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Abstract 14 

A single critical thermal limit is often used to explain and infer the impact of climate change on 15 

geographic range and population abundance. However, it has limited application in describing the 16 

temporal dynamic and cumulative impacts of extreme temperatures. Here, we used a thermal 17 

tolerance landscape approach to address the impacts of extreme thermal events on the survival 18 

of co-existing aphid species (Metopolophium dirhodum, Sitobion avenae and Rhopalosiphum 19 

padi). Specifically, we built the thermal death time (TDT) models based on detailed survival 20 

datasets of three aphid species with three ages across a broad range of stressful high (34~40°C) 21 

and low (-3~-11°C) temperatures to compare the interspecific and developmental stage variations 22 

in thermal tolerance. Using these TDT parameters, we performed a thermal risk assessment by 23 

calculating the potential daily thermal injury accumulation associated with the regional 24 

temperature variations in three wheat-growing sites along a latitude gradient. Results showed that 25 

M. dirhodum was the most vulnerable to heat but more tolerant to low temperatures than R. padi 26 

and S. avenae. R. padi survived better at high temperatures than Sitobion avenae and M. 27 

dirhodum but was sensitive to cold. R. padi was estimated to accumulate higher cold injury than 28 

the other two species during winter, while M. dirhodum accrued more heat injury during summer. 29 

The warmer site had higher risks of heat injury and the cooler site had higher risks of cold injury 30 

along a latitude gradient. These results support recent field observations that the proportion of R. 31 

padi increases with the increased frequency of heat waves. We also found that young nymphs 32 

generally had a lower thermal tolerance than old nymphs or adults. Our results provide a useful 33 
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 2 

dataset and method for modelling and predicting the consequence of climate change on the 34 

population dynamics and community structure of small insects. 35 

Keywords: Extreme temperature, Thermal death time curve, Cereal aphids, Sitobion avenae, 36 

Rhopalosiphum padi, Metopolophium dirhodum 37 

Introduction 38 

Climate change leads to more frequent extreme temperature events (Perkins-Kirkpatrick and 39 

Lewis 2020, Arias et al. 2021), which trigger consequences from individual physiology to 40 

ecosystem functions (Ma et al. 2021; Secretariat et al. 2021). Insects’ body temperature is mainly 41 

determined by the microclimates of their habitats, making them highly sensitive to temperature 42 

changes (Pincebourde and Woods 2020). Exposure to a short-term extreme temperature that 43 

reaches or exceeds critical thermal limits can cause an immediate effect on fecundity, fertility and 44 

even mortality (Zhang et al. 2013; Liang et al. 2014; Sales et al. 2021). Therefore, thermal 45 

tolerance is often correlated with population abundance, species distribution, and phenology, and 46 

thus plays an important role in predicting the effect of climate change (Sunday et al. 2012; 47 

Amundrud and Srivastava 2020; Alruiz et al. 2022). 48 

A single temperature estimated from static or dynamic assays has been widely adopted as an 49 

upper or lower thermal tolerance limit (Winther Bak et al. 2020). However, the critical thermal limit 50 

depends on the methodological context including the exposure time (Rezende et al. 2014; 51 

Terblanche et al. 2007). Moreover, this limit, which represents a static snapshot of thermal 52 

tolerance, is not able to describe the temporal dynamic and cumulative impact of environmental 53 

extreme temperatures on survival (Alruiz et al. 2022).  54 

Thermal Death Time (TDT) curve, which describes that the tolerable duration at stressful 55 

temperatures exponentially decreases with increasing stress intensity, can fully and accurately 56 

characterize species’ thermal tolerance (Bigelow 1921; Fry et al. 1946; Nedvěd et al. 1998; 57 

