

Guideline adherence and survival of patients with candidaemia in Europe: results from the ECMM Candida III multinational European observational cohort study

Martin Hoenigl, Jon Salmanton-García, Matthias Egger, Jean-Pierre Gangneux, Tihana Bicanic, Sevtap Arikan-Akdagli, Ana Alastruey-Izquierdo, Nikolai Klimko, Aleksandra Barac, Volkan Özenci, et al.

▶ To cite this version:

Martin Hoenigl, Jon Salmanton-García, Matthias Egger, Jean-Pierre Gangneux, Tihana Bicanic, et al.. Guideline adherence and survival of patients with candidaemia in Europe: results from the ECMM Candida III multinational European observational cohort study. The Lancet Infectious Diseases, 2023, 23 (6), pp.751-761. 10.1016/S1473-3099(22)00872-6. hal-04164281

HAL Id: hal-04164281 https://univ-rennes.hal.science/hal-04164281v1

Submitted on 21 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Guideline adherence predicts Survival of Candidemia in Europe: Results from

2 the ECMM Candida III multinational European Observational Cohort Study

3

Martin Hoenigl, Prof, 1,2,3#, Jon Salmanton-García, PhD,4,5, Matthias Egger, MD,1,3, Jean-Pierre Gangneux,

5 Prof, ⁶, Tihana Bicanic, MD, ⁷, Sevtap Arikan-Akdagli, Prof, ⁸, Ana Alastruey-Izquierdo, PhD, ⁹, Nikolai

6 Klimko, Prof, ¹⁰, Aleksandra Barac, MD, ¹¹, Volkan Özenci, Prof, ^{12,13}, Eelco F. J. Meijer, MD, ^{14,15,1}, Nina

7 Khanna, MD,¹⁷, Matteo Bassetti, Prof, ^{18,19}, Riina Rautemaa-Richardson, MD,^{20,21}, Katrien Lagrou, Prof,

^{22,23}, Kai-Manuel Adam, MD, ¹⁶, Emin Halis Akalin, Prof, ²⁴, Murat Akova, Prof, ²⁵, Valentina Arsic

Arsenijevic, MD, ²⁶, Avinash Aujayeb, MD, ²⁷, Ola Blennow, MD, ²⁸, Stéphane Bretagne, Prof, ²⁹, François

Danion, MD,³⁰, Blandine Denis, MD, ³¹, Nick Alexander de Jonge, MD,³², Guillaume Desoubeaux, Prof, ³³,

Lubos Drgona, MD,³⁴, Nurettin Erben, MD,³⁵, Andrea Gori, MD, ^{36,37}, Julio García Rodríguez, PhD ³⁸,

Carolina Garcia-Vidal, MD, 39, Daniele Roberto Giacobbe, MD, 18,19, Anna L. Goodman, MD, 40, Petr

Hamal, MD,⁴¹, Helena Hammarström, MD,⁴², Christina Toscano, MD, ⁴³, Fanny Lanternier, Prof,⁴⁴,

14 Cornelia Lass-Flörl, Prof, ⁴⁵, Deborah E. A. Lockhart, PhD, ^{46,47}, Thomas Longval, MD, ⁴⁸, Laura Loughlin,

15 MD, ⁴⁹, Tadeja Matos, MD, ⁵⁰, Malgorzata Mikulska, Prof, ^{18,19}, Manjusha Narayanan, FRCPath ⁵¹, Sonia

16 Martín-Pérez, MD, ⁵², Juergen Prattes, MD, ^{1,2,3,4}, Benedict Rogers, MBChB ⁵³, Laman Rahimli, MD, ^{4,5},

Maite Ruiz, PhD,^{54,55}, Emmanuel Roilides, Prof,⁵⁶, Michael Samarkos, Prof, ⁵⁷, Ulrike Scharmann, MD, ⁵⁸,

Uluhan Sili, Prof, ⁵⁹, Ogun Resat Sipahi, Prof, ⁶⁰, Alena Sivakova, MD, ⁶¹, Joerg Steinmann, Prof, ^{58,62}, Janina

19 Trauth, MD, ⁶³, Ozge Turhan, Prof, ⁶⁴, Jens Van Praet, MD, ⁶⁵, Antonio Vena, PhD, ^{18,19}, P. Lewis White,

20 Prof, ⁶⁶, Birgit Willinger, Prof, ⁶⁷, Anna Maria Tortorano, PhD, ⁶⁸, Maiken C. Arendrup, Prof, ^{69,70,71}, Philipp

Koehler, MD,^{4,5,72*}, Oliver A. Cornely, Prof, ^{4,5,72,73*#} - on behalf of the ECMM *Candida* III Study Group\$

22 * Shared Senior authorship

23

21

4

8

9

12

17

18

25 Affiliations

- ¹Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- ²Biotech Med, Graz
- 28 ³Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical
- 29 University of Graz, Graz, Austria
- 30 ⁴University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine,
- 31 Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical
- 32 Mycology (ECMM), Cologne, Germany
- ⁵University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Excellence Cluster on
- 34 Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- ⁶Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR S
- 36 1085, F-35000 Rennes, France
- ⁷Institute of Infection and Immunity, St George's University of London, London, UK
- 38 ⁸Hacettepe University Medical School, Department of Medical Microbiology, Ankara, Turkey
- ⁹Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
- 40 ¹⁰Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg,
- 41 Russia
- 42 ¹¹ Clinic for Infectious and tropical diseases, University Clinical Center of Serbia, Faculty of Medicine, University of
- 43 Belgrade, Belgrade, Serbia
- 44 ¹² Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- 45 ¹³ Department of Clinical Microbiology, Karolinska University Hospital, Sweden
- 46 ¹⁴ Canisius Wilhelmina Hospital (CWZ), Medical Microbiology and Infectious Diseases, Nijmegen, the Netherlands
- 47 ¹⁵ Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, the Netherlands.
- 48 ¹⁶ Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- 49 ¹⁷ Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
- 50 ¹⁸ Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- 51 ¹⁹ IRCCS Ospedale Policlinico San Martino, Infectious Diseases Unit, Genoa, Italy

- 52 ²⁰Mycology Reference Centre Manchester and Department of Infectious Diseases, Wythenshawe Hospital, Manchester
- 53 University NHS Foundation Trust, Manchester, UK
- 54 ²¹ Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester,
- 55 UK
- ²² Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven,
- 57 Leuven, Belgium
- 58 ²³ Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, Leuven, Belgium
- 59 ²⁴ Bursa Uludag University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Bursa,
- 60 Turkey
- 61 ²⁵ Hacettepe University Medical School Department of Infectious Diseases and Clinical Microbiology, Ankara, Turkey
- 62 ²⁶Faculty of Medicine University of Belgrade, Institute of Microbiology and Immunology, Medical Mycology
- Reference Laboratory (MMRL), Belgrade, Institute of Public Health of Vojvodina, Centre for Microbiology Novi
- 64 Sad, Serbia
- 65 ²⁷ Northumbria Healthcare NHS Foundation Trust, Northshields, UK
- 66 ²⁸ Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- 67 ²⁹ Laboratory of Parasitology and Mycology, Saint Louis University Hospital, Assistance Publique-Hôpitaux de Paris
- 68 (AP-HP), Paris, France
- 69 ³⁰ Department of Infectious Diseases, CHU de Strasbourg; Université de Strasbourg, Strasbourg, France
- 70 ³¹ Department of Infectious Diseases, Hôpital Saint-Louis, Fernand Widal, Lariboisière, Assistance Publique-Hôpitaux
- 71 de Paris (AP-HP), Paris, France
- 72 ³² Department of Hematology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- 73 Department of Parasitology-Mycology-Tropical medicine, CHRU de Tours, Tours, France
- 74 ³⁴Department of Oncohematology, Comenius University and National Cancer Institute, Bratislava, Slovakia
- 75 Skisehir Osmangazi University, Faculty of Medicine, Department of Infectious Disease and Clinical Microbiology,
- 76 Eskisehir, Turkey
- 77 ³⁶Department of Internal Medicine, Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore
- 78 Policlinico, 20122 Milan, Italy.
- 79 ³⁷Department of Pathophysiology and Transplantation and Centre for Multidisciplinary Research in Health Science
- 80 (MACH), University of Milan, 20122 Milan, Italy.

