
data from zebrafish embryos to inform on human health and in vitro to in vivo translation.
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exposure, TH signaling, and developmental processes interact both
systemically and locally. It is recognized that disrupted hormone
concentrations at the systemic level can cause varying effects locally,
also for TH system disruption, as recently exemplified in rats
exposed to the perfluorinated compound PFOS (Davidsen et al.,
2022). This means that we need to carefully consider the
mechanisms or effects that we are targeting with NAMs when
designing non-animal test methods for predictive toxicology
purposes. We will leverage in vivo rat toxicity studies with multi-
organ RNA-seq approaches (e.g., brain, liver, thyroid gland, heart)
to decipher modes of action and characterize relationships between
different MIEs, their downstream KEs and ultimately AOs. This will
provide knowledge needed to pinpoint future NAMs that are
necessary to cover more completely the various MIEs, pathways
and effects that TH system disruption may have on the intact
organism.

3.2 In vitro assays and in silico predictions for
human-relevant risk assessment

For the in vitro assessment of TH system disruptors, additional
focus will be on the liver. This is an important area to consider
because a large proportion of chemical compounds may cause TH
system disruption through effects in the liver (extrathyroidal mode
of action), including per- and polyfluoroalkyl substances (PFAS),
flame retardants, pesticides and food additives. With attention on
the developing liver, a human-relevant stem cell-based in vitro
model will be used to assess TH-mediated liver toxicity relevant
for the early phases of development. Multipotent human skin-
derived precursor cells (hSKPs) will be differentiated towards
“hepatic progenitor cells” (hSKP-HPC), mimicking human liver
embryogenesis (De Kock et al., 2009; Snykers et al., 2009). With this
assay we aim to develop amethod to characterize effects of chemicals
on the developing liver, TH-signaling and its downstream effects
(e.g., lipid metabolism), but also how chemicals may change the TH
system in the liver (including deiodination and sulfation, nuclear
receptor activation, TH distribution and transmembrane transport)
and their downstream consequences for the organism. To achieve
this, we will for instance use transcriptomics approaches to enable
comparisons with effects observed in in vivo toxicity studies to
scrutinize potential similarities and differences between rats and
humans. Finally, through synergistic activities across PARC projects,
physiological-based kinetics (PBK) modelling will further aid in the
quantitative understanding of causal relationships leading to adverse
effect outcomes.

In addition to the in vitro assays, we will develop new
quantitative structure–activity relationship (QSAR) models for in
silico prediction of chemical substances’ potential TH disrupting
properties. They will be developed to expand on the existing publicly
available battery of endpoints relevant for TH system disruption (see
e.g., www.qsar.food.dtu.dk). QSAR models that are already finalized
or under development by the PARC partner include TPO, NIS, TRs,
deiodinases (DIOs), pregnane X receptor (PXR), constitutive
androstane receptor (CAR), and aryl hydrocarbon receptor
(AhR). This project will contribute with models for TTR binding
(expansion/remodeling with other technologies of previously
published model (Zhang et al., 2015)) and, to our knowledge, the

first models for monocarboxylate transporter 8 (MCT8) and
iodothyrosine dehalogenase (DEHAL1) activity, and possibly
more. Generation of additional experimental data to challenge
and expand the predictive capacity of certain QSAR models is
also planned as collaborative activities across the PARC partnership.

To address some of the complexities of the TH system, we will
explore the use of a 3D cell culture to model the complex process of
TH synthesis and develop assays to test for potential chemical
interference with TH transport across biological barriers. We will
explore a thyroid follicle model (human or animal) for its inherent
characteristics, ability for TH synthesis and its predictive capacity
for TH system disruption by comparison with results from various
NAMs, e.g., covering NIS and TPO activities. We will develop
in vitro bioassays to study the inhibition of TH transport across
physiological barriers with a focus on the blood-cerebrospinal fluid-
barrier. This is crucial since TH action depends on TH being actively
transported into both cells, the fetus and the brain. To this end, an
induced pluripotent stem cell (iPSC)-based choroid plexus organoid
model capable of excreting a cerebrospinal (CSF)-like fluid
(Pellegrini et al., 2020) will be developed and used to study TH
transport across the blood-cerebrospinal fluid-barrier and to
identify new TH transmembrane transporters. Then, relevant
transporters will be selected to expand the battery of stable TH
transmembrane transporter-overexpressing cell lines, where
MCT8 currently exist and organic-anion-transporting
polypeptides 1C1 (OATP1C1) and organic anion transporter 4
(OAT4) are under development. These cell lines can be used to
screen compounds for their capacity to inhibit TH transmembrane
transporters that not only play a role in TH transport across the
blood-cerebrospinal fluid-barrier, but also across the placenta and
the blood-brain-barrier.