Colinet et al. 2011; Rezende et al. 2014; Jørgensen et al. 2019; Tarapacki et al. 2021). The TDT 58 

framework has been recently re-examined and parameterized to enable the analysis of the 59 

combined impact of extreme temperatures and exposure times on survival, which is now referred 60 

to as the "thermal tolerance landscape". (Rezende et al. 2014; Jørgensen et al. 2019; Jørgensen 61 

et al. 2021; Ørsted et al. 2022). Furthermore, the injury accumulation rate increases exponentially 62 

with temperature and the injury sustained at different static temperatures can be completely 63 

additive (Jørgensen et al. 2021; Ørsted et al. 2022). Thus, through the TDT model, we can not 64 

only get a holistic view of how thermal tolerance duration varies with temperatures (Tarapacki et 65 

al. 2021; Willot et al. 2022), but also link the thermal tolerance to the injury accrued under natural 66 
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temperatures. However, few studies employ this approach to extrapolate the thermal tolerance 67 

estimated in the laboratory to natural settings. 68 

The same dose of exposure to thermal extremes might lead to different reactions among co-69 

existing species (Ma et al. 2015a; Ma et al. 2015b) because some species can be more stress-70 

resilient than others (Kaspari et al. 2015; Buckley and Huey 2016). The interspecific differences 71 

in thermal tolerance can shift the community structure through cascading effects (Harvey et al. 72 

2020; Filazzola et al. 2021), altering the relative abundance of coexisting insect species (Ma et al. 73 

2015b; Birkett et al. 2018; Zhu et al. 2021). This is particularly important for practice in agricultural 74 

pest management (Mohammed et al. 2019). In addition, the natural population of insects 75 

commonly consists of multiple life stages or age cohorts that have different thermal tolerance 76 

(Bowler and Terblanche 2008; Zhang et al. 2015; Zhao et al. 2019), even the stages living in the 77 

same microhabitat also show different heat tolerance (Zhao et al. 2017). When the mixed-stage 78 

population experiences extreme temperature events, the most sensitive stages are likely to be 79 

injured and die, whereas the most tolerant may survive and develop to the adult stage for 80 

reproduction during the following mild phases, thereby contributing to population recovery (Ma et 81 

al. 2021). Therefore, clarifying the thermal tolerance in different developmental stages is essential 82 

for understanding the ecological consequences of extreme temperature events.  83 

Here we used three species of co-existing global pests (family Aphididae) in cereal crops, Sitobion 84 

avenae (Fabricius, 1775), Rhopalosiphum padi (Linnaeus, 1758), and Metopolophium dirhodum 85 

(Walker, 1849) as focus species. We aimed to answer the following questions: 1) can the change 86 

in aphid community abundance be related to interspecific differences in the basal thermotolerance 87 

of the three aphid species? 2) do older aphids suffer less than younger ones from heat/cold stress? 88 

To answer these questions, we conducted an elaborate study to characterize the interspecific 89 

variation in thermal tolerance among the three cereal aphid species using the TDT framework at 90 

both high and low temperatures. Then, we examined the effect of developmental stage/age on 91 

the intraspecific variations in thermal tolerance. Finally, we used the TDT model parameters to 92 

perform a risk assessment predicting the potential injuries under the natural environments for 93 

three aphid species in three sites along a latitude gradient in China. 94 

2. Material and methods 95 

2.1 Aphid stock rearing 96 

Populations of three common aphid species developing on winter wheat, S. avenae, M. dirhodum 97 

and R. padi were originally collected in May 2010 from wheat fields near Beijing (39°48 N, 116°28 98 

E) (Zhao et al. 2014). The colonies were then refreshed annually with field-collected aphids. The 99 
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aphids were reared in screened cages (60 × 60 × 60 cm) at 22 ± 0.5 °C, RH 70%, and a 100 

photoperiod of 16 L: 8 D. Aphids were fed on 10 –20 cm tall winter wheat seedlings that were 101 

renewed weekly. Aphids used for experiments were prepared by placing newly molted adult 102 

aphids in a pot with wheat seedlings at 20 °C. After 24 hours, the apterous adult aphids were 103 

removed so that only newly-born nymphs remained. Subsequently, these nymphs were allowed 104 

to develop for 2, 6, 12 days to generate three different stages: 2nd, 3rd or 4th instar (depending on 105 

species) and adult, respectively. 106 

2.2 Tests of heat and cold survival 107 

For heat tolerance tests, a multifactorial experiment involved the three aphid species × three ages 108 

(2, 6, 12 days) × seven temperature regimes (34, 35, 36, 37, 38, 39, 40°C) × ≥ five exposure 109 

times (ranging from 0 to 2000 min depending on the temperature) was conducted. Similarly, a 110 

multifactorial experiment for cold tolerance included the three aphid species × three ages (2, 6, 111 