- 81 ³⁸ Microbiology Department, La Paz University Hospital, Madrid, Spain
- 82 ³⁹ Department of Infectious Diseases, Hospital Clinic de Barcelona, Barcelona, Spain.
- 83 ⁴⁰ Department of Infection, Guy's and St Thomas' NHS Foundation Trust) but if space/capacity please add a secondary
- 84 one- which is MRC Clinical Trials Unit at University College London
- 85 ⁴¹ Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech
- 86 Republic
- 87 ⁴² Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg,
- 88 Gothenburg, Sweden
- 89 ⁴³ Laboratory of Clinical Microbiology and Molecular Biology, Centro Hospitalar de Lisboa Ocidental, Lisboa,
- 90 Portugal
- 91 ⁴⁴ Paris Cité Université, Necker Hospital, APHP, Paris, France
- 92 ⁴⁵Institute of Hygiene and Medical Microbiology Innsbruck Medical University, Innsbruck Medical University,
- 93 Excellence Center for Medical Mycology (ECMM), Innsbruck, Austria
- 94 ⁴⁶ Department of Medical Microbiology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB25 2ZN,, United
- 95 Kingdom
- 96 ⁴⁷ Institute of Medical Sciences, School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen
- 97 AB25 2ZD, United Kingdom
- 98 ⁴⁸ Centre Hospitalier de Versailles, Hématologie, Le Chesnay, France
- 99 ⁴⁹ Belfast Health and Social Care Trust, Belfast, United Kingdom
- 100 ⁵⁰ Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- 101 ⁵¹ Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- 102 ⁵² Hospital Nuestra Señora de Sonsoles, Ávila, Spain
- 103 ⁵³ University Hospitals of Leicester NHS Trust, Department of Clinical Microbiology, Leicester, United Kingdom
- 104 ⁵⁴ Unit of Infectious Diseases and Microbiology, Institute of Biomedicine of Seville, University Hospital Virgen del
- 105 Rocio, Seville, Spain
- 106 ⁵⁵ Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain.
- 107 ⁵⁶ Hippokration General Hospital, Infectious Diseases Department, Medical School, Aristotle University of
- 108 Thessaloniki, Thessaloniki, Greece

109 110	⁵⁷ 1 st Department of Medicine, Laikon General Hospital, Medical School, National & Kapodistrian University of Athens, Greece
111	⁵⁸ Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
112 113	⁵⁹ Department of Infectious Diseases and Clinical Microbiology, School of Medicine, Marmara University, Istanbul, Turkey
114	⁶⁰ Ege University Medical School Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
115 116	⁶¹ Department of Microbiology of St. Anne's Faculty Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
117 118	⁶² Institute for Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, Nuremberg, Germany
119	⁶³ Department of Medicine II, Section of Infectious Diseases, Justus-Liebig-University Giessen, Giessen, Germany
120 121	⁶⁴ Akdeniz University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Antalya, Turkey
122	⁶⁵ AZ Sint-Jan Brugge Oostende AV, Nephrology and Infectious Diseases, Brugge, Belgium
123	⁶⁶ Public Health Wales, Microbiology Cardiff and Cardiff University, School of Medicine, Cardiff, United Kingdom
124 125	⁶⁷ Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
126	⁶⁸ Universita degli Studi di Milano, Milano, Italy
127	⁶⁹ Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
128	⁷⁰ Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
129	⁷¹ Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
130	⁷² German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
131 132	⁷³ University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
133	

§ ECMM Candida III Study Group contributors:

135	Mario Tumbarello ¹ , Alida Fe Talento ² , Alba C Ruiz ³ , Zdenek Racil ⁴ , Igor Stoma ⁵ , María Calbacho ⁶ , Eric
136	Van Wijngaerden ⁷ , Júlia Henriques ⁸ , Harriett Jordan ⁹ , Valentina Ferroni ¹⁰ , Ozlem Koyuncu Ozyurt ¹¹ ,
137	Christopher Milacek ¹² , Robert Krause ¹³ , Christoph Zurl ¹³ , Matthijs Backx ¹⁴ , Ang Li ¹⁵ , Raphael Seufert ¹⁶ ,
138	Rok Tomazin ¹⁷ , Yael Blankenheim ^{18,19} , Julio Dávila-Valls ²⁰ , Paloma García-Clemente ²¹ , Tomas
139	Freiberger ²² , Jochem Buil ²³ , Jacques F. Meis ²⁴ , Deniz Akyol ²⁵ , Hélène Guegan ²⁶ , Clare Logan ²⁷
140	<u>Affiliations</u>
141	¹ Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
142	² Beaumont Hospital Dublin – Dublin, Ireland
143	³ University and Polytechnic La Fe Hospital, Valencia, Spain
144	4 Institut of Hematology and Blood Transfuzion, Prague, Czech Republic
145 146	⁵ Minsk Scintifical and Practical Center of Surgery, Transplantology and Hematology; Gome State University, Misnk, Belarus
147	⁶ Hospital 12 Octubre, Hematology, Madrid, Spain
148	⁷ Department of General Internal Medicine, UZ Leuven, Leuven, Belgium
149	⁸ Laboratory of Clinical Microbiology and Molecular Biology, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
150 151	⁹ Department of Infection, Guy's and St Thomas' NHS Foundation Trust, St Thomas Hospital, Westminister Bridge, London, United Kingdom
152	¹⁰ Department of Internal Medicine Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
153	¹¹ Akdeniz University, Faculty of Medicine, Department of Medical Microbiology, Antalya, Turkey
154	¹² Department of Internal Medicine II, Division of Pulmonology, Medical University of Vienna, Vienna, Austria
155	¹³ Division of Infectious Diseases, Medical University of Graz, Graz, Austria
156	¹⁴ Public Health Wales, Microbiology, Cardiff, United Kingdom
157	¹⁵ Newcastle Hospitals, Newcastle Upon Tyne, United Kingdom

160	¹⁷ Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
161 162	¹⁸ University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); Cologne, Germany
163 164 165	¹⁹ University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
166	²⁰ Hospital Nuestra Señora de Sonsoles, Ávila Spain
167	²¹ La Paz University Hospital, Madrid, Spain
168 169	²² Centre of Cardiovascular Surgery and Transplantation, Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
170	²³ Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
171 172	²⁴ Canisius Wilhelmina Hospital (CWZ), Medical Microbiology and Infectious Diseases, Nijmegen, the Netherlands; Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, the Netherlands.
173	²⁵ Ege University Medical School Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
174 175	²⁶ Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France
176	²⁷ Institute of Infection and Immunity, St George's University of London, London, UK
177	
178	# Corresponding author:
179	Prof. Dr. Martin Hoenigl, MD,
180	Division of Infectious Diseases, Department of Internal Medicine,
181	Medical University of Graz,
182	Auenbruggerplatz 15, 8036-Graz, Austria
183	Email: hoeniglmartin@gmail.com

184	Phone: +4331638531425	
185		
186	Alternate Corresponding author:	
187	Prof. Dr. Oliver A. Cornely	
188	University of Cologne, Faculty of Med	dicine and University Hospital Cologne, Translational Research,
189	Cologne Excellence Cluster on Cellula	ar Stress Responses in Aging-Associated Diseases (CECAD), and
190	University of Cologne, Faculty of Med	dicine and University Hospital Cologne, Department I of Internal
191	Medicine, Center for Integrated Oncol	logy Aachen Bonn Cologne Duesseldorf (CIO ABCD) and
192	Excellence Center for Medical Mycolo	ogy (ECMM), Cologne, Germany
193	Herderstraße 52-54	
194	50931 Cologne, Germany	
195	Phone: +49 221 478 88795 Fax: +49	221 478 1421445
196	E-mail: oliver.cornely@uk-koeln.de	
197		
198	Author's ORCID	
199	Martin HOENIGL	0000-0002-1653-2824
200	Jon SALMANTON-GARCÍA	0000-0002-6766-8297
201	Matthias EGGER	0000-0002-7795-4406
202	Jean-Pierre GANGNEUX	0000-0002-4974-5607
203	Tihana BICANIC	0000-0002-2676-838X
204	Sevtap ARIKAN-AKDAGLI	0000-0001-9807-6764
205	Ana ALASTRUEY-IZQUIERDO	0000-0001-8651-4405
206	Nikolai KLIMKO	0000-0001-6095-7531
207	Volkan ÖZENCI	0000-0002-8069-4027

208	Eelco F J MEIJER	0000-0002-0226-024X
209	Nina KHANNA	0000-0002-2642-419X
210	Matteo BASSETTI	0000-0002-0145-9740
211	Riina RAUTEMAA-RICHARDSON	0000-0002-1071-6040
212	Katrien LAGROU	0000-0001-8668-1350
213	Kai Manuel ADAM	0000-0003-3639-872X
214	Emin Halis AKALIN	0000-0001-7530-1279
215	Murat AKOVA	0000-0002-6904-9473
216	Valentina ARSIC ARSENIJEVIC	0000-0001-8132-3300
217	Avinash AUJAYEB	0000-0002-0859-5550
218	Ola BLENNOW	0000-0002-7167-7882
219	Stephane BRETAGNE	0000-0001-6870-3800
220	Francois DANION	0000-0003-3907-0658
221	Nick DE JONGE	0000-0002-9901-0887
222	Guillaume DESOUBEAUX	0000-0001-7945-9890
223	Lubos DRGONA	0000-0002-5089-3201
224	Nurettin ERBEN	0000-0003-0373-0132
225	Daniele Roberto GIACOBBE	0000-0003-2385-1759
226	Anna GOODMAN	0000-0003-0643-9017
227	Andrea GORI	0000-0001-6587-4794
228	Petr HAMAL	0000-0002-5361-8125
229	Helena HAMMARSTRÖM	0000-0002-5859-1056
230	Cristina TOSCANO	0000-0002-4674-6065
231	Cornelia LASS-FLÖRL	0000-0002-2946-7785
232	Deborah E. A. LOCKHART	0000-0002-4262-3842
233	Tadeja MATOS	0000-0002-5696-1412
234	Małgorzata MIKULSKA	0000-0002-5535-4602
235	Thomas LONGVAL	0000-0002-0254-1519
236	Jens VAN PRAET	0000-0002-7125-7001
237	Sonia Martín-Pérez	0000-0001-5809-7165
238	Juergen PRATTES	0000-0001-5751-9311
239	Laman RAHIMLI	0000-0003-2266-445X
240	Zdeněk RÁČIL	0000-0003-3511-4596

241	Benedict ROGERS	0000-0002-7041-6744
242	Emmanuel ROILIDES	0000-0002-0202-364X
243	Michael SAMARKOS	0000-0001-9630-9712
244	Ulrike SCHARMANN	0000-0001-7689-7799
245	Uluhan SILI	0000-0002-9939-9298
246	Alena SIVAKOVA	0000-0002-9224-4613
247	Jörg STEINMANN	0000-0002-3181-3667
248	Ozge TURHAN	0000-0003-1494-9973
249	Antonio VENA	0000-0002-0697-3992
250	P Lewis WHITE	0000-0003-3056-4205
251	Birgit WILLINGER	0000-0001-7921-5749
252	Anna Maria TORTORANO	0000-0003-2093-8250
253	Maiken Cavling ARENDRUP	0000-0002-4747-0144
254	Philipp KOEHLER	0000 -0002 -7386 -7495
255	Oliver A. CORNELY	0000-0001-9599-3137
256		
257	Contributors:	
258	Julio Dávila -Valls	0000-0002-5185-2073
259	Tomas Freiberger	0000-0001-6532-7053
260	Alida Fe Talento	0000-0003-1271-2550
261	Christopher MILACEK	0000-0002-6924-0075
262		

ACCEPTED MANUSCRIPT / CLEAN COPY

Abstract

Background

The European Confederation of Medical Mycology (ECMM) collected data on epidemiology, risk factors, treatment, and outcomes of culture proven candidemia across Europe in order to assess how adherence to guideline recommendations correlate with outcomes.

Methods

Each participating hospital (number of eligible hospitals per country determined by population size) included the first ~10 culture proven candidemia cases after 01-July-2018 and entered data into the ECMM *Candida* III database on the FungiScope® platform. EQUAL *Candida* Scores reflecting adherence to recommendations of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Infectious Disease Society of America (IDSA) Guidelines were assessed.

Findings

A total of 632 candidemia cases were included from 64 institutions in 20 European countries. Overall 90-day mortality was 42.9% (265/617),, and older age, intensive care unit (ICU) admission, higher Charlson Comorbidity Index and *Candida tropicalis* as causative pathogen were independent baseline predictors of mortality in Cox regression analysis. EQUAL *Candida* Score remained an independent predictor of mortality in the multivariable Cox regression analyses after adjusting for the baseline predictors, even after restricted to cases who survived >7 days after diagnosis (adjusted hazard ratios between 1.075 and 1.089 per 1 point decrease; p<0.0001). Median duration of hospitalization was 16 days following diagnosis of candidemia and was prolonged

286	specifically for completion of parenteral therapy in 16% (100/621) of patients. Initial echinocandin
287	treatment was associated with lower overall mortality and also with longer duration of
288	hospitalization among survivors.
289	Interpretation
290	While overall mortality of candidemia was high, our study indicates that adherence to clinical
91	guideline recommendations, reflected by higher EQUAL Candida Scores, may increase survival.
292	Echinocandin treatment was associated with increased overall survival, but also longer duration of
293	hospitalization (hospitalization was prolonged only for completing treatment in 16%).
294	
295	Funding
296	The study was funded by an Investigator Initiated Research Grant from SCYNEXIS, Inc
297	
298	Word Count Abstract: 300
299	
800	Key Words: Candida tropicalis, Candida auris, Candida albicans, Candida parapsilosis,
801	Candida glabrata, mortality, guidelines
802	
803	
804	
805	
806	
807	

Research in context

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

Evidence before this study: Despite advances in management including improved central venous catheter management, candidemia remains associated with high mortality. International guidelines for the diagnosis and management of candidemia were created with the ultimate goal of improving patient outcomes and survival, but whether this is actually the result (e.g. also for first-line treatment with echinocandins) has not been comprehensively evaluated. In 2018, the European Confederation of Medical Mycology (ECMM) introduced the EQUAL Candida score (ECMM scores to measure quality of disease management) allowing for quantification of guideline adherence as a surrogate marker for the quality of diagnostic and therapeutic management. The score was derived from recommendations of the two most prominent guidelines for candidemia, the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) guideline, and the Infectious Diseases Society of America (IDSA) guideline. While this score has been shown to be predictive of mortality in subgroups of candidemia cases in a few small single centre studies, larger multicentre evaluations on whether the score and whether following each guideline recommendation (=score variable) separately correlates with clinical outcomes was lacking and not found in the Pub Med database. Added value of this study: This study collected data on epidemiology, risk factors, treatment, and

outcomes of culture proven candidemia from 64 institutions in 20 European countries in order to assess how adherence to guideline recommendations correlate with outcomes. Patient enrollment per country and number of participating centers were stratified by population size. Overall 90-mortality was 42.9%, and older age, intensive care unit (ICU) admission, higher Charlson Comorbidity Index and *Candida tropicalis* as causative pathogen, as well as emerging and rare *Candida* spp. (including *C. auris*) as causative pathogens were independent predictors of mortality in Cox regression analyses. Lower EQUAL *Candida* Scores, reflecting less adherence to guideline

recommendations, remained an independent predictor of mortality in the multivariable Cox regression analyses after adjusting for age, ICU admission and rare *Candida spp.* (adjusted hazard ratios between 1.075 and 1.089 per 1 point decrease; p<0.0001). Absence of each diagnostic/therapeutic measure (including absence of initial echinocandin treatment) was accompanied by increased mortality compared to the overall cohort, emphasizing the importance of every single variable in successful management. Initial echinocandin treatment was associated with longer duration of hospitalization among survivors.

Implications of all the available evidence: While across Europe overall mortality of candidemia in adults remains high at 43%, adherence to clinical guideline recommendations may increase survival. Of note this was also shown for more controversial guideline recommendations, such as performance of ophthalmoscopy or echocardiography. Echinocandins may not only be associated with increased overall survival, but also longer duration of hospitalization, including directly causing prolonged hospitalization in 1 out of 7 patients with candidemia, due to the fact that no oral alternatives to azoles are available. This limitation could be overcome by new antifungals with oral bioavailability or longer half-life's, which may allow for earlier discharge and outpatient therapy, reducing costs and hospital stay associated risks (e.g., nosocomial infection).

Introduction

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

Invasive candidiasis (IC) including candidemia remains the most frequent invasive fungal infection in the hospital setting affecting males and females alike (1), with around 700,000 cases of IC occurring globally per year (2), 7.07 episodes per 1,000 ICU admissions in Europe (3), and an estimated overall pooled annual incidence rate of 3.88/100,000 population in Europe (4). Known risk factors for developing candidemia/IC in the intensive care unit (ICU) include (abdominal) surgery, total parenteral nutrition (TPN), renal replacement therapy, central venous catheter (CVC), broad spectrum antibiotics, diabetes (5, 6), as well as neutropenia, solid organ transplantation, significant liver, respiratory or cardiovascular disease, and intravenous drug use (7). Despite advances in management including first-line treatment with echinocandins and improved CVC management, IC remains associated with high mortality (8). Of approximately 79 cases occurring in Europe per day, an estimated 29 (37%) patients are expected to have fatal outcome at day 30 (4). Predictors of mortality in candidemia include older age, primary source (i.e., not CVC related) and sepsis/septic shock (9) In contrast, early adequate antifungal treatment is efficacious (9), as is consultation by an infectious diseases specialist with a hazard ratio of 0.81 (95% CI 0.73-0.91; p<0.0001) after propensity score weighting (10). International guidelines for the diagnosis and management of candidemia were created with the ultimate goal of improving patient outcomes and survival, but whether this is actually the result has been rarely evaluated. In 2018, the European Confederation of Medical Mycology (ECMM) introduced the EQUAL scores (ECMM scores to measure quality of disease management) allowing for quantification of guideline adherence as a surrogate marker for the quality of diagnostic and therapeutic management; the EQUAL Candida score was the first score published (11). The score was derived from recommendations of the two most prominent guidelines for candidemia, the

376	European Society for Clinical Microbiology and Infectious Diseases (ESCMID) guideline (12),
377	and the Infectious Diseases Society of America (IDSA) guideline (13).
378	In recent single centre studies, the EQUAL candida score (11) was shown to predict mortality in
379	CVC-associated candidemia in general (14), and C. tropicalis candidemia (15), however, larger
380	multicentre evaluations are lacking.
381	Therefore the ECMM (16) designed and conducted the <i>CANDIDA</i> III study - its third pan European
382	multicenter study over the past 25 years (17, 18) - to collect data on epidemiology, risk factors,
383	treatment, and outcomes of culture proven candidemia across Europe, as well as to assess how
384	adherence to guideline recommendations for managing candidemia correlates with outcomes.

Methods

Study design and participating centers

For this European multicenter observational cohort study, each participating hospital included the
first ~10 blood culture proven adult candidemia cases occurring consecutively after July 1st, 2018.
Candidemia was, defined according to ESCMID criteria (19). The primary objective was to assess
how adherence to guideline recommendations correlate with outcomes. Secondary objectives
included to assess epidemiology, risk factors, treatment, and outcome of candidemia across Europe.
To give a realistic picture of candidemia in Europe, the target number of eligible hospitals per
country was determined by population size. As general guidance, up to a maximum of eight
hospitals were allowed for each of the six ECMM countries with populations >50 million (i.e.,
France, Germany, Italy, Russia, Turkey, and United Kingdom; mean population of these countries
is 82.5 million), up to a maximum of four hospitals for each ECMM countries with population >25
million and <50 million (i.e., Spain and Poland; mean population of these countries 42 million),
and up to two hospitals for each of the remaining 16 ECMM countries with population <25 million
(mean population 9.4 million) were invited to contribute. Hospitals were recruited by ECMM
council representatives of each participating country, or via the EPICOVIDEHA (20) and
FungiScope® networks (21) and among the ECMM Global Guidelines contributor and fellow
groups (16).
Between July 2018 and March 2022, participating centres entered data on patient demographics,
risk factors and characteristics, duration of hospitalization (maximum duration of follow-up 90
days), diagnostic procedures, causative Candida species, treatment characteristics including
antifungal treatment, whether hospital stay was prolonged only for completion of parenteral
antifungal treatment, and outcomes, into the ECMM Candida Registry - CandiReg - FungiScope®

(NCT 01731353), which was described previously (21, 22), on www.clinicalsurveys.net (EFS Fall 2018 Questback, Cologne, Germany).

Statistical analysis and ethics

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

All statistical analyses were performed using IBM SPSS Statistics 25 (SPSS Inc., Chicago, IL, USA) and R (version 4.3.1; www.r-project.org). Descriptive statistical analysis was performed for most variables including distribution of Candida species and prolonged hospital stay for parenteral antifungal treatment. EQUAL Candida Scores (11) reflecting adherence to recommendations of ESCMID and IDSA Guidelines were assessed for every case that provided the prerequisite data in for all of the EQUAL Candida Score variables. Data were summarized employing frequencies, percentages, median or interquartile range as appropriate. Categorical data were tested using χ^2 or Fisher's exact test if a cell value was under 5, and continuous variables were summarized using median (interquartile range, IQR) and compared with Student's t-test / Mann-Whitney's U or ANOVA / Kruskall-Wallis' H, depending on their non-/normal distribution. Two-sided p<.05 was taken as cut-off for statistical significance. Further analyses on EQUAL Candida Scores were restricted to cases who survived at least 7 days after diagnosis (n=470), to exclude patients where earlier mortality may have precluded treating physicians from implementing measures recommended in the guidelines, and thereby potentially biasing our results towards lower scores in non-survivors. Scores were divided by the maximum achievable score (19 for those without CVC and 22 for those with CVC) to calculate a proportion of the achievable maximum for each case and compared between survivors and non-survivors. For these EQUAL Candida score proportions, receiver operating characteristic (ROC) curve analyses were performed and area under the curve (AUC) values were calculated. Optimal cutoff was determined using Youdens index.

To investigate the association of baseline risk factors with survival, univariable and multivariable
Cox proportional hazard models (non-overlapping and non-mutually exclusive variables with
p<0.1 included) were estimated for patients without missing data on duration of follow up, with
duration of follow up capped at day 180 (n=597). Causative Candida spp. was the only variable
that differed between the multivariable models; for one of these models, emerging Candida spp.
that were defined before(23) (i.e., C. kefyr, C. guilliermondii, C. lusitaniae, C. dubliniensis, C.
famata, C. inconspicua, C. rugosa, C. norvegiensis) were grouped together with C. auris into the
variable "C. auris and other emerging Candida spp.), while the other model included C. tropicalis,
respectively. The proportionality of hazard assumption was evaluated by fitting an interaction
between a variable of interest and linear follow-up time. We used the Akaike Information Criterion
(AIC) to compare the relative quality of multivariable Cox models for baseline risk factors.
We then used a multivariable Cox proportional hazards model to measure the relative hazard for
death between different EQUAL Candida scores when adjusting for significant baseline prognostic
factors in patients who survived > 7 days and who had data on duration of follow up available
(n=443). Lastly, we estimated multivariable Cox models for each variable of the EQUAL Candida
score adjusted for significant baseline risk factors.
The proportional hazards assumption was tested using the Schoenfeld residuals test for the overall
model and individual covariates. The resultant model and all other Cox models did not significantly
violate the proportional hazards assumption for individual covariates or the global model. As
candidemia diagnosis was the starting point for follow-up and the primary effect of interest
(EQUAL Candida score) as well as all other covariates were established at baseline, immortal time
bias was not considered.

The study was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. For the database, retrospective data entry, and data analysis a central ethical approval was obtained at the University of Cologne, Germany (EK 17-485) that indicates that, generally, neither informed consent nor IRB approval individual to each participating hospital would be required. Each participating hospital was required to obtain local IRB confirmation or approval as deemed necessary by local regulations/authorities.

Role of the funding source

The sponsor of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding authors had both full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

466

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

467	A total of 632 patients with candidemia were included from 64 institutions in 20 European
468	countries (Figure 1). The study flow is depicted in Figure 2.

Patient demographic and clinical characteristics, risk factors, treatment, and outcomes as well as distribution of Candida spp. in the overall study cohort, survivors and non-survivors are separately displayed in detail in **Supplemental Table 1**. The majority (368/632; 58%) were male and median age was 65 years (IQR 53-73). Underlying hematological/oncological malignancy (247/632; 39%), ICU admission (234/632; 37%), and recent major surgery (164/632; 26%), were the most common underlying conditions. Candidemia was classified as catheter related bloodstream infection (CRBSI) in 21% (130/632) of cases. In about one third of cases (224/632; 35%) echocardiography was reported, showing cardiac involvement in 11% (25/224) of those examined. Eye exam was reported in 27% (169/632) of cases showing ocular involvement in 11% (19/169) of those examined. Overall mortality was 46.4% (286/617); in 37% of those (77/209), investigators attributed death to candidemia; 30-day mortality was 37.6% (232/617), 90-day mortality 42.9% (265/617), 180-day mortality 45.1% (278/617). Median duration of hospitalization was 15 days (IQR 4-30 days) after the diagnosis of candidemia. The vast majority (502/620; 81%) received treatment consultation by an infectious diseases or microbiology expert and echinocandins were the first line antifungal treatment in 56% (353/632) of cases. Initial echinocandin treatment was associated with longer duration of hospitalization among survivors receiving echinocandins versus other antifungals (median 24 days, IQR 15-40 days vs. median 16 days, IQR 7-33 days; p<0.0001). In those in whom candidemia was treated for at least 14 days, 78% (239/306) survived, compared to 66% (67/102) in those treated for less than 14 days (p=0.01), but who survived beyond day 14 after diagnosis. Hospital stay was prolonged specifically for the purpose of completing parenteral

489	antifungal treatment in 16% (100/621) by a median of 2 days. Candida albicans was the most
490	common causative pathogen (46%; 287/621) followed by <i>C. glabrata</i> 21% (133/621), <i>C.</i>
491	parapsilosis 13% (83/621), C. tropicalis 7% (46/621), C. krusei and C. auris (each 3%; 16/621).
492	Informed by univariable Cox regression modelling (Table 1), we evaluated two multivariable Cox
493	regression models consisting of three non-overlapping non-mutually exclusive baseline predictors
494	of mortality older age, Charlson Comorbidity Index (CCI) excluding age, ICU admission, and -
495	for model $#1$ – also C . tropicalis as causative pathogen, with the latter being replaced by C . auris
496	plus emerging Candida spp. for model #2. Informed by AIC values (Table 1) we decided to use
497	the baseline parameters of model #1 for further adjustments of the remaining risk models.
498	Initial echinocandin treatment was associated with lower overall mortality (42%, 148/353) versus
499	those without initial echinocandin therapy (53%, 126/236; p=0.007), also when adjusted for
500	baseline risk factors [adjusted hazard ratio (aHR) 0.56, 95% confidence interval (CI) 0.44 – 0.72;
501	p<0.0001].
502	While consultation by an infectious disease (ID) physician or microbiologist was associated with
503	better survival in the overall cohort (aHR for consultation 0.58, 95%CI 0.44 – 0.7; p=0.0001), this
504	effect started vanishing once patients who had a fatal outcome within two days of diagnosis of
505	candidemia were excluded (aHR 0.71, 95%CI 0.51 - 0.99; p=0.042), with no significant
506	differences in patients who survived for three days or longer, driven in part by the fact that the
507	majority of those patients (421/509, 83%) received consultation.
508	The EQUAL Candida Score was available for 589 cases with candidemia. Scores correlated
509	significantly with duration of hospitalization (r= 0.442; p<0.0001) and – even after exclusion of
510	patients hospitalized ≤7 days (n=119; EQUAL <i>Candida</i> actual/max score proportion median 0.42,
511	IQR 0.27-0.59 in those hospitalized 7 days or shorter versus 0.77, IQR 0.63-0.86 in those

512	hospitalized > 7 days; p<0.0001) - were significantly higher in patients who survived versus those
513	who died (p<0.0001). In those hospitalized >7 days there was no correlation between duration of
514	hospitalization and EQUAL <i>Candida</i> actual/max score proportion (Pearson's r=0.054; p=0.26).
515	Supplemental Figure 1 shows EQUAL Candida Scores, Score variables and demographic data
516	in survivors and non-survivors who survived >7 days after candidemia diagnosis. ROC curve
517	analysis revealed an AUC of 0.718 for the proportion of the maximum EQUAL Candida score for
518	predicting overall mortality, with an optimal cut-off of 78.1% of the max score (which translates
519	to >14 in those without CVC and >16 in those with CVC). Adjusted HR per point increase in
520	EQUAL Candida scores for patients with CVCs and those without are displayed in Figure 3.
521	Results of the multivariable Cox regression model for risk of mortality with percent decrease in
522	EQUAL Candida score in patients who survived longer than 7 days are displayed in Table 2 . After
523	adjustment for baseline variables (model #1), a decrease in one score point translated to an aHR of
524	1.075 (95% CI 1.043 - 1.109) in CVC carriers and an aHR of 1.089 (95% CI 1.051 - 1.129) in
525	those without a CVC. ECMM Candida scores below the calculated Youden cut-off were associated
526	with an aHR of 3.53 (95% CI 2.01 – 5.98; all p<0.0001).
527	Table 3 outlines overall mortality rates for each variable of the EQUAL Candida score if absent,
528	followed by results of multivariable Cox regression model evaluating each score variable if absent
529	adjusted for significant baseline risk factors. Absence of each diagnostic/therapeutic measure was
530	associated with higher mortality (50.5% - 70.5%) compared to the mortality in the overall cohort
531	(46.4%; 286/617). In the multivariable Cox model for patients who survived > 7 days and adjusted
532	for the baseline predictors, absence of ophthalmoscopy, echocardiography, treatment of ≥14 days
533	after first negative blood culture, and also absence of stepdown to fluconazole therapy were all
534	significant predictors of mortality with aHRs between 1.71 and 3.64.

Discussion

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

We performed a multicenter observational study of candidemia, involving 64 hospitals from 20 countries across Europe. Our main finding is that overall 90-day mortality of candidemia remains high at 42.9% (265/617). However, adherence to clinical guideline recommendations, as reflected by higher EQUAL Candida scores, was a strong independent predictor of survival. Other findings included that candidemia caused by rare Candida spp. may be a relevant independent baseline predictor of survival, in addition to known predictors such as older age and ICU admission. In terms of treatment, initial echinocandin treatment was associated with increased overall survival, but also with longer duration of hospitalization. The overall mortality of 46% found in this study (90-day mortality 43%), of which 37% was directly attributable to candidemia according to investigators, confirms that candidemia is still a major threat to patients and a medical emergency. The rate is as high or even slightly higher than rates reported earlier, such as the overall mortality of 43% in Germany, with attributable mortality of 26% (24), and previous ECMM European cohort studies where 37.9% mortality was observed between 1997-1999 (that study included neonates and children)(17), and 38.8% observed in surgical ICU patients between 2006-2008 (18). Also, from the United States a 90-day crude mortality of 42.4% for Candida BSI cases were reported, which was more than twice as high than the 17.1% observed among matched controls. Following propensity score-matching, the attributable risk difference for 90-day mortality was 28.4% with hazard ratio (HR) of 2.12 (95%) CI, 1.98-2.25, p<0.001) in that study (25). Our study identified adherence to international guideline recommendations as a major protective factor. With every point decrease of the EQUAL Candida score, reflecting a decrease in adherence to guideline recommendations, hazards increased by 8.9% for patients with CVC and 7.5% for patients without CVC, making survival less likely. Adjustment for the baseline risk fators age, ICU admission, Charlson comorbidity index and *Candida tropicalis* did not change that outcome. In addition, absence of each diagnostic/therapeutic measure was accompanied by increased mortality compared to the overall cohort, emphasizing the importance of every single variable in successful management.

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

Many known risk factors for *Candida* infections in the ICU such as previous surgery, TPN, CVC, broad spectrum antibiotics, diabetes (5), neutropenia, or solid organ transplantation (7) were present in relevant proportions of our study population. Age, severe hepatic failure, organ failure at the onset of IC, and septic shock (OR 2.12, 95% CI 1.24-3.63, p=0.006) were previously associated with 30-day mortality in candidemia cases (3). In this study, not only did older age, higher Charlson comorbidity index and ICU admission stand out as independent baseline predictors of candidemia mortality, but so did candidemia caused by rare Candida tropicalis, and – to a lesser extend – also candidemia causes by emerging or rare Candida spp., particularly C. kefyr and C. guilliermondii but also C. auris. With an increase of species other than Candida albicans (26) and the emergence of new resistant species, including but not limited to C. auris and fluconazole resistant C. parapsilosis (27, 28) this may manifest as major risk factors applicable to larger proportions of candidemia patients in the future (9). While ID consultation was previously shown protective against mortality with a hazard ratio of 0.81 (95% CI 0.73-0.91; p<0.0001) after propensity score weighting (10), consultation by an ID or microbiology expert was protective in our study only for avoiding early mortality even after adjusting for baseline risk factors (aHR 0.58, 95% CI 0·44-0·70; p<0·001), a result that may outline the value of early consultation, but also be confounded by the fact that some patients may die before they can receive a consultation. Once patients survived 3 days or longer after diagnosis, ID/microbiology expert consultation did not translate to a significant survival benefit.

Finally, our study showed that initial echinocandin treatment was associated with increased overall survival, but also longer duration of hospitalization, as hospitalization was prolonged only for completing parenteral antifungal treatment in 16% (i.e. patients where step-down to fluconazole (29) was not an option). Importantly, this may change in the near future, with a loaded antifungal pipeline (30), that includes rezafungin, an echinocandin with improved penetration into the peritoneal fluid and prolonged half-life allowing once weekly injection, and ibrexafungerp, a novel antifungal class with an echinocandin like mechanism of action and excellent oral bioavailability (31), both of may facilitate earlier hospital discharge of those patients in whom stepping down to fluconazole is not an option.

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

Despite its large size (64 institutions in 20 European countries) this multicentre multinational study comes along with some limitations. Not all requested data were available for all patients, and the presented data reflect a real-life scenario with no predefined fungal diagnostic strategies or treatment protocols, potentially affecting the ability to make an early diagnosis and outcomes. In addition, EQUAL Candida scores may be higher in long-term survivors versus those with an early fatal outcome, given the fact that some of the diagnostic and treatment recommendations take time and may not be available in patients with an early fatal outcome. We therefore adjusted our analyses to exclude all patients with a fatal outcome within the first 7 days after diagnosis but cannot rule out that even after this adjustment survival duration may remain a confounder, particularly for length of therapy. However, the fact that when the analysis was limited to include only patients surviving more than 14 days, survival remained longer for patients receiving treatment for >14 days [78% (239/306) versus 66% (67/102)], indicates that treatment duration may have an impact on longer term survival. Importantly, availability of fungal diagnostics, ID/microbiology consultations and also access to antifungal drugs varies across the world with more limited access in low and middle income countries, limiting generalizability of our results to other settings (32).

While the geographical distribution of our sample is reflective of Europe including its laboratory
capacities (33), it is still likely that those settings with better access to diagnostics and antifungals
are overrepresented.

In conclusion, we found that across Europe overall 90-day mortality of candidemia remains high at 43%. Importantly, our study indicates that adherence to clinical guideline recommendations may increase survival. Lastly, current first line candidemia treatments with echinocandins are not only associated with increased overall survival, but also longer duration of hospitalization, including directly causing prolonged hospitalization in 1 out of 7 patients with candidemia, due to the fact that no oral alternatives to azoles are available. This limitation could be overcome by new antifungals with oral bioavailability or longer half-life, which may allow for earlier discharge and outpatient therapy, reducing costs and hospital stay associated risks (e.g., nosocomial infection).

618	Author contributions:
619	Substantial contribution to study concept and design: MH, PK, OC, JSG, JK, MAr, JPG, SAA, TB.
620	Substantial contribution to the acquisition of data for the work: All authors.
621	Accessed and verified all data: MH, OH and JSG
622	Substantial contribution to the statistical analysis or interpretation of data: MH, ME.
623	Drafting the manuscript: MH, ME, JSG, PK, OC.
624	Critical review of the manuscript and final approval for publication: all authors
625	
626	Conflicts of Interest
627 628	MH reports grants and research funding from Astellas, Gilead, MSD, Pfizer, Euroimmun, F2G, Pulmocide, IMMY, Mundipharma and Scynexis.
629	JSG has received lecture honoraria from Gilead and Pfizer, outside of the submitted work.
630	JPG has received lecture honoraria from Gilead, MundiPharma and Pfizer, outside of the submitted work.
631 632	TB reports receipt of speaker fees, advisory Board fees and research fellowship funding from Gilead sciences, research grants from Pfizer and MSD and advisory Board fees from Mundipharma.
633	SAA reports research grant from Cidara, lecture honoraria from Gilead, and travel grant from Astellas.
634 635	AA-I has received honoraria for educational talks of behalf of Gilead and Pfizer, outside of the submitted work.
636 637	NK was a speaker for Astellas, Gilead Sciences, Merck/MSD, and Pfizer and an adviser for Gilead Sciences, Merck/MSD, and Pfizer, all outside the submitted work.
638 639	KL received consultancy fees from MRM Health, MSD and Gilead, speaker fees from FUJIFILM WAKO, Pfizer and Gilead and a service fee from Thermo fisher Scientific and TECOmedical

NKh is a member of the Gilead, Merck Sharp & Dohme AG (MSD) and Pfizer advisory boards for invasive 640 641 fungal infections, chair of the DSMB of Pulmocide, and reports grants from The Swiss National Science Foundation (grant number 32003B 204944 and the National Centre of Competence in Research AntiResist 642 643 Grant 51NF40 180541), outside the submitted work. 644 MB reports research grants and/or personal fees for advisor/consultant and/or speaker/chairman from Bayer, BioMérieux, Cidara, Cipla, Gilead, Menarini, MSD, Pfizer, and Shionogi. 645 MA had research grants from Pfizer, honoraria from Pfizer, Gilead and, Sanofi for contributing educational 646 647 activities which were paid to the university funds; none related with the submitted work. 648 VAA reports research funding from Pfizer 649 BD reports receipt of speaker fees, advisory Board fees from Gilead sciences, advisory Board fees from 650 Pfizer, outside the submitted work. FD declares personal fees from Gilead, Pfizer, outside the submitted work. 651 GD has received lecture honoraria from Gilead and Pfizer, outside of the submitted work. He was also 652 653 invited to symposia and congresses by the two aforementioned companies. LD reports lecture honoraria from Pfizer, MSD and Teva, outside the submitted work 654 655 Outside the submitted work, DRG reports investigator-initiated grants from Pfizer, Shionogi, and Gilead 656 Italia and speaker fees and/or advisory board fees from Pfizer and Tillotts Pharma. 657 FD declares personal fees from Gilead and Pfizer, outside the submitted work.AG reports COI with the following companies: JANNSEN, VIIV, MSD, BMS, ABBVIE, GILEAD, NOVARTIS, PFIZER, 658 ASTELLAS, ASTRAZENECA, ANGELINI 659 660 CGV reports Grant support from Gilead and MSA, and personal fees from Gilead Science, MSD, Novartis, 661 Pfizer, Janssen, Lilly. 662 FL reports receipt of speaker fees from Gilead, Pfizer and F2G and advisory board fees from F2G

MM has received speaker fees from Janssen, Gilead, Mundipharma, MSD and Pfizer

ORS has received speaker's honorarium from Astellas, Pfizer and Kocak Farma.

663

ER reports grants to his institutions from Astellas, MSD, Scynexis, Shionogi, GSK, Pfizer, Gilead and 665 666 Allergan. He has served as consultant to Amplyx, Astellas, Gilead, MSD, Pfizer, Scynexis, GSK and Shionogi. 667 668 JP has received research funding from MSD and Pfizer and lecture honoraria from Gilead Sciences, Pfizer, 669 Associates of Cape Cod and Swedish Orphan Biovitrium GmbH, outside of the submitted work. 670 JS has received lecture honoraria from Gilead and Pfizer, outside of the submitted work 671 PLW: Performed diagnostic evaluations and received meeting sponsorship from Associates of Cape Cod, 672 Bruker, Dynamiker, and Launch Diagnostics; Speaker's fees, expert advice fees and meeting sponsorship 673 from Gilead; and speaker and expert advice fees from Pfizer and expert advice fees from F2G 674 BW reports personal fees from MSD, Pfizer, Gilead, Shionogi, Euroimmun, Immy, CapeCod and grants to 675 her institution from Pfizer, Shionogi and AMT has received lecture honoraria from Gilead 676 677 MCA has, over the past 5 years, received research grants/contract work (paid to the SSI) from Amplyx, 678 Basilea, Cidara, F2G, Gilead, Novabiotics and Scynexis, and speaker honoraria (personal fee) from Astellas, 679 Chiesi, Gilead, MSD, and SEGES. She is the current chairman of the EUCAST-AFST. 680 PK reports grants or contracts from German Federal Ministry of Research and Education (BMBF) B-FAST 681 (Bundesweites Forschungsnetz Angewandte Surveillance und Testung) and NAPKON (Nationales Pandemie Kohorten Netz, German National Pandemic Cohort Network) of the Network University 682 Medicine (NUM) and the State of North Rhine-Westphalia; Consulting fees Ambu GmbH, Gilead Sciences, 683 684 Mundipharma Resarch Limited, Noxxon N.V. and Pfizer Pharma; Honoraria for lectures from Akademie 685 für Infektionsmedizin e.V., Ambu GmbH, Astellas Pharma, BioRad Laboratories Inc., European 686 Confederation of Medical Mycology, Gilead Sciences, GPR Academy Ruesselsheim, HELIOS Kliniken GmbH, medupdate GmbH, MedMedia, MSD Sharp & Dohme GmbH, Pfizer Pharma GmbH, Scilink 687 Comunicación Científica SC and University Hospital and LMU Munich; Participation on an Advisory 688 689 Board from Ambu GmbH, Gilead Sciences, Mundipharma Resarch Limited and Pfizer Pharma; A pending

patent currently reviewed at the German Patent and Trade Mark Office; Other non-financial interests from

Elsevier, Wiley and Taylor & Francis online outside the submitted work.MH received research funding

690

from Gilead Sciences, Astellas, Mudipharma, Euroimmune, MSD, Pulmocide, Scynexis, F2G and Pfizer, all outside the submitted work.

OAC reports grants and personal fees from Actelion, personal fees from Allecra Therapeutics, personal fees from Al-Jazeera Pharmaceuticals, grants and personal fees from Amplyx, grants and personal fees from Astellas, grants and personal fees from Basilea, personal fees from Biosys, grants and personal fees from Cidara, grants and personal fees from DaVolterra, personal fees from Entasis, grants and personal fees from F2G, grants and personal fees from Gilead, personal fees from Grupo Biotoscana, personal fees from IQVIA, grants from Janssen, personal fees from Matinas, grants from Medicines Company, grants and personal fees from MedPace, grants from Melinta Therapeutics, personal fees from Menarini, grants and personal fees from Merck/MSD, personal fees from Mylan, personal fees from Nabriva, personal fees from Noxxon, personal fees from Octapharma, personal fees from Paratek, grants and personal fees from Pfizer, personal fees from PSI, personal fees from Roche Diagnostics, grants and personal fees from German Federal Ministry of Research and Education, grants from Immunic, personal fees from Biocon, personal fees from CoRe Consulting, personal fees from Molecular Partners, from MSG-ERC, from Seres, other from Wiley (Blackwell), outside the submitted work.

All other authors declare no conflict of interest for this study.

Funding

- The study was partly funded by an Investigator Initiated Research Grant from Scynexis (PIs Hoenigl and
- 711 Cornely). The funder had no influence on the study design or on the analysis of the results.

Data sharing statement:

713 Case level data will be available from the authors by request.

Table 1. Univariable and multivariable Cox regression model for predictors of mortality in candidemia (n=597)

Variable	Univariable hazard ratio	95% CI	p-value
Demographics			
Male, Sex	1.19	0.93 – 1.52	0.160
Age	1.37	1.18 – 1.60	<0.0001
Coexisting conditions			
BMI ≥30	1.01	0.74 - 1.39	0.946
SOT	0.61	0.25 – 1.49	0.278
Haematological/Oncological malignancy	1.13	0.89 – 1.44	0.323
Neutropenia (<500/microL)	1.06	0.75 - 1.50	0.754
Major surgery including abdominal surgery	0.95	0.72 – 1.25	0.704
Diabetes mellitus (Type I or II)	0.99	0.75 - 1.31	0.930
Clinical factors			
ICU admission	1.71	1.34 - 2.17	<0.0001
CRBSI	0.89	0.66 – 1.19	0.426
Prosthetic heart valve	1.00	0.71 - 1.42	0.981
Mechanical ventilation	1.32	1.02 - 1.71	0.033
ЕСМО	1.32	0.65 - 2.670	0.441
TPN	0.83	0.62 – 1.11	0.212
Charlson Comorbidity Index	1.09	1.05 – 1.13	<0.0001
Charlson Comorbidity Index (excluding age)	1.07	1.03 – 1.11	0.0019
Candida spp. (n)			
C. albicans (274)	0.92	0.72 - 1.16	0.475

C. glabrata (127)	0.88	0.65 – 1.18	0.385
C. parapsilosis (80)	0.98	0.70 - 1.38	0.916
C. tropicalis (44)	1.78	1.16 - 2.57	0.0071
C. krusei (12)	0.84	0.31 - 2.25	0.726
C. auris (15)	1.39	0.69 - 2.81	0.357
C. dubliniensis (9)	0.69	0.22 - 2.15	0.519
C. guilliermondii (6)	3.64	1.62 – 8.18	0.0018
C. lusitaniae (5)	1.23	0.39 - 3.84	0.719
C. kefyr (5)	3.27	1.22 - 8.80	0.019
Other Candida Species (9)*	0.75	0.24 - 2.33	0.617
C. auris and other emerging Candida species (46)\$	1.54	1.03 - 2.30	0.034
C. auris and rare Candida species (49)§	1.39	0.93 - 2.09	0.108
Clinical course (i.e., not baseline variables)			
Mixed fungal infections	2.45	0.57-10.5	0.226
Initial Echinocandin treatment	0.55	0.44 - 0.70	<0.0001
Infection consultation (ID or microbiology)	0.56	0.43 - 0.74	<0.0001
Model #1 (AIC=3172)		0.50/ GV	_
Variables	Multivariable hazard ratio	95% CI	p-value
Age	1.34	1.15 – 1.57	0.0002
ICU	1.83	1.44 – 2.33	<0.0001
Charlson Comorbidity Index (excluding Age)	1.07	1.02 – 1.12	0.0035

C. tropicalis	1.71	1.15 - 2.55	0.0085
Model #2 (AIC = 3175)	Multivariable hazard ratio	95% CI	p-value
Variables			
Age	1.39	1.18 – 1.63	<0.0001
ICU	1.77	1.39 – 2.25	<0.0001
C.auris and other emerging Candida species §	1.50	0.99 – 2.26	0.056
Charlson Comorbidity Index (excluding age)	1.06	1.02 – 1.11	0.0056

Abbreviations: $AIC = Akaike\ Information\ Criterion;\ BMI = body\ mass\ index;\ CRBSI = catheter\ related\ bloodstream\ infection:,\ ECMO = extracorporeal\ membrane\ oxygenation;\ ICU = intensive\ care\ unit;\ ID = infectious\ diseases;\ SOT = solid\ organ\ transplant;\ TPN = total\ parenteral\ nutrition$

^{*} Others include: Candida norvegensis (n=1), Candida digboensis (n=1), Candida rugosa (n=3), Candida pelliculosa (n=2), Candida inconspicua (n=2; one coinfected with C. norvegensis), and Candida famata (n=1)

^{\$} C. auris and C. kefyr, C. guilliermondii, C. lusitaniae, C. dubliniensis, C. famata, C. inconspicua, C. rugosa, C. norvegensis.

[§] C. auris and all other Candida spp. with 10 or fewer isolates.

Table 2. Multivariable cox regression (adjusted for age, ICU, Charlson Comorbidity Index (excluding age), *Candida tropicalis*) model for risk of mortality with percent decrease in EQUAL *Candida* score in patients who survived longer than 7 days (n= 443)

Variable	Multivariable hazard ratio	95% CI	p-value
EQUAL <i>Candida</i> score risk per % of actual/max score proportion decrease	1.016	1.009 – 1.023	<0.0001
EQUAL <i>Candida</i> score risk per 10% of actual/max score proportion decrease	1.175	1.099 – 1.257	<0.0001
* Risk per decrease in point Candida score for CVC carriers	1.075	1.043 - 1.109	<0.0001
Risk per decrease in point Candida score for patients without CVC	1.089	1.051 – 1.129	<0.0001
°EQUAL <i>Candida</i> score ≤78.1% of max Score	3.53	2.01 - 5.98 -	<0.0001
Risk reduction comparingmaximum and minimum <i>Candida</i> score	0.20	0.10 – 0.39	<0.0001

Table explanation:

* With CVC max Candida score = 22 points which refers to 4.5% per point

Without CVC max Candida score = 19 points which refers to 5.3% per point

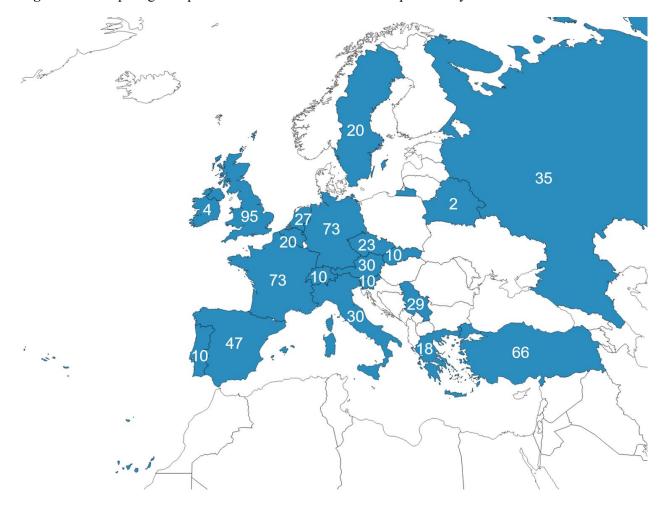
° Multivariable hazard ratio for calculated threshold with max. sensitivity/specificity for prediction of death

Abbreviation: $CVC = central \ venous \ catheter$

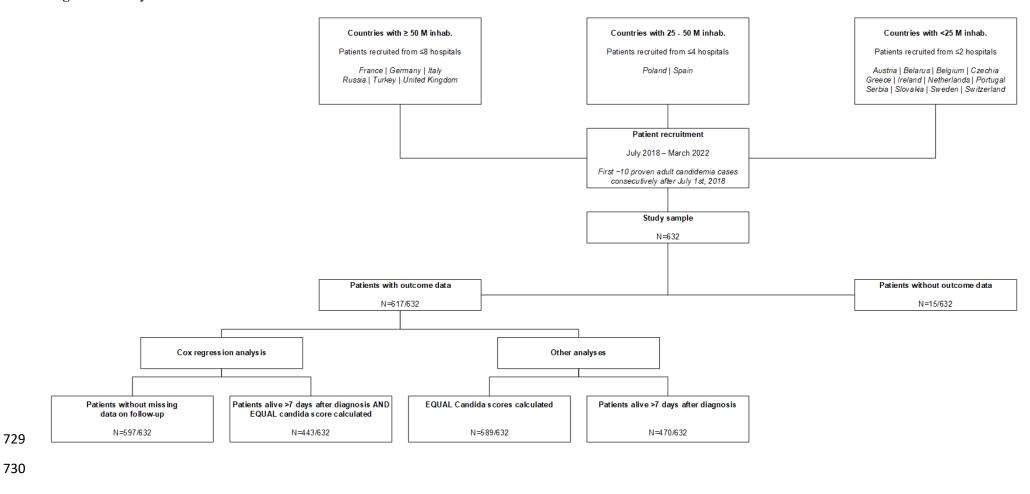
717

718

722723


Absolute mortality rates			
58.2% (32/55)			
58.	.1% (25/43)		
60.	.0% (53/89)		
58.6	5% (224/382)		
56.6	5% (189/334)		
53.0	53.0% (132/249)		
55.2% (229/415)			
70.5% (196/278)			
50.5% (194/384)			
Multivariable hazard ratio			
	95% CI	p-value	
1.26	0.69 - 2.30	0.455	
1.46	0.76 - 2.82	0.302	
1.40	0.86 - 2.29	0.260	
2.19	1.55 – 3.11	<0.0001	
1.77	1.27 - 2.46	0.0006	
1.77	1.27 - 2.46 0.91 - 1.80	0.0006 0.159	
	58. 58. 60. 58.6 56.6 55.2 70.5 Multivariable hazard ratio 1.26 1.46 1.40	58.2% (32/55) 58.1% (25/43) 60.0% (53/89) 58.6% (224/382) 56.6% (189/334) 53.0% (132/249) 55.2% (229/415) 70.5% (196/278) 50.5% (194/384) Multivariable hazard ratio 95% CI 1.26 0.69 - 2.30 1.46 0.76 - 2.82 1.40 0.86 - 2.29	

Stepdown to fluconazole	1.71	1.17 – 2.50	0.0058
Treatment for 14d after first BC neg.	3.64	2.62 - 5.06	<0.0001
CVC removal ≤ 24h*	1.41	0.96 - 2.05	0.078
CVC removal > 24h <72h	1.21	0.77 - 1.90	0.417


Abbreviations: BC, blood culture; CVC, central venous catheter.

*CVC carriers only

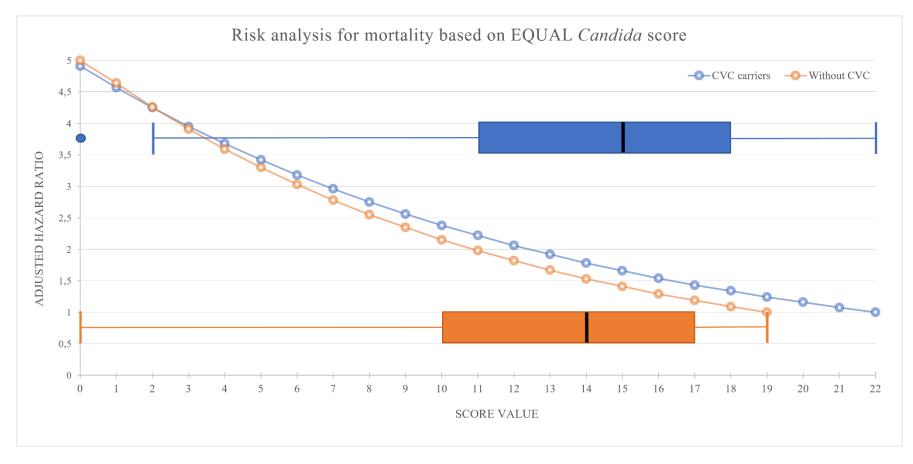

Figure 1. Participating European countries and number of cases per country included.

Figure 2. Study flowchart.

Figure 3. Adjusted* hazard ratios per point increase in EQUAL Candida scores for patients with central venous catheters (CVCs, blue) and those without (orange), as well as Boxplots

Legend: *adjusted for age, ICU, Charlson comorbidity index (excluding age), and Candida tropicalis

References

- 1. Egger M, Hoenigl M, Thompson GR, 3rd, Carvalho A, Jenks JD. Let's talk about Sex Characteristics as a Risk Factor for Invasive Fungal Diseases. Mycoses. 2022;65(6):599-612.
- 2. Bongomin F, Gago S, Oladele RO, Denning DW. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. Journal of fungi (Basel, Switzerland). 2017;3(4):10.3390/jof3040057.
- 3. Bassetti M, Giacobbe DR, Vena A, Trucchi C, Ansaldi F, Antonelli M, et al. Incidence and outcome of invasive candidiasis in intensive care units (ICUs) in Europe: results of the EUCANDICU project. Crit Care. 2019;23(1):219.
- 4. Koehler P, Stecher M, Cornely OA, Koehler D, Vehreschild M, Bohlius J, et al. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect. 2019;25(10):1200-12.
- 5. Muskett H, Shahin J, Eyres G, Harvey S, Rowan K, Harrison D. Risk factors for invasive fungal disease in critically ill adult patients: a systematic review. Crit Care. 2011;15(6):R287.
- 6. Hoenigl M, Seidel D, Sprute R, Cunha C, Oliverio M, Goldman GH, et al. COVID-19-associated fungal infections. Nat Microbiol. 2022;7(8):1127-40.
- 7. Keighley CL, Pope A, Marriott DJE, Chapman B, Bak N, Daveson K, et al. Risk factors for candidaemia: A prospective multi-centre case-control study. Mycoses. 2021;64(3):257-63.
- 8. Strollo S, Lionakis MS, Adjemian J, Steiner CA, Prevots DR. Epidemiology of Hospitalizations Associated with Invasive Candidiasis, United States, 2002-2012(1). Emerg Infect Dis. 2016;23(1):7-13.
- 9. Puig-Asensio M, Padilla B, Garnacho-Montero J, Zaragoza O, Aguado JM, Zaragoza R, et al. Epidemiology and predictive factors for early and late mortality in Candida bloodstream infections: a population-based surveillance in Spain. Clin Microbiol Infect. 2014;20(4):0245-54.
- 10. Mejia-Chew C, O'Halloran JA, Olsen MA, Stwalley D, Kronen R, Lin C, et al. Effect of infectious disease consultation on mortality and treatment of patients with candida bloodstream infections: a retrospective, cohort study. Lancet Infect Dis. 2019;19(12):1336-44.
- 11. Mellinghoff SC, Hoenigl M, Koehler P, Kumar A, Lagrou K, Lass-Florl C, et al. EQUAL Candida Score: An ECMM score derived from current guidelines to measure QUAlity of Clinical Candidaemia Management. Mycoses. 2018;61(5):326-30.
- 12. Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect. 2012;18 Suppl 7:19-37.
- 13. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1-50.
- 14. El Zakhem A, El Eid R, Istambouli R, Tamim H, Kanj SS. The Utility of EQUAL Candida Score in Predicting Mortality in Patients with Candidemia. J Fungi (Basel). 2022;8(3).
- 15. Leepattarakit T, Tulyaprawat O, Vongseenin C, Rujirachun P, Wattanachayakul P, Phichinitikorn P, et al. EQUAL Candida score, an effective tool for predicting the outcomes of Candida tropicalis candidaemia: A retrospective cohort study. Mycoses. 2022;65(4):473-80.
- 16. Hoenigl M, Gangneux JP, Segal E, Alanio A, Chakrabarti A, Chen SC, et al. Global Guidelines and Initiatives from the European Confederation of Medical Mycology to improve Patient Care and Research Worldwide: New Leadership is about Working Together. Mycoses. 2018;61(11):885-94.
- 17. Tortorano AM, Peman J, Bernhardt H, Klingspor L, Kibbler CC, Faure O, et al. Epidemiology of candidaemia in Europe: results of 28-month European Confederation of Medical Mycology (ECMM) hospital-based surveillance study. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology. 2004;23(4):317-22.
- 18. Klingspor L, Tortorano AM, Peman J, Willinger B, Hamal P, Sendid B, et al. Invasive Candida infections in surgical patients in intensive care units: a prospective, multicentre survey initiated by the European Confederation of Medical Mycology (ECMM) (2006-2008). Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2015;21(1):87.e1-.e10.

- 19. Cuenca-Estrella M, Verweij PE, Arendrup MC, Arikan-Akdagli S, Bille J, Donnelly JP, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: diagnostic procedures. Clin Microbiol Infect. 2012;18 Suppl 7:9-18.
- 20. Salmanton-García J, Busca A, Cornely OA, Corradini P, Hoenigl M, Klimko N, et al. EPICOVIDEHA: A Ready to Use Platform for Epidemiological Studies in Hematological Patients With COVID-19. Hemasphere. 2021;5(7):e612.
- 21. Seidel D, Durán Graeff LA, Vehreschild M, Wisplinghoff H, Ziegler M, Vehreschild JJ, et al. FungiScope(™) -Global Emerging Fungal Infection Registry. Mycoses. 2017;60(8):508-16.
- 22. Koehler P, Arendrup MC, Arikan-Akdagli S, Bassetti M, Bretagne S, Klingspor L, et al. ECMM CandiReg-A ready to use platform for outbreaks and epidemiological studies. Mycoses. 2019;62(10):920-7.
- 23. Papon N, Courdavault V, Clastre M, Bennett RJ. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog. 2013;9(9):e1003550.
- 24. Cornely FB, Cornely OA, Salmanton-García J, Koehler FC, Koehler P, Seifert H, et al. Attributable mortality of candidemia after introduction of echinocandins. Mycoses. 2020;63(12):1373-81.
- 25. Mazi PB, Olsen MA, Stwalley D, Rauseo AM, Ayres C, Powderly WG, et al. Attributable Mortality of Candida Bloodstream Infections in the Modern Era: A Propensity Score Analysis. Clin Infect Dis. 2022.
- 26. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers. 2018;4:18026.
- 27. Alcoceba E, Gómez A, Lara-Esbrí P, Oliver A, Beltrán AF, Ayestarán I, et al. Fluconazole-resistant Candida parapsilosis clonally related genotypes: first report proving the presence of endemic isolates harbouring the Y132F ERG11 gene substitution in Spain. Clin Microbiol Infect. 2022;28(8):1113-9.
- 28. Chowdhary A, Tarai B, Singh A, Sharma A. Multidrug-Resistant Candida auris Infections in Critically III Coronavirus Disease Patients, India, April-July 2020. Emerg Infect Dis. 2020;26(11):2694-6.
- 29. Moreno-García E, Puerta-Alcalde P, Gariup G, Fernández-Ruiz M, López Cortés LE, Cuervo G, et al. Early Stepdown From Echinocandin to Fluconazole Treatment in Candidemia: A Post Hoc Analysis of Three Cohort Studies. Open Forum Infectious Diseases. 2021;8(6):ofab250.
- 30. Hoenigl M, Sprute R, Arastehfar A, Perfect JR, Lass-Flörl C, Bellmann R, et al. Invasive candidiasis: investigational drugs in the clinical development pipeline and mechanisms of action. Expert Opin Investig Drugs. 2022;31(8):795-812.
- 31. Hoenigl M, Sprute R, Egger M, Arastehfar A, Cornely OA, Krause R, et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs. 2021; 81(15):1703-1729.
- 32. Driemeyer C, Falci DR, Oladele RO, Bongomin F, Ocansey BK, Govender NP, et al. The current state of clinical mycology in Africa: a European Confederation of Medical Mycology and International Society for Human and Animal Mycology survey. The Lancet Microbe. 2022;3(6):e464-e470.
- 33. Salmanton-Garcia JH, M; Gagneux, JP, Segal, E; Alstruey-Izquierdo, A; Arikan-Akdagli, S; Özenci, V; Vena, A; Cornely, OA. The current state of laboratory mycology in Europe: A European Confederation of Medical Mycology survey. Lancet Microbe. 2022.