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Pacpaint: a histology-based deep learning
model uncovers the extensive intratumor
molecular heterogeneity of pancreatic
adenocarcinoma

Charlie Saillard 1, Flore Delecourt2, Benoit Schmauch 1, Olivier Moindrot1,
Magali Svrcek3, Armelle Bardier-Dupas4, Jean Francois Emile 5, Mira Ayadi6,
Vinciane Rebours7, Louis de Mestier7, Pascal Hammel8, Cindy Neuzillet9,
Jean Baptiste Bachet 10, Juan Iovanna 11, Nelson Dusetti 11, Yuna Blum 12,
Magali Richard13, Yasmina Kermezli13, Valerie Paradis2, Mikhail Zaslavskiy1,
Pierre Courtiol1, Aurelie Kamoun 1, Remy Nicolle14 & Jerome Cros 2

Two tumor (Classical/Basal) and stroma (Inactive/active) subtypes of Pan-
creatic adenocarcinoma (PDAC) with prognostic and theragnostic implica-
tions havebeendescribed. Thesemolecular subtypeswere definedbyRNAseq,
a costly technique sensitive to sample quality and cellularity, not used in
routine practice. To allow rapid PDAC molecular subtyping and study PDAC
heterogeneity, we develop PACpAInt, a multi-step deep learning model.
PACpAInt is trained on a multicentric cohort (n = 202) and validated on 4
independent cohorts including biopsies (surgical cohorts n = 148; 97; 126 /
biopsy cohort n = 25), all with transcriptomic data (n = 598) to predict tumor
tissue, tumor cells from stroma, and their transcriptomic molecular subtypes,
either at the whole slide or tile level (112 µm squares). PACpAInt correctly
predicts tumor subtypes at the whole slide level on surgical and biopsies
specimens and independently predicts survival. PACpAInt highlights the pre-
sence of a minor aggressive Basal contingent that negatively impacts survival
in 39% of RNA-defined classical cases. Tile-level analysis ( > 6 millions) rede-
fines PDACmicroheterogeneity showing codependencies in thedistributionof
tumor and stroma subtypes, anddemonstrates that, in addition to theClassical
and Basal tumors, there are Hybrid tumors that combine the latter subtypes,
and Intermediate tumors that may represent a transition state during PDAC
evolution.

Pancreatic ductal adenocarcinoma (PDAC) is predicted to be the
second cause of death by cancer in 2030, and its prognosis has
seen little improvement in the last decades1. PDAC is a highly
heterogeneous tumor with preeminent stroma and various

histological aspects. Omic studies confirmed its intertumor
molecular heterogeneity, possibly one of the main factors
explaining the failure of most clinical trials. Two transcriptomic
subtypes of tumor cells and stroma, respectively, were described
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with major prognostic and theragnostic implications2–5. Within
the tumor cells, the basal-like subtype is defined by a poorer
prognosis linked to early metastases and Folfirinox resistance
compared to the classical subtype characterized by a progenitor
epithelial phenotype with altered metabolism6. Within the
stroma, the activated stroma is enriched in disorganized pro-
tumor cancer-associated fibroblasts with little extracellular
matrix, while the inactive stroma is characterized by abundant
and dense collagen secreted by more quiescent myofibroblasts.
As of today, these subtypes can only be defined by RNA profiling.
Tools were proposed to phenotype PDAC, either with a binary
classification of tumor cells (PurIST basal-like/classical) or with
four semi-quantitative transcriptomic signatures of tumor (Basal-
like, Classical) and stroma (Activated, Inactivated) subtypes5,7.
The latter approach has the advantage of acknowledging the
possibility of intratumor heterogeneity as tumors are “scored” for
each signature. Yet, these approaches are limited by the quantity
and quality of the samples (formalin fixation and low cellularity
like in biopsies) as well as by the analytical delay and trans-
platform reproducibility that restrict its application in clinical
trials and in routine care. In addition, tumors may harbor a mix-
ture of several subtypes complicating their interpretation using
bulk transcriptomic approaches, thereby limiting their clinical
value8. A recent study suggested that tumor cell architecture (i.e.,
formation of glands) correlated partially with tumor cell tran-
scriptomic subtypes in primary resected tumors9. This approach
requires highly trained pathologists and the manual analysis of
the whole tumor to fully assess the tumor subtype and its pos-
sible heterogeneity. Artificial intelligence was proven to be a
valuable tool to predict molecular alterations or phenotypes from
histological slides, potentially unlocking advanced diagnosis
for all10–13.

Here, we propose PACpAInt, a multi-level artificial intelligence-
based tool using deep-learning models to determine PDAC molecular
subtypes (tumor and stroma) from routine histological preparation
(Hematoxylin-eosin-Safran (HES staining)), at a resolution enabling to
decipher intratumor heterogeneity on a massive scale and providing,
in addition, spatial information of the different cell types and their
molecular phenotype (Fig. 1a).

Results
PACpAInt predicts neoplastic areas and tumor molecular sub-
types at the whole-slide level
Themodels were trained and validated onmultiple cohorts using 1796
slides (598 patients) with the corresponding transcriptome (cohorts
are described in Fig. 1b). Deep-learning models were trained on a dis-
covery cohort (DISC cohort) composed of 424 whole-slide histological
images from 202 PDAC resected in three centers (mean number of
slides/case = 2). These models were externally validated in (i) three
cohorts of resected PDAC: two from a fourth center (distinct from the
training centers) (BJN_U (n = 148), BJN_M (n = 97)) and the public
TCGA_PAAD cohort (n = 126) and (ii) one cohort of liver PDAC metas-
tases obtained by fine-needle biopsies (Liver_FNB, n = 25) also coming
from the fourth center, distinct from the training centers. During the
surgical specimen routine examination, the pathologist samples mul-
tiple tumor areas leading to several tissue blocks for one patient. For
the discovery cohort and two validation cohorts (BJN_U andTCGA), for
each patient, the transcriptome was obtained from a small tissue core
taken in a block that may or may not correspond to the HES slides
analyzed by the models (i.e., “spatially unmatched” cohorts). In con-
trast, for the BJN_M and Liver_FNB cohorts, the same block was used to
generate the HES slide and to extract the RNA. In addition, instead of
using a small tissue core, the whole tumor area of the block was
microdissected to have a perfect match between the HES and the
transcriptome (i.e., “spatially matched” cohorts).