12 days) × nine temperature regimes (-3, -4, -5, -6, -7, -8, -9, -10, -11°C) × ≥ five exposure times 112 

(ranging from 0 to 10162 min depending on the temperature) was conducted. All the treatments 113 

were replicated at least 3 times, and for each replicate, 7-12 aphids were tested (Table S1). To 114 

obtain a reliable survival curve at each temperature, we tried to find and test the exposure times 115 

that result in survival rates close to 0%, 25%, 50%, 75%, and 100%, respectively. To reduce 116 

handling stress and provide food as well as a water source, we cut off the wheat leaves with 117 

aphids and then transferred them directly into glass vials (10 mL). Then, we closed each vial with 118 

a dry sponge and placed a rack with vials into a glycol bath (Ministat 230-cc-NR; Huber Ltd., 119 

Germany, accuracy ± 0.01 °C) pre-set at the experimental temperature. For each temperature 120 

and exposure time, the exposed aphids were removed from the bath and allowed to recover at 121 

20 °C  for 24h before checking the survival of each individual. Aphids were considered alive if the 122 

individual moved following a gentle tactile stimulation with a brush. In total, 14980 and 14633 123 

individuals were tested, for heat and cold tolerance, respectively, corresponding to 1502 and 1536 124 

replicates. 125 

2.3 Survival curves, Lt50, and Thermal Death Time (TDT) curves  126 

For each tested temperature, the survival proportion was fitted to a logistic regression model using 127 

the glm function and the Lt50 (i.e. the temperature-specific exposure duration resulting in 50% 128 

mortality) was estimated using the dose.p function in the R package ”MASS” (Ripley et al. 2013).  129 

TDT curves were generated by regressing log10(Lt50) against test temperature for each 130 

species/age-group combination, at both high and low temperatures. The output of the TDT 131 
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analysis is typically given by model estimates of temperature causing 50% mortality after a 132 

specific time (e.g., the temperature that causes 50% mortality after 1 hour), as well as the thermal 133 

sensitivity, which is often expressed from z (-1/slope). The latter parameter reveals how many 134 

degrees are required to change tolerance duration 10-fold (Rezende et al. 2014). Note that for 135 

cold tolerance, thermal sensitivity is expressed by z’ which corresponds to 1/slope.  136 

2.4 Examining effects of species and age  137 

The effect of test temperature, species, and age on Lt50 was examined in a three-way ANCOVA 138 

including all interaction terms, with test temperature as a continuous variable and species and 139 

age as categorical variables. Interspecific differences in heat or cold tolerance were examined 140 

independently for each age group by comparing differences in the parameters of the TDT curves. 141 

Specifically, slopes of the TDT curves (thermal sensitivity) were first compared pairwisely using 142 

the functions emtrends() and pairs() in the R package “emmeans” (Lenth, 2019), which are based 143 

on least-squares means. Further, we tested whether the intercepts (Log-transformed Lt50 estimate) 144 

differed between species by comparing the intercept at 37 °C for heat tolerance and -7 °C for cold 145 

tolerance using the function emmeans() in “emmeans” package (Lenth, 2019). These 146 

temperatures were chosen as they represented intermediate values in the range of temperatures 147 

used to assess heat and cold tolerance, respectively. A similar approach, comparing slopes and 148 

intercepts, was used to examine the effects of aphid age on both heat and cold tolerance for each 149 

species. All data analyses were performed in R version 4.1.2. 150 

2.5 Relating TDT curves to natural temperature regimes 151 

Following the method described by Jørgensen et al. 2021, we used parameters of TDT curves 152 

(slope and intercept) to estimate the cumulative daily thermal injury experienced by aphids during 153 

natural thermal fluctuations. This basic risk analysis has of course some limits, for instance, it 154 

ignores the importance of microhabitat choice and behavioral thermoregulation by using the 155 

simple assumption that aphid body temperature is equal to air temperature. Further, this analysis 156 

does not consider if cold tolerance changes seasonally due to acclimatization to winter or summer 157 

conditions. Despite these caveats, this simple approach can provide a raw proportional risk 158 

assessment to compare species or regions based on both the intensity and duration of thermal 159 

extremes. Specifically, it calculates, minute by minute, the accumulation of thermal stress over 24 160 

hours (1440 min) using the formula:   161 

Accumulated injury =  ∑
100 ∙ (ti+1 − ti)