3.3 Non-mammalian assays for human
health-relevant assessment of chemicals

To further facilitate the implementation of more NAMs for
human-relevant chemical risk assessment, we will assess the benefit
of including non-mammalian test species such as fish embryos and
invertebrates in IATAs tailored for human and ecological health
parameters. Fish embryos are not protected under the current EU
legislation for the use of laboratory animals until the free-feeding
stage, which corresponds to 5 days post fertilization (dpf) for
zebrafish kept at 28°C (European Commission, 2020). This
represents an opportunity for reducing animal testing. The TH
system is highly conserved across vertebrate taxa and using data
from, for instance, fish to inform on potential risks to human health
would greatly facilitate the transition away from high reliance on
mammalian animal toxicity testing. Development of the TH system
in zebrafish covers the earliest phases of embryonic development
that rely on maternally transferred THs, but also the development of
the entire HPT axis, which parallels human development. During
the first 5 dpf the thyroid and HPT-axis develops into a fully
functional organ and, importantly, is susceptible to TPO
inhibition (Opitz et al., 2011; Stinckens et al., 2016; Persani and
Marelli, 2017; Vergauwen et al., 2018; Walter et al., 2019).
Furthermore, elements of a vertebrate-like TH signaling pathway
(that is; TRs, retinoid X receptor (RXR) and enzymes involved in

Frontiers in Toxicology frontiersin.org07

Ramhøj et al. 10.3389/ftox.2023.1189303

http://www.qsar.food.dtu.dk
https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2023.1189303


vertebrate TH synthesis) have been identified in some invertebrate
phyla (Taylor and Heyland, 2017) including mollusks, and both TRs
and TH (of endogenous and/or exogenous origin) appear to regulate
aspects of larval metamorphosis in somemollusk species (Morthorst
et al., 2023). Although the exact mechanisms are largely unknown,
disruption of TH signaling and metamorphosis in invertebrates may
inform on potential effects in vertebrates.

We will establish new assays in zebrafish to determine the
function of iodide and TH transporters. We will apply genomic
and proteomic approaches to zebrafish toxicity studies to decipher
the modes of action and characterize the relationships between the
different MIEs and their key downstream events. These molecular
analyses will be correlated to behavioral assays using zebrafish larvae
to assess how potential TH system disruption affects brain
development and alters behavior, for instance tail coiling to
assess early motor innervation (Saint-Amant and Drapeau, 1998;
de Oliveira et al., 2021), locomotor response to changes in light
condition to assess the integration of the central nervous systemwith
the peripheral nervous system and sensory organs (Berg et al., 2018),
anxiety-like behaviors to assess serotonergic, dopaminergic, and
adrenergic system function (Markin et al., 2021), and a
habituation assay in response to auditory and light stimuli to
assess non-associative learning (Roberts et al., 2013). This
integration will link MIEs and KEs with AOs at the level of an
intact organism. Finally, functional and proteomics data from
zebrafish will be compared to data from human-based in vitro
assays to validate cross-species extrapolation capacity.

To further investigate the potential of using data from e.g., fish to
inform on potential risks to human health, zebrafish embryo assay
data will be used in cross-species extrapolation case studies. We will
collect TH system disruption data from different vertebrate taxa
(i.e., fish, amphibians and mammals), both from the literature as
well as data becoming available in PARC (see work described above),
over the next years. This work will use the AOP framework, and
specifically the TH system disruption cross-species AOP network
and the associated evaluation of the taxonomic domain of
applicability, to anchor observations across species to common
toxicological pathways. This will aid the development of
strategies for cross-species extrapolation, and sharing knowledge
between human and environmental health evaluation.

4 Concluding remarks

As we move towards greater reliance on NAMs for chemical risk
assessment, we need to close existing knowledge gaps to ensure
adequate test and non-test evaluation of TH system disrupting
properties. By focusing on in vivo rodent toxicogenomics,
advanced stem cell-based in vitro bioassays, transporter and

zebrafish embryo investigations, concomitant with cross-species
and in silico studies, this project, under the PARC framework,
will close important gaps in knowledge and available tests
necessary to facilitate further 3R approaches for a testing
framework capable of adequately identifying TH system
disruptors. In other words, this project aims to improve human
health risk assessment of TH system disrupting chemicals to better
safeguard human health and the environment.
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