For all themodels, the slides were split into smaller images, called
“tiles”, of 112 × 112μm (224 × 224 pixels). Models were trained using
labels either defined at the tile-level (to detect tumor areas) or at the
whole-slide level (to predict tumor subtype). A first model (PACpAInt-
Neo) based on twopathologists’ annotations was developed to predict
neoplastic areas. PACpAInt-Neo successfully detected neoplastic
regions when applied to two independent validation cohorts (AUC:
BJN_U=0.99, TCGA =0.98) (Suppl Fig. 1a). This model allowed the
quick identification and visualization of tumor areas, even if they were
not contiguous, detecting with high accuracy tumor cell and stroma
areas from digestive wall components, lymph nodes, etc. (Suppl
Fig. 1b, c). The second model (PACpAInt-B/C) was trained on the DISC
cohort using only the areas predicted to be neoplastic to determine
the basal-like/classical (B/C) subtypes defined by the PurIST-RNA
classifier (Fig. 2a). Despite the high histological diversity of PDAC,
PACpAInt-B/C identified a set of morphological features specific to
basal-like and classical subtypes (Fig. 2b and Suppl Fig. 2b). For the
slide level prediction of themolecular subtype, PACpAInt-B/C assigned
a score to a tile subset and aggregated all the tile scores into a single
prediction for the slide, i.e., basal-like or classical. PACpAInt-B/C suc-
cessfully predicted basal-like/classical RNA subtypes in 2 spatially
unmatched validation cohorts, with AUCs of 0.86 [0.79−0.94] and0.81
[0.71−0.90] in BJN_U and TCGA cohorts respectively (Fig. 2c and Suppl
Fig. 2a). Comparable performance was achieved on a third validation
cohortwith spatiallymatchedhistological andmolecular areas (BJN_M,
AUC =0.83 [0.73–0.93]) (Fig. 2d). To ensure that PACpAInt-B/C was
not only recapitulating the histological differentiation, we assessed the
performance of the model in well/intermediate and poorly differ-
entiated tumors separately in the three surgical validation cohorts
(Supplemental Table 1). AUC ranged from 0.71 to 0.90, far from the
random guess, confirming that differentiation andmolecular subtypes
are not surrogates of one another.

PACpAInt highlights PDAC intratumormacroheterogeneity and
its prognostic impact
Given the previously described intratumor heterogeneity that may
blur the transcriptomic labels, we restricted the analysis to the 50% of
cases that had the clearest, unambiguous transcriptomic subtype (i.e.,
cases whose transcriptomic profile suggested that they were “pure”,
composed of only basal-like or classical cells). In these cases, the per-
formance of the model improved substantially (AUC of 0.91
[0.84−0.98] and 0.88 [0.79−0.98] in the BJN_U and TCGA cohorts,
respectively (Fig. 2c and Suppl Fig. 2a)8,14. This was particularly sig-
nificant within the spatially matched validation cohort BJN_M (AUC=
0.95 [0.90−1.0]), highlighting the limitations of the RNA-based binary
classification in highly heterogeneous tumors (Fig. 2d) as previously
reported, rather than a true increase in the model performance that
must be appreciated on the whole cohort14,15. Because most patients
are diagnosed at the metastatic stage on liver biopsies, we also vali-
dated PACpAInt-B/C on 25 fine-needle liver biopsies with matched
RNAseq data (Liver_FNB cohort). Performance remained as good as for
surgical specimens (AUC =0.85 [0.69−1.0]), and similarly improved in
cases with a clear homogeneous molecular subtype (AUC=0.92
[0.77−1.0] (Fig. 2e). To assess the robustness of PACpAInt-B/C, we
performed on the Liver_FNB cohort, a subsampling of the tiles to
mimic tumor-poor biopsies. Using 75% of the tumor tiles, the AUC was
similar (AUC=0.85 [0.68–0.96]) and decreased but remained good
when using only 50 or 25% of the tumor tiles to predict the molecular
subtypes (AUC=0.82 [0.62–0.96] and 0.82 [0.61–0.96], respectively).
We included PACpAInt-B/C in a multivariate survival analysis in the
pooled BJN_U and BJN_M cohorts. PACpAInt-B/C predictions had a
strong independent prognostic value on both OS (HR = 1.37 [1.16−1.62]
p <0.001) and DFS (HR = 1.27 [1.08−1.49] p =0.003), contrary to the
PurIST-RNA classification which was not associated with OS (Fig. 2f, g
and Suppl Fig. 2c, d and Supplemental Tables 2, 3).

Article https://doi.org/10.1038/s41467-023-39026-y

Nature Communications |         (2023) 14:3459 2



It has been previously shown that tumor cells may harbor distinct
morphology from slide to slide within a case9. This is particularly
meaningful in tumors of the classical subtype, which could be expec-
ted to harbor small basal-like areas that could impact patient prog-
nosis. In order to assess the impact of putative minor basal-like areas,
we selected in the BJN_M validation cohort the 77 cases (of 97) pre-
dicted classical by PurIST-RNA. PACpAInt-B/C was then run on all
tumor slides (mean number of slides per case = 9) and we compared
the predictions across slides (Fig. 3). Thirty cases (39%) had at least one
slide predicted as basal-like, suggesting an important morphological
and molecular heterogeneity within those tumors at the scale of the
entire lesion. DFS and OS of these heterogeneous cases were shorter
(median survival of 15 vs 35 months, p =0.08 and of 36 vs 64 months,
p =0.002, respectively), highlighting the clinical impact of tumor
heterogeneity (Fig. 3).

PACpAInt can decipher intratumor microheterogeneity
Regarding the RNA-based tumor characterization, these results
prompted us to switch from a dichotomic label (i.e., PurIST-RNA) to

continuousmultiparametric labels based on the signatures from Puleo
et al. (Suppl Fig. 3a)5. Using this method, each tumor was defined by
four continuous components, twodescribing tumor cells (classical and
basal-like components) and two describing the stroma (active and
inactive). This approach acknowledges that a case can be “pure”with a
classical phenotype and an inactive stroma, for instance (Suppl Fig. 3a
case 1) or “complex” with the coexistence of both tumor phenotypes
(Suppl Fig. 3a case 2), likely reflecting more accurately tumor biology.
A new model was trained on the DISC cohort to predict these tumor
cell/stroma components on whole histological slides (PACpAInt-
Comp). The correlation of PACpAInt-Comp with RNA tumor and
stroma components was highly significant in the BJN_U validation
cohort and substantially improved in the spatially matched validation
cohort BJN_M (Suppl Fig. 3b).

To better study the intratumor microheterogeneity, we then
developed amodel to predict if a tile was predominantly composed of
tumor cells or stroma (PACpAInt-Cell Type) (Fig. 4a). This model was
trained on tumor cells and stroma annotations made by an expert
pathologist. The model reached an AUC of 0.99 in the two validation

Fig. 1 | PACpAInt approach for identification of PDAC molecular tumor sub-
types. a Simplified workflow of the study: a first model is applied to find the tumor
area (tumor cells and stroma) (PACpAInt-Neo) followed by a second model pre-
dicting either the global tumor cell molecular type (classical vs basal-like) at the
slide level (PACpAInt-B/C) or predicting at the tile level (small square 112 µmwide)
the nature of the cells (tumor or stroma - PACpAInt-cell type) and their molecular
subtype (classical vs basal-like for tumor cells and active vs inactive for stroma)
(PACpAInt-Comp), b Description of the cohorts. Discovery cohort (DISC) was
composed of 202 patients (surgical specimens) from three centers. A tissue carrot
(diameter 600μm)was taken from a block for RNA profiling. HES slides (at least 2/
tumor)weredigitized for PACpAInt analysis. Inmost cases, the tissue carrot and the

HES did not come from the same block. The workflow was similar in the first
validation cohort BJN_U unmatched (surgical specimens). For the two next valida-
tion cohorts (BJN-Mmatched (surgical specimens) and EUS_Liver (livermetastases,
fine-needle biopsies)), the same block was used for RNA extraction after micro-
dissection of the neoplastic area and to generate the HES slide that was digitized
and analyzed with PACpAInt. In addition, in the BJN_M matched cohort, all the
remaining tumor slides were also digitized for PACpAInt analysis. Finally, in the
TCGA_PAAD validation cohort (surgical specimens), in contrast to all the other
cohorts, the RNA was extracted from frozen material, not formalin-fixed paraffin-
embedded. Similarly to the discovery cohort, the tissue analyzed by RNAseq was
not spatially matched with the digitized slides.
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cohorts BJN_U and TCGA (Fig. 4b, c). PACpAInt-Cell Type was further
validated on a subset of the BJN_M cohort (n = 50) for which the tumor
cells/stroma ratio was digitally computed using tumor-specific pan-
cytokeratin immunohistochemistry (Pearson’s R =0.72, p < 0.001)
(Fig. 4d). Using this model’s predictions on a pooled cohort (DISC,
BJN_M and BJN_U, n = 451), we confirmed that a high amount of stroma
was independently associated with a better prognosis (HR = 0.86
[0.76–0.96], p = 0.01 and HR=0.87 [0.77−0.98], p = 0.02 for DFS and
OS, respectively) (Fig. 4e and Supplemental Table 4), as formerly
reported16–18.

PDAC displayed major intratumor microheterogeneity with an
important prognostic impact
We then applied the complete three-step model on every tile (112μm
wide square) of every slide to predict whether it contains neoplastic
tissue, tumor cells or stroma and their molecular phenotype (mean nb
of tiles/slide = 23,306) (Fig. 5a). Concordance between tile level pre-
dictionsof themodel (basal-like/classical on tumor cell tiles and active/
inactive on stroma tiles) and tile scoring by two expert pathologists in

PDACwas good (concordance = 100 and 99.2% for tumor components
and 99.2 and 99.4% for stroma components). In addition, tiles pre-
dicted to have a basal-like and classical phenotype according to
PACpAInt-Comp were tiles containing tumor cells (according to
PACpAInt-Cell Type). Similarly, tiles predicted as containing active or
inactive stroma (stromaActive or StromaInactive component high
score, respectively) according to PACpAInt-Comp were tiles contain-
ing stroma (and no tumor cells) according to PACpAInt-Cell Type
(Fig. 5c). PACpAInt-Comp was further evaluated on slides stained with
GATA6/Claudin18 and KRT17 antibodies, three established specific
markers for classical and basal-like phenotypes respectively19,20.
PACpAInt-Comp was able to discriminate between GATA6 + /Clau-
din18+ versus KRT17+ areas, with AUCs of 0.87 and 0.75 for basal-like
and classical tumor scores, respectively (Fig. 5d). Using PACpAInt-
Comp predictions, we also highlighted a strong association between
active stroma and basal-like rather than classical phenotypes (Fig. 5e)
as previously reported5. In a multivariate Cox model, the use of the
PACpAInt-Comp scores significantly improved the prognosis predic-
tionwith respect to clinico-molecular data alone (+4 c-index, p =0.007

Fig. 2 | External validation of molecular subtypes PACpAInt-B/C and associa-
tion with survival. a Simplified workflow of the study: a first model is applied to
find the tumor (PACpAInt-Neo) followed by a second model predicting the global
tumor cell molecular type (classical vs basal-like) at the slide level (PACpAInt-B/C),
b Representative tiles identified as classical or basal-like by PACpAInt-B/C in the
validation BJN_U cohort (112μm square), c–e Performance of PACpAInt-B/C to
identify molecular subtypes using the whole cohort or only cases with an unam-
biguous RNA subtype (clear subtype) of the validation cohorts (BJN_U unmatched
(surgical specimens), i.e., slide analyzed and tissue used for RNAseq are not

spatially matched; BJN_M matched (surgical specimens), i.e., slide analyzed and
tissue used for RNAseq are spatiallymatched; Liver_FNB (EUS fine-needle biopsies),
f, g Multivariate analyses of clinical/pathological factors and PACpAInt-B/C
demonstrating an independent prognostic value of the later on disease-free sur-
vival (n = 243) and overall survival (n = 248). The circle represents the variable
hazard ratio, while whiskers represent the 95% confidence interval of that hazard
ratio. P values were computed using a two-sided Wald test. No adjustments for
multiple comparisons were made. ***P <0.001; **P <0.01; *P <0.05; +P <0.1;
−P >0.1. Source data are provided as a Source Data file.
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and +3 c-index, p = 0.008 for OS and DFS respectively) (Supplemental
Table 5).

PACpAInt highlights PDAC intratumor microheterogeneity and
its prognostic impact
We further assessed the impact of intratumor heterogeneity, using
PACpAInt-Comp to spatially phenotype a total of 6.3 million tumor
tiles encompassing 451 patients of the pooled cohorts (DISC, BJN_U,
and BJN_M). PACpAInt subtyping revealed that 71% of tumors pre-
sented a detectable fraction of clearly basal-like tumor cells, confirm-
ing that most PDAC do contain basal-like cells as suggested by
previous single-cell analyses on 12 cases8,21. The overall proportion of
basal-like cells was prognostic, with worsened prognosis starting at 5%
of clearly basal-like identified tumor cells and was independently
associated with OS and DFS in a multivariate analysis (Fig. 6a, b and
Supplemental Table 6). In addition, as the proportion of basal-like tile
increased, the proportion of Inactive stroma tile decreased while that
of Active stroma increased (Fig. 6c).

The tile-by-tile analysis of the basal-like and classical PACpAInt-
Comp scores showed that only 60% of tumors had an unambiguous
main subtype (classical 41% and basal-like 19%). The remaining could
be divided into an infrequent hybrid subtype (10%) defined by the
coexistenceof both clearly differentiable basal-like and classical tumor
cells, and an intermediary subtype (30%) for which most tumor cells
could not be clearly assigned to any of the two subtypes (Fig. 7a, b).
Further supporting these findings, the RNA basal-like signature was
high in cases predicted by PACpAInt to be basal-like, low in classical
and intermediate tumors (Fig. 7c). The opposite was found with the
classical RNA signature. Interestingly, tumors predicted to be hybrid
displayed high classical and basal-like signatures confirming their dual
nature. The subtype prediction by PACpAInt had a strong prognostic
impact. As expected, the main classical tumors had the best prognosis
(median DFS 27.5 months, median OS 45.1 months) and main basal
tumors the worst (median DFS 8.4 months, median OS 13.6 months)

(Fig. 7d and. Supplemental Table 7). Intermediary and hybrid tumors
showed an intermediate prognosis (median DFS 15.7 months, median
OS 33.0months for intermediary tumors andmedianDFS 12.3months,
medianOS 23.4months forhybrid tumors).Distributionof cases based
on their transcriptomic profile in principal component analysis clearly
showed that AI-defined intermediary tumors are true in-between
lesions (Fig. 7e). Gene set variation analysis showed that AI-defined
intermediary tumors, like basal-like tumors, shut down gastric/intest-
inal-like differentiationprograms, hallmarks of classical tumorsbut did
not upregulate basal-like signatures (squamous and EGFR/KRAS
pathways) confirming their intermediate nature (Fig. 7f).

Discussion
With a global consensus on PDACmolecular subtypes finally emerging
and early results suggesting their potential predictive value in addition
to a strong prognostic value, the need for efficient and reliable tumor
subtyping is greater than ever6. In this study, we developed PACpAInt,
an AI-based tool able to predict on routine pathology slides PDAC
molecular subtypes of both tumor and stromal cells. Our approach
relies on an interpretable deep-learning design, translating molecular
signatures defined on whole tumors into morphology-based spatia-
lized cell phenotyping for comprehensive intratumor heterogeneity
analyses.

Our training cohort included slides from different centers over a
long period of time with different staining protocols ensuring a wide
variability in stainings to build robust models. The validation of the
models on four independent cohorts is a strength of this study. The
good performance on the validation cohorts from a fourth center and
the multicentric curated TCGA_PAAD cohort also supports the
robustness of themodels, especially since the TCGA_PAAD slides were
stained with H&E while the rest of the slides were stained with H&E +
Safran, the standard histological coloration in France that highlights
better the fibrotic stroma in some cases. We also performed spatial
validation of the tumor/stroma subtypes model using IHCs to define

Fig. 3 | Intra-tumoral macroheterogeneity identified by PACpAInt with whole
tumor analysis. For 77 cases defined as classical by RNAseq, all the histological
slides containing tumor were digitized (n = 660) and classified by PACpAInt-B/C.
Top center panel: The PACpAInt-B/C score estimating the “basalness” of each slide
is represented on the Y axis while patients (1 to 77) are lined along the X axis. Each
spot represents a slide. Cases with all their slides showing a low PACpAInt score
(<0.2) were called “pure” classical compared tomore heterogeneous tumors called
“mixed” classical because at least one slide was predicted to be basal-like. Bottom
center panel: Kaplan–Meyer analysis of overall survival comparing “pure” and
“mixed” classical tumors (p value =0.001538). ***p <0.001; **p <0.01; *p <0.05;
+p <0.1; −p >0.1. Left panel: Case identified to be “pure” classical by PACpAInt

(green arrowhead on the central panel). Macroscopic images of the resection
showing where the tissue was sampled and the corresponding histological aspect
(scale bar = 200μm).While the areas were spatially distant, the tumormorphology
was homogeneous, featuring a gland-forming pattern and good differentiation
across the whole tumor. Right panel: Case identified as a “mixed” Classic by PAC-
pAInt (red arrowhead on the central panel). Macroscopic images of the resection
showing where the tissue was sampled and the corresponding histological aspect.
Here themorphology is highly heterogeneous with spatially distinct gland-forming
and non-gland-forming areas. p values were computed using a two-sided log-rank
test. Source data are provided as a Source Data file.
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basal-like and classical regions on the H&E slides and pathologist
annotations to define Active and Inactive stroma regions as gold
standards. Most importantly, we validated the tumor subtype identi-
fication on liver biopsies, the most common diagnostic samples for
PDAC diagnosis. PACpAInt performed equally well even when
decreasing of 25% the number of analyzed tiles by suggesting that it
might be useful even when the amount of tumor tissue is scarce. Our
study does not bring any new deep-learning methods but rather relies
on existingdeep-learning techniques that haveproven toworkwell in a
variety of tasks22,23. PACpAInt brings RNA-free PDAC molecular sub-
typing and the analysis of PDAC intra and intertumor heterogeneity at
a large scale with deep learning.

While the binary classification of tumor cells fails to faithfully
recapitulate the complexity of PDAC, it provides a tool that is easy to
implement to help appreciate the prognosis and potentially decide the

treatment instantly, without the lengthy and costly RNAseq analysis,
allowing its use in clinical trials to stratify patients. RNA-based strati-
fication of tumors can be dramatically impaired in samples with few
tumor cells and/or heavily contaminated by non-tumor cells, a very
frequent situation in pancreatic biopsies. In addition to these chal-
lenges, predictive RNAseq in routine practice in PDAC would need to
be performed very rapidly to avoid delaying the first administration of
chemotherapy. Thismeans that unless a large effort of centralization is
undertaken, each center would process a few samples a week, leading
to high cost and difficulties in sample normalization. PACpAInt used at
the slide level could help overcome some of these problems. In addi-
tion, it may help pathologists of small centers with no access to
RNAseq. A clear limitation of PACpAInt will be the amount of tissue
that can be analyzed on a biopsy. Very small lesions leading to few
cells, sufficient for the diagnostic of malignancy, may not be adequate

Fig. 4 | Identification of tumor cells and stroma by PACpAInt-Cell type.
a Workflow for cell type identification with PACpAInt-Cell type. PACpAInt-Neo is
first applied to identify neoplastic regions, followed by PACpAInt-Cell type, which,
inside these regions, distinguishes tumor cells from the stroma. PACpAInt-Cell type
was trained on regions of 81 slides of the DISC cohort, annotated by two expert
pathologists at the cell level.bRepresentative tiles identified as tumor or stromaby
PACpAInt-Cell type in the TCGA validation cohort (112μm square). c Performance
of PACpAInt-Cell type to identify tumor and stroma cells in the BJN_U (top) and
TCGA (bottom) validation cohorts, d correlation between the tumor cell/stroma
ratio computed by PACpAInt-Cell type or with a computer-assisted calculation of
the tumor stroma/ratio based on pan-cytokeratin immunohistochemistry (scale
bar = 300μm) (ratio stained area/total tumor area) (p value = 3.16e-09). p values
were computed using a two-sided t-test, e Multivariate analyses of clinical/patho-
logical factors and PACpAInt-cell type computed tumor/stroma ratio on disease-

free (left, n = 428) and overall (right, n = 451) survival in the pooled DISC cohort and
BJN_U +M validation cohorts. The circle represents the variable hazard ratio, while
the whiskers represent the 95% confidence interval of that hazard ratio. P values for
overall survival are: adjuvant treatment, p =0.001935; PACpAInt-cell type,
p =0.020405, perineural invasion, p =0.797476; differentiation, p =0.731345; vas-
cular invasion, p =0.512674; Pathology N stage, p =0.001960; PurIST-RNA,
p =0.001058; resection status, p =0.002100; tumor size, p =0.053910. P values for
disease-free survival are: adjuvant treatment, p =0.007799; PACpAInt-cell type,
p =0.008226, perineural invasion, p =0.721716; differentiation, p =0.779395; vas-
cular invasion, p =0.745392; pathology N stage, p =0.000665; PurIST-RNA,
p =0.000153; resection status, p =0.002868; tumor size,p =0.019464.***p <0.001;
**p <0.01; *p <0.05; +p <0.1; −p >0.1. Source data are provided as a Source
Data file.
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for PACpAInt. Deep-learning models applied to CT scans could
represent an attractive non-invasive alternative. So far, models were
proposed for PDAC diagnosis (vs autoimmune pancreatitis) or to
predict simpler molecular labels that were reported to impact survival
in PDAC, such as KRT81 positivity by immunohistochemistry24,25. In
addition, deep-learning models like PACpAInt-Neo could be used to
detect remaining tumor cells after neoadjuvant treatment, paving the
way for a standardized regression score that could alsobe used in trials
to adjust adjuvant therapy26,27. This is of particular interest as a recent
study from an international group of experts highlighted the lack of
inter-observer concordance to grade the neoadjuvant tumor response
using the CAP score28. In a full digital pathology lab, this type of model
would be quicker than cytokeratin staining with computer-assisted
counting of the tumor density.

PACpAInt allowed us to assess intratumor heterogeneity at a deep
scale. Few studies performed multi-areas RNAseq, each on a small
number of cases, suggesting that the two main subtypes may be pre-
sent in a single tumor29,30. Our results provide a clear picture of PDAC
intratumor heterogeneity, showing that almost a third of the tumors
are likely halfway between the classical and the basal-like subtypes.
This is of major interest as several epigenetic drugs are being

developed to try to reprogram PDAC cells. Our data showed that a
minor basal-like component, that would be ignored by binary classi-
fications, has a strong prognostic implication. Finally, this study also
demonstrates that the stromal compartment can be rapidly subtyped,
paving the way for patient stratification in drug-targeting trials. Deep-
learning models are often criticized for being black box models that
lack explainability. Models used in our study are interpretable by
design and we were able to retrieve the most predictive regions. Their
analysis by pathologists confirmed the biological meaningfulness of
the model findings. Furthermore, weakly supervised approaches like
theonesweused for tumor / stromasubtype identification canbeused
to highlight local patterns (i.e., tumor areas with specific features like
necrosis, presence of tertiary lymphoid structures, etc.) that could
explain an otherwise unclear global molecular label, possibly unco-
vering key cellular components and/or their interactions.

In conclusion, while demonstrating the value of histology-based
deep-learning models for tumor subtyping in PDAC, these results also
show the limit of molecular-based subtyping in highly heterogeneous
samples. With the expansion of digital pathology, remote AI-based
PDAC subtyping could be deployedworldwide, finally opening theway
for patient stratification based on powerful molecular criteria.

Fig. 5 | PACpAInt identification of molecular components to decipher intra-
tumormicroheterogeneity. aWorkflow for molecular components identification
at tile-level. PACpAInt-Neo isfirst applied to identify neoplastic regions, followedby
PACpAInt-Cell type to identify tumor cells and stroma, then PACpAInt-Comp to
predict the molecular subtype of tumor cells and stroma, b Representative tiles
identified as tumor classical or basal-like or stroma active or inactive by PACpAInt-
Comp in the TCGA validation cohort (112μm square), c PACpAInt-Cell type tumor
and stroma score in tiles identified as classical, basal-like, stroma active or inactive

by PACpAInt-Comp (analysis on 100K tiles for each category (i.e., classic, basal,
etc.). Center corresponds to the median, lower, and upper hingers to the first and
third quartiles, whiskers to the hist/lowest value no further than 1.5 × IQR (inter-
quartile range),d Example at the tile level of areas identifiedas classical or basal-like
by PACpAInt-Comp and stained by immunohistochemistry with classical (GATA6/
Claudin18) or basal-like (KRT17) markers (scale bar = 200μm), e Correlation
between slide-wise median stromal and epithelial scores. Source data are provided
as a Source Data file.
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Methods
Ethical compliance
This study (ref 2020-013) was reviewed and approved by the “Comite
d’Evaluation de l’Ethique des projets de Recherche Biomedicale
(CEERB) Paris Nord” (Institutional Review Board -IRB 00006477- of
HUPNVS, Paris 7 University, AP-HP). Non-deceased patients were
informed inwriting of the study. According to the French Jardé Law for
non-interventional studies, they had a 2-month period to express in
writing their opposition to the study andwere otherwise considered as
willing participants. Patients were not compensated for their partici-
pation in the study.

Datasets description
This study (ref 2020-013) was reviewed and approved by the “Comite
d’Evaluation de l’Ethique des projets de Recherche Biomedicale
(CEERB) Paris Nord” (Institutional Review Board -IRB 00006477- of
HUPNVS, Paris 7 University, AP-HP). The discovery set (DISC cohort)
used todevelopourmodels is amulticentric cohortof 202 consecutive
patients treated in three different centers between September 1996
and December 2010: Saint-Antoine University Hospital, Pitie-
Salpetriere University Hospital or Ambroise Pare University Hospital.
At least two hematoxylin-eosin ± Safran (HES) slides from surgical
specimens were available for each patient, corresponding to a total of
424 slides.

BJN_U and BJN_M are two independent validation cohorts of
patients treated at a fourth center, Beaujon University Hospital,
between September 1996 and January 2014. BJN_U consists of 304

HES slides of consecutive surgical resection specimens from 148
patients. For all the cohorts above, a punch (0.8mm diameter core,
see below in the transcriptome section) was made in a single block
in an area rich in tumor cells. The slides that were digitized from
these tumors may or may not come from the same block as the one
punched for the RNA extraction, i.e., the “spatially unmatched”
nature of these cohorts. In contrast for the “matched” cohorts,
BJN_M and Liver_FNB cohorts, one block was selected and the
complete tumor area of that block was microdissected for RNA
extraction on serial sections with the HES. The extracted RNA is
therefore coming from the same block as the HES, but most
importantly, the RNA is not coming from a small portion of the
block but from the whole tumor area corresponding better to the
whole HES slides. To study intratumor heterogeneity, we also digi-
tized for the BJN_M cohort all the additional slides with tumor cells
on them, corresponding to a total of 909 HES slides for 97 patients.
Liver_FNB is a third independent validation cohort of endoscopy
ultrasound fine-needle biopsies from a liver metastasis of 25
patients (one biopsy per patient) treated at Beaujon University
Hospital between 2013 and 2020. Themedian size of themetastases
sampled was 20mm IQR [5–15].

TCGA_PAAD is a multicentric independent validation cohort of
134 hematoxylin-eosin (H&E) slides (126 cases) from apublic dataset of
the TCGA database31. Similarly to the DISC and BJN_U cohorts, for each
patient, the area sampled and frozen that was subsequently used for
RNA extraction is different from the H&E slide that was analyzed (i.e.,
this cohort is also “spatially unmatched”).

Fig. 6 | Estimating the impact of a minor basal-like tumor component.
a Kaplan–Meier andmultivariate analysis of the disease-free (n = 428) and b overall
survival (n = 451) comparing tumorswith less than 5%, 5 to 20%, andmore than 20%
of their tumor tiles being identified as basal-like, c Association between the per-
centageof thebasal-like tiles and theproportionof inactive or active stromal tiles in

the same tumors (n = 451 in total, [0–5] n = 305[5–20], n = 121[20–100], n = 25).
Center corresponds to the median, lower, and upper hingers to the first and third
quartiles,whiskers to the hist/lowest value no further than 1.5 × IQR. Sourcedata are
provided as a Source Data file.
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Inclusion criteria for all cohorts were as follows: unequivocal
diagnosis of the most common histological variants of pancreatic
adenocarcinoma (i.e., ductal, adenosquamous, and colloid carcino-
mas), available histological slides of formalin-fixed, paraffin-embedded
material, available follow-up, and molecular information, absence of
metastasis at diagnosis. Adenosquamous and colloid carcinomas are
bona fide duct-derived neoplasms that are close to the extreme of the
RNA classification but are still within the range of the other PDACwhen
classifiedby the PurIST tool (Suppl Fig. 4). Very rare subtypes forwhich
there is to date very little information regarding their molecular biol-
ogy or their cell of origin were discarded (undifferentiated carcinoma
with/without osteoclastic-like cells, hepatoid carcinoma). This led to
the exclusion of 34 slides from the TCGA that had either no tumor cell
on the slide or were from frozen examinations. The pathological
information were derived from the pathological reports. The routine
analysis of the included surgical specimens was performed by 4 expert
pancreatic pathologists (Training cohort: M. Svrcek (center 1), A. Bar-
dier Dupas (center 2), J.F Emile (Center 3) / Validation cohorts: J. Cros).
The grading was performed according to the WHO guidelines except

for the mitosis count, that is not part of the American or French
pathology guidelines for PDAC. Tumors are therefore presented as
well/moderately and poorly differentiated rather than theWHOG1-G4.
This studywas performed according to the TRIPOD guidelines (see the
TRIPOD form attached, Supplemental Table 8). The test and validation
cohorts were comparable (Supplemental Table 9).

Transcriptome profiling and molecular subtyping
The discovery cohort corresponds to 202 resected tumors from the
Puleo et al. study, which were profiled using U219 Affymetrix micro-
arrays (GEO accession number: GSE85916). For the BJN_U cohort, RNA
was extracted from a 0.8mm diameter core sampled from a tumor-
enriched zone. In most cases, the RNA was not extracted from the
sameblock thatwas used to generate theHES slides. For theBJN_Mand
Liver_FNB series, RNA was not extracted from a small punch but after
manual microdissection of two serial slides to remove contaminating
normal liver or pancreatic tissue. This means that the RNA is the
reflection of the whole tumor area of the block and corresponds
exactly to the analyzed HES. In addition, for the BJN_M cohort, all the

Fig. 7 | PACpAInt identification of intra-heterogeneity-based PDAC subtypes.
a Patient distribution in four subtypes: main-classical, intermediary, hybrid, and
main basal-like. For each column-wise patient is first shown the 99th percentile
basal-like and classical scores and second theproportion of tumor tiles for different
levels of basal-like and classical phenotype, b Schematic illustration of the intra-
tumoral distribution of tumor cell phenotypes along a basal-like vs classical dif-
ferentiation axis, c Distribution of the tumor-level RNA-defined signature scores of
the basal-like and classical phenotypes compared between the four subtypes: main
classical, intermediate, hybrid, andmain basal-like, (n = 451 in total, high.bas n = 84,
high.cla n = 192, hybrid n = 45, inter n = 130). Center corresponds to the median,

lower and upper hingers to the first and third quartiles, whiskers to the hist/lowest
value no further than 1.5 × IQR, d Kaplan–Meier analysis of disease-free and overall
survival comparingmain classical, intermediate, hybrid, andmain basal-like tumor,
e Distribution of PACpAInt-defined subtypes in a principal component analysis
based on transcriptomic profiles of the tumors, f Differential enrichment by gene
set variation analysis of pathways in PACpAInt-defined subtypes (n = 272 in total,
high.bas n = 61, high.cla n = 128, inter n = 83). Center corresponds to the median,
lower and upper hingers to the first and third quartiles, and whiskers to the hist/
lowest value no further than 1.5 × IQR. Source data are provided as a Source
Data file.
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other tumor slides were also analyzed by PACpAInt. For the BJN
cohorts, DNA/RNA was extracted using the ALLPrep FFPE tissue kit
(Qiagen, Venlo, The Netherlands) following the manufacturer’s
instructions and sequenced using 3’ RNAseq (Lexogene Quantseq 3’).
RNAseq reads were mapped using STAR v2.7.5a and genes were
quantified using FeatureCount (data available here: 10.5281/
zenodo.7716782). Gene counts were upper quartile-normalized and
logged. PurIST-RNA was applied to both microarray and RNAseq pro-
files resulting in a class label for each sample. The tumor and stroma
components were applied to both microarray and RNAseq profiles
resulting in a continuous score for each component in each sample, as
previously reported32. For each dataset, the difference between the
scaled basal-like and classical component scores were computed, and
samples that had a difference above the median were considered to
have a clear RNA subtype. Pathway activation was measured by the
Gene Set Variation Analysis (GSVA) with a Poisson kernel and using the
C8 MSigDB and Reactome gene sets.

Preprocessing of whole-slide images
The application of deep-learning algorithms to histological data is a
challenging problem, particularly due to the high dimensionality of the
data (up to 100,000× 100,000 pixels for a single whole-slide image)
and the small size of available datasets. Therefore, a preprocessing
pipeline composed of multiple steps was used to reduce dimension-
ality and clean the data. The first step consists in detecting the tissue
on the WSI: a U-Net neural network is used to segment part of the
image that contains matter, and discard artifacts such as blur, pen
marker, etc., as well as the background33. This U-Net network was
previously trained on 460 H&E and IHC slides from an internal dataset
where the tissue was manually annotated and validated on 115 slides
with a Dice score of 0.96. The second step consists in tiling the slide
into smaller images, called “tiles”, of 112 × 112μm (224 × 224 pixels). At
least 50% of the tile must have been detected as foreground by the
U-Netmodel to be considered as a tile ofmatter. The final step consists
of extracting features from each tile; color histogram normalization is
applied, and 2048 relevant features are extracted using a wide
Resnet50 network (the bottleneck number of channels is twice larger
in every block34, trained in a self-supervised fashionMoCo v2, using the
approach proposed by Dehaene et al.35. This network was trained on 4
million tiles from TCGA-COAD dataset, with massive data augmenta-
tion (random cropping, random flips, color jitter, random grayscale,
and gaussian blur), and without using any labels. Feature extractor
weights were frozen both for inference and training. At the end of this
preprocessing pipeline, each slide is represented by a matrix of size
(ntiles, 2048).

Neoplastic and cell type prediction
PACpAInt neoplastic prediction model (PACpAInt-Neo) was trained at
the tile level, based on the exhaustive neoplastic annotations of
433 slides from the discovery cohort provided by two expert pathol-
ogists, which corresponds to a total of 9,886,596 tiles. Slides were
annotated using the Aperio Imagescope software v.12.4.6 (LeicaTM).
WSI preprocessing, described in the section “Preprocessing of whole-
slide images”was used to obtain 2048 features for each tile. PACpAInt-
Neo architecture consists of a multi-layer perceptron with a single
layer of 128 hidden neurons, followed by ReLU activation. The model
was trained on non-exhaustive annotations of tumor cells and stroma
using the Aperio Imagescope software v.12.4.6 (LeicaTM) and validated
on regions annotated by twopathologists of slides of the cohort BJN_U
and TCGA (ten slides for each cohort). PACpAInt-cell type prediction
model (PACpAInt-Cell type) has the same architecture as PACpAInt-
Neo, and was trained on annotations of 81 slides from DISC cohort,
which corresponds to a total of 66,920 tiles. Likewise, it was validated
on regions of ten slides of BJN_U and TCGA_PAAD annotated by two
pathologists (Aperio Imagescope software v.12.4.6 (LeicaTM)).

Molecular prediction
PACpAInt-B/C and PACpAInt-Comp are two multiple instance
learning models that were trained on the discovery cohort at the
slide level to predict respectively PurIST-RNA basal-like classifica-
tion and the molecular components Classical, Basal-like, Stro-
maActiv, StromaInactive. The two models use the same WSI
preprocessing pipeline described in the section “Preprocessing
whole-slide images,” but PACpAInt-Neo was further applied to the
tile features in order to select only tiles in neoplastic regions (i.e.,
with a neoplastic prediction score larger than 0.5). During training,
a maximum of 8000 tiles are uniformly sampled from each slide for
speed and memory considerations. For inference, all tiles are used.
PACpAInt-B/C architecture is similar to the one proposed by Ilse
et al. A linear layer with 128 neurons is applied to the tile features
followed by a Gated Attention layer with 128 hidden neurons22. We
then apply a multi-layer perceptron (MLP) with 128 and 64 hidden
neurons and ReLU activations to the results. A final Sigmoid acti-
vation is applied to the output to obtain a score between 0 and 1,
which represents the probability of the slide to be basal-like or
classical. PACpAInt-B/C was trained with the binary cross entropy as
loss function, using PurIST-RNA basal-like classification defined by
RNA sequencing at patient-level as labels. PACpAInt-Comp was
inspired by the WELDON algorithm: 4 scores for each tile are com-
puted from the tile features, where each score corresponds to each
of the 4 molecular components23. This scoring is performed using a
MLP with 128 hidden neurons followed by four neurons and ReLU
activation. For each score dimension, we select R = 100 top and
bottom scores and average them, so that the model’s output is a
vector of size 4, corresponding to the continuous predicted values
of each molecular component. The model was trained with the
mean squared error as a loss function, using molecular components
defined by RNA sequencing at patient-level as labels.

Spatial validation
To validate locally the accuracy of PACpAInt-Comp to predict classical
and basal-like, GATA6, Claudin18, and KRT17 IHCs were performed on
12 slides of BJN_M. The following antibodies were used (GATA6 (Cell
Signaling, clone D61E4, Rabbit, at 1/200, REF5158S), Claudin18 (Sigma,
Polyclonal ref HPA018446, Rabbit, at 1/50, REF HPA01846), KRT17
(BioSB, clone BSB-33, mouse, at 1/800, REF BSB2729), PanCK+
(Zytomed, clone coktail AE1/AE3/5D3, mouse, at 1/300, REF MSK098-
05). Immunohistochemistries were performed on a Ventana (Tuscon
AZ, USA) benchmark ultra automates. Tile scores for classical and
basal-like componentswere analyzed in regions defined as being basal-
like/classical by the IHCs. Two expert pathologists also analyzed tiles
predicted tobeclassical or basal-like (n = 500) and tiles predicted tobe
stroma active or inactive (n = 500), blinded to scores associated with
each tile.

Performance assessment and statistical methods
The area under the receiver operating characteristic curve (AUC) was
used to quantify the capability of the model to distinguish classical
from basal-like tumors, as assessed by the PurIST method. The same
metric was used to assess the performance of PACpAInt-Neo to dis-
tinguishnormal fromneoplastic regions, andof PACpAInt-Cell-Type to
distinguish stroma from epithelial tumor cells. Delong’s method was
used to compute confidence intervals at 95% confidence level36. Pear-
son’s correlation was used to assess the performance of the PACpAInt-
Comp model to predict the molecular components. Survival analyses
were performed with uni- and multivariate Cox proportional hazards
models implemented in the lifelines package of Python37. Log-rank
tests were used to compare survival distributions between population
subgroups. We used survcomp R package to compare c-indexes38. All
tests were two-tailed, and P values <0.05 were considered statistically
significant.
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Intratumor heterogeneity subtypes
The 99th percentile of the basal-like and classical component scores
defined by PACpAInt-Comp for each patient, using all available slides
per patient, were computed. The absolute difference between 99th of
the basal-like and classical tiles was then used as a measure of differ-
entiation in each patient, a high absolute difference indicating a well-
differentiated (either clearly basal-like or classical) tumor. A Gaussian
mixture model was applied, which identified two subgroups, one
group of clearly differentiated tumors (with a higher difference
between the 99th percentile of the basal-like and classical tiles) and
oneof theunclear tumors inwhich the levels of themost differentiated
tiles were similar, thereby showing no clear pattern toward basal-like
or classical. This latter “unspecified” subtype (n = 175, 38.8%) could be
either composed of a mixture of well-differentiated tumor contingent
or of an overall tumor phenotype neither basal-like nor classical and
possibly in an intermediary differentiated state. To differentiate
between these two possibilities, the maximum level of differentiation
of each tumor (measured as the maximum of either the basal-like and
classical 99th percentile tile level) was identified as an optimal cut-off
to define clearly differentiated tumors. The idea here is to find the set
of tumors that have a differentiation level as high as clearly differ-
entiated tumors while having a low difference between basal-like and
classical levels. This resulted in two partitioning systems. First, by
separating by the difference in the highest level of differentiation
observed, a higher difference indicating a clear subtype, the highest
phenotype level indicating a main basal-like (n = 84, 18.6%) or a main
classical tumor (n = 192, 42.6%). Second, by separating, among
unspecific or lowdifferences between subtypes, tumors that have both
clear and highly defined basal-like and classical tumor tiles, referred to
as hybrid (n = 45, 9.9%), and tumors that have no clearly basal-like nor
classical tiles and therefore termed intermediary (n = 130, 28.8%).

Clinical variables used in the multivariate analysis
Clinical variables considered for multivariate analysis were common
variables known to be associated with PAC prognosis: pN stage, dif-
ferentiation, perineural invasion, resection status, tumor size, vascular
invasion, and adjuvant treatment yes/no.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The TCGA_PAAD are available from the TCGA repository (TCGA_PAAD,
[https://portal.gdc.cancer.gov]). The microarray and RNAseq data can
be downloaded from the GEO repository (accession number:
GSE85916) and the array express repository (E-MTAB-13007) respec-
tively. Source data are provided with this paper.

Code availability
The packaged models can be found here: https://github.com/
CharlieCheckpt/pacpaint (https://zenodo.org/badge/latestdoi/
625162034)39.
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