10(β∙max(Ti;Ti+1)+α)

i=1440

i=1

 162 
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 6 

where α is the slope and β is the intercept of the TDT curve, ti and ti+1, are the i minute and the 163 

i+1 minute, respectively, max (Ti; Ti+1) is the maximum temperature between the i and i+1 minute; 164 

for winter, it is the min (Ti; Ti+1), the minimum temperature between the i and i+1 minute. Note that 165 

thermal injuries only accumulate in the stressful temperature range (above a critical temperature 166 

Tc for heat stress or below a critical temperature Tc’ for cold stress) (Jørgensen et al. 2021, Ørsted 167 

2022). We defined Tc or Tc’ as the temperature estimated to cause 50% mortality (Lt50) in one 168 

week. Specifically, we calculated this Tc or Tc’ from the TDT curves. For 6-day-old M. dirhodum, 169 

R. padi and S. avenea, Tc was estimated as 25.29°C, 29.34 °C and 28.82 °C, respectively and 170 

cold Tc’ was -5.15°C, -1.81 °C and -4.79°C, respectively. 171 

To associate thermal tolerance measures to natural climate conditions, we downloaded hourly 172 

temperature data for winter (from November to February, 2016/2017) and summer (from May to 173 

August, 2016) months from three sites in China where grow winter wheat infested by cereal aphids: 174 

southern site (Wuhan, N 30.78˚, E 114.21˚), intermediate site (Xinxiang, N 35.30˚, E 113.92˚) and 175 

northern site (Beijing, N 40.07˚, E 116.58˚) (Figure 4A). Data were downloaded from a global 176 

weather API (https://www.visualcrossing.com/weather-data) in May 2022. We calculated minutely 177 

temperature by linear interpolation from the hourly temperature using the na.approx function in 178 

the “zoo” package (Zeileis et al. 2014). The accumulated daily heat stress dose was calculated 179 

from midnight to midnight and the accumulated daily cold stress dose from noon to noon. In total, 180 

this analysis produced 122 estimates of daily heat stress doses and 120 estimates of daily cold 181 

stress doses for each species and region.  182 

We used Kruskal-Wallis Rank Sum Tests followed by Pairwise Wilcoxon Rank Sum Tests with a 183 

Benjamini-Hochberg correction to compare the differences in the calculated daily accumulated 184 

injury between species within sites and sites with the same species. Note that to avoid comparing 185 

a lot of days without any injury accumulation, only days with injury accumulation were compared.  186 

3. Results  187 

3.1 Survival curves, TDT curves: estimation of critical thermal limits 188 

The survival curves generally fitted the logistic function well, with a median R2 of 0.81 (Fig. 1A 189 

and B, 74% of assays had McFadden’s pseudo-R2 > 0.70, See Table S2). For both heat and cold 190 

tolerance, the estimated Lt50 decreased exponentially with increasing stress intensity 191 

(temperature) as predicted by the TDT curves (Figure 1C and D). Linear regressions of log10(Lt50) 192 

against temperature generated nine TDT curves (three species × three ages) for high and low 193 

temperatures respectively. All curves had a high determination coefficient (R2) ranging from 0.78 194 

to 0.99 (P < 0.01), especially for those at high temperatures (see Table 2 and Table 3).  195 
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Here, we used the temperature causing 50% mortality after 1 hour (CTmax(1h) / CTmin(1h)) as the 196 

upper or lower critical thermal limit. R. padi ranked first in CTmax(1h) (36.76°C ~ 37.29°C in different 197 

ages), 0.97~1.94°C higher than M. dirhodum (Table 1). The thermal sensitivity at high 198 

temperatures ranged from 3.19 to 4.17 (Table 1). CTmin(1h) fell between -8.24 ~ -2.84 °C (Table 2). 199 

Aphids had high cold sensitivity as the lower z’ values indicated greater thermal sensitivity (i.e., a 200 

larger change in Lt50 with a change in exposure temperature). 201 

3.2 Interspecific variation in thermal tolerance 202 

The effects of temperature, species, and age on Lt50 were examined in a three-way ANCOVA 203 

including all interaction terms. This analysis found that species interacted with both age and 204 

temperature at both high and low temperatures (Table S3 and S4). Accordingly, we split the 205 

dataset according to age so that TDT slopes and intercepts from different species could be 206 

compared. R. padi generally had the highest heat tolerance, as depicted by the significantly higher 207 

log10(Lt50) value (1.71~1.86) at 37 °C for all age groups, followed by S. avenea, and then M. 208 

dirhodum (Table 1, see p-values in Table S5). The thermal sensitivity (z) showed few interspecific 209 

differences; M. dirhodum was characterized by a lower thermal sensitivity (higher z) than R. padi 210 

and S. avenea (Table 1, See p-values in Table S6). 211 

For cold tolerance, R. padi showed a significantly lower log10(Lt50) at -7°C for all age groups than 212 

the other two species (Table 2, see p-values in Table S7). The difference between M. dirhodum 213 

and S. avenae was relatively small. The thermal sensitivity (z’) did not differ significantly among 214 

species, except for 12-day adults of R. padi that had a statistically higher z’ (lower thermal 215 

sensitivity) than M. dirhodum. (Table 2, See p-values in Table S8).  216 

3.3 Developmental stage variation in thermal tolerance 217 

Adults (12-d-old) or old nymphs (6-d-old) generally had higher thermal tolerance than young 218 

nymphs(2-d-old). For M. dirhodum and S. avenea, adults (12-d-old) had a lower z-value (higher 219 

thermal sensitivity) and longer log10(Lt50) at 37 °C than younger life stages, although this was only 220 

statistically significant for M. dirhodum (Table 1). For R. padi, old nymphs (6-d-old) were the most 221 

tolerant among all life stages (Table 1).  222 

For cold tolerance, none of the species displayed a significant difference in thermal sensitivity (z’) 223 

between ages. Adult (12-d-old) R. padi showed a significantly lower log10(Lt50) at -7 °C than 224 

nymphs (Table 2, see p-values in Table S7).  225 
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3.4 Relating TDT curves to natural temperature regimes 226 

To associate thermal tolerance measures with natural climate conditions, we calculated the 227 

accumulated thermal injury of three aphid species in three age groups using the TDT model and 228 

regional temperatures. Results were similar for all three age groups (2-d-old, 6-d-old, 12-d-old, 229 

see Figure S3-6), thus here we only present the result of 6-day-old aphids (Figure 2-4). 230 

In each site, the estimated heat injury differed among species (χ2 = 53.3, df = 2; p < 1*10-11 in 231 

Beijing; χ2 = 36.0, df = 2; p < 1*10-7 in Xinxiang; χ2 = 9.0, df = 2; p < 0.05 in Wuhan, Figure 2B). M. 232 

dirhodum always accumulated more heat injury than the two other species in Beijing and Xinxiang 233 

(Pairwise Wilcoxon Rank Sum Tests, p < 0.05).  234 

According to the calculation, R. padi might suffer cold injury across the whole winter months while 235 

the two other species might be affected only during the coldest days (Figure 3A). Estimated 236 

accumulated cold injury differed among species in Beijing (χ2 = 8.5, df = 2; p < 0.05; Figure 3B). 237 

Specifically, R. padi had higher daily injury accumulation than S. avenae in Beijing (Pairwise 238 

Wilcoxon Rank Sum Tests, p < 0.05), while no significant interspecific difference was found in 239 

Xinxiang. M. dirhodum and S. avenae might not accumulate any injury in Wuhan during winter 240 

(Figure 3B). 241 

According to the calculation, heat injury of three species might differ with sites (χ2 = 6.4, df = 2; p 242 

< 0.05 for M. dirhodum; χ2 = 9.9, df = 2; p < 0.01 for S. avenae; χ2 = 10.6, df = 2; p < 0.01 for R. 243 

padi, Figure 4C). In Beijing, the northernmost site, aphids accumulated less injury during summer 244 

(Pairwise Wilcoxon Rank Sum Tests, p < 0.05, Figure 4C) but more injury during winter than the 245 

other two sites (Pairwise Wilcoxon Rank Sum Tests, p < 0.05, Figure 4D).  246 

Discussion 247 

The previous studies often inferred the impact of climate change on the coexisting species based 248 

on a single estimate of thermal tolerance, such as CTmax and CTmin, or LT50 and Lt50 (Warren and 249 

Chick 2013; Birkett et al. 2018). High-tolerant species will increase their population or expand 250 

their range, while low-tolerant species will decrease their population or shrink their range under 251 

extreme climate scenarios. However, thermal tolerance is not constant but varies with the dose 252 

determined by temperature and exposure duration as shown in our study. In nature, extreme high 253 

and low temperatures occur regularly in a diurnal and seasonal cycle, and irregularly across time 254 

and space, thereby altering the mortality of insects both dynamically and cumulatively. The 255 

thermal tolerance represented with a single temperature value can be hardly used to calculate 256 

the dynamic and cumulative thermal injury. Studies that assess demographic performances of co-257 

existing species under limited temperature scenarios (e.g., Ma et al. 2015b) may not fully reflect 258 
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the abundance responses to arbitrary fluctuating temperatures in nature. Here we measured the 259 

mortality under a broad range of extreme high/low temperatures and multiple exposure durations, 260 

thus providing a solid dataset to build the TDT model or to do other analyses for the impact of 261 

extreme climate on cereal aphid species. Through the group of survival curves and TDT model, 262 

we can have a holistic and comprehensive view of the interspecific and ontogenetic variations in 263 

thermal tolerance. Moreover, using the values of TDT parameters, we made a thermal stress risk 264 

assessment of three aphid species in natural temperature regimes. Our data and approach 265 

provide a framework for calculating the cumulative thermal mortality of aphids at different ages at 266 

a given time (from one day to a year), thus could quantitatively estimate the relative abundance 267 

of co-existing species. 268 

TDT curves, interspecific and ontogenetic variations in thermal tolerance 269 

Here we aimed to examine if/how both thermal stress intensity and duration affected the survival 270 

of three cereal aphid species. We found strong linear relationships between high/low 271 

temperatures and log-transformed Lt50 across different ages of three aphid species as in other 272 

ectotherms (Jørgensen et al. 2022). The steep slope (low z’ value) of TDT curves from our data 273 

at low temperatures is similar to the typical freezing time-temperature curve (Salt 1966), which 274 

indicates that the cold tolerance we measured might reflect the susceptibility to freezing rather 275 

than chill injury (Tarapacki et al., 2021). 276 

It is intuitive to compare interspecific tolerance using a single value, such as CTmax, CTmin, LT50, 277 

or Lt50. However, we should realize that interspecific differences in thermal tolerance are not 278 

constant but change with the thermal dose (intensity and exposure duration). The TDT curves of 279 

three aphid species at high temperatures converge due to their different slopes (thermal sensitivity) 280 

(Figure 1C), which means the Lt50 values of the three species are getting closer with increasing 281 

intensity. Even, the interspecific differences in tolerate duration can reverse depending on the 282 

temperature, for example, at temperatures below -9°C, S. avenae could sustain a longer duration 283 

than M. dirhodum (Figure 1D). However, our results generally showed that R. padi survived longer 284 

at high but shorter at low temperatures, indicating it was the most heat-tolerant but cold-vulnerable 285 

species. Whereas M. dirhodum performed as the most heat-vulnerable but cold-tolerant species. 286 

These results are supported by the previous studies under lifetime constant temperature 287 

exposures or the static thermal tolerance experiments (Asin and Pons 2001; Alford et al. 2014; 288 

Alford et al. 2016).  289 

We found that the effect of the developmental stage was similar at both high and low temperatures. 290 

The old nymphs survived longer than young nymphs at either high or low temperatures in the 291 
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three aphid species. However, the thermal tolerance of adults was species-specific. For S. avenae 292 

and M. dirhodum, adults (12-d-old) showed high tolerance, but the tested adults of R. padi were 293 

extremely sensitive to cold stress. This pattern was also found by Alford et al 2014. Typically, 294 

thermal tolerance is highest at eclosion and then declines during the early days of adult life 295 

(Bowler and Terblanche 2008; Colinet et al. 2013). In our case, the development rate of R. padi 296 

was faster than the other two species, thus 12-d-old R. padi was at the 3rd or 4th day of adult life 297 

(but 1st or 2nd day for S.avenae and M.dirhodum). Therefore, the intolerant 12-d-old R. padi might 298 

be resulting from a rapid decline of thermal tolerance in adult life, as observed in other insects 299 

(Bowler 1967, Davison 1969, Colinet et al. 2013).  300 

Relating TDT curves to natural temperature regimes 301 

The injury risk analysis showed that R. padi was the least affected by high temperatures during 302 

summer, which seems to fit the field observation showing that the relative abundance of R. padi 303 

increased with extremely high-temperature frequency in south area (Ma et al. 2015b, Zhu et al. 304 

2021). In Wuhan, S. avenae has the largest proportional abundance (78%) in 2008 when hot-day 305 

(daily mean temperature >= 30 °C) frequency was low (Ma et al. 2015b). However, R. padi 306 

became the most abundant species (79%) in the aphid community in 2011 when hot days 307 

occurred more frequently (Ma et al. 2015b). In the middle region (near Xinxiang), the proportional 308 

abundance of R. padi has increased from 13% in 1998 to 83% in 2012 (Zhu et al. 2021). While in 309 

north sites (near Beijing), S. avenae was still the most abundant species which accounted for 310 

89.8% in 2015 and 73.0% in 2016, followed by R. padi (9.26%and 14.3% in 2015 and 2016) and 311 

M. dirhodum (0.01% and 11.81% in 2015 and 2016) (Yang et al. 2017). R. padi might become 312 

the most abundant species, outcompeting S. avenae in a warmer future (Zhu et al. 2021). 313 

Conversely, M. dirhodum is the least abundant species (Yang et al. 2017) owing to its lower 314 

tolerance to high temperatures. It appears in the early spring and leaves the wheat field when the 315 

temperature warms up (Chen et al. 1994).  316 

It is also interesting to see the differences in the calculated accumulated injuries of aphids 317 

between the three sites, which represent a climatic gradient from cold to hot climates. Aphids 318 

accumulated more heat injuries in Wuhan, the southmost site, than Xingxiang and Beijing owing 319 

to the longest duration of exposure to high temperatures during summer months (the durations >= 320 

30 °C in Wuhan, Xinxiang, and Beijing were 868h, 736h, and 611h, respectively, see supporting 321 

information Table S9). To some extent, this result underlines the importance of exposure duration 322 

to stressful temperatures when assessing the impact of thermal stress.  323 
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Winter temperature varied greatly in the three sites: Beijing, the northmost site, had a minimum 324 

temperature of -13°C and an average daily temperature of 0.6 °C whereas winter in Wuhan was 325 

mild with an average daily temperature of 8.7°C (Table S9). Aphids could suffer from cold injury, 326 

manyfold the dose resulting in 50% mortality in Beijing, which implied that the three species may 327 

not be able to overwinter as nymphs in the winter wheat field here. Indeed, it had been reported 328 

that the geographical overwinter limit for S. avenae and R. padi was the 0°C isotherm in January 329 

(N 35˚, near Xinxiang) (Yang and Yang 1991, Luo et al. 1994). Instead, they might be able to 330 

overwinter in Wuhan where they hardly get injured during winter and then migrate to the north 331 

region at the start of spring (Li et al. 2014). 332 

Over the past 5 decades (1961–2013), China’s temperature increased by 1.44 °C (90% 333 

confidence interval 1.22–1.66 °C) (Sun et al. 2016). There was a general increase in extreme 334 

warm indices (such as warm days, warm nights, Tmax) and a significant reduction of cool nights 335 

and cool days during winter (Sun et al. 2016). Thus, the changes in aphid community abundance 336 

that had taken place in the south area would probably push northward in the future. 337 

Limitations  338 

Although the risk analysis shows very coherent patterns that seem to match with field 339 

observations, it is, however, important to recognize that such a model has some limitations, in 340 

particular, it does not consider i) the difference between air and insects’ body temperature and ii) 341 

the capacity of insects to relocate into more permissive microclimates (i.e. avoidance) (Ma and 342 

Ma 2012a, b, Woods et al. 2015, Pincebourde and Suppo 2016, Ma et al. 2018b). In addition, the 343 

approach does not consider if thermal tolerance changes seasonally with acclimation (Overgaard 344 

et al. 2008, Bujan et al. 2020), nor the possibility that changes in feeding behavior could be altered 345 

to provide on-time nutritional adjustments aiding physiological changes (for instance: synthesis of 346 

compatible solutes, acquisition of antioxidant molecules). Furthermore, we calculated the daily 347 

injury accumulation with the assumption that aphids that survived the thermal stress could recover 348 

quickly during non-stressful temperature regimes (cooler nights for heat injury and warm noon for 349 

cold injury). While this recovery phase is true and well described (see discussion in Colinet et al. 350 

2015), the capacity to fully recover depends on the level of thermal injury and the repair 351 

temperature and duration (Colinet et al. 2011, Ma et al. 2018a, Bai et al. 2019, Zhu et al. 2019, 352 

Ørsted et al. 2022). Advanced models that include the temperature-dependent repair function 353 

have recently been developed to incorporate this recovery capability (Ørsted et al. 2022). Despite 354 

these pitfalls, this simple approach based on basal thermal tolerance and cumulative daily thermal 355 

stress proved to be rather efficient in discriminating both the most susceptible species and regions. 356 
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It could be further developed into a fine model to predict the population dynamics of aphid species 357 

in the field if integrating the effect of thermal dose on fertility in the future. 358 

Conclusion 359 

Our results answered the three questions:1) interspecific differences in basal thermal tolerance 360 

can be a factor driving the community abundance change in aphid communities. The risk 361 

assessment under the natural temperature profile seems to fit the field observations that the more 362 

tolerant species is becoming more abundant with increasing temperature in the context of climate 363 

change. 2) Although the effect of age was not consistently observed in the three aphid species, 364 

we found that younger nymphs tended to have a lower thermal tolerance. 365 
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Figure 1. Survival curves (panel A for heat, B for cold) and thermal death time 

curves (panel C for heat, D for cold) for the three ages (2, 6, and 12 days) of M. 

dirhodum, S. avenae, and R. padi. The curves in different colors (A and B) were fitted 

by the logistic regression model at each temperature. Each point in panels A and B 

represented the survival proportion of aphids in a single replicate and each point in 

panels C and D represented the log10(Lt50) value estimated from the survival curve at 

a tested temperature. Lines and shades in C and D illustrated the linear regression 

lines and the corresponding 95% confidence intervals. CTmax and CTmin were the 

intercepts with the black dashed line (Lt50 = 1 hour). Thermal sensitivity (z or z’) was 

derived from the slope of the line (z/z’= -1/slope). The log10(Lt50) at 37°C and log10(Lt50) 

at -7°C where red and blue dashed arrows pointed were pairwisely compared between 

species and ages. 
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Table 1. Parameters of thermal death time curves for each age group of the three 

species at high temperatures. Superscript lowercase letters in thermal sensitivity (z) 

and log10(Lt50) at 37°C marked significant differences in slope and intercept between 

species with the same age (p < 0.05). Superscript uppercase letters marked significant 

differences between age groups for the same species (p < 0.05). 

Species R2 P value Thermal 

sensitivity (z) 

CTmax (°C) log10(Lt50)  

at 37°C 

2 days      

M. dirhodum 0.99 <1*10-4 4.71B, b 35.21 1.40A, a 

S. avenae  0.98 <1*10-4 3.89A, a 36.16 1.56A, b 

R. padi  0.99 <1*10-4 3.29A, a 36.76 1.71A, c 

6 days      

M. dirhodum 0.99 <1*10-4 4.52B, b 35.35 1.41A, a 

S. avenae  0.99 <1*10-4 3.49A, a 36.58 1.66A, b 

R. padi  0.97 <1*10-4 3.57A, a 37.29 1.86B, c 

12 days      

M. dirhodum 0.99 <1*10-4 3.97A, a 36.00 1.53B, a 

S. avenae 0.98 <1*10-4 3.19A, a 36.65 1.67A, b 

R. padi  0.97 <1*10-4 3.56A, a 36.97 1.77A, c 
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Table 2. Parameters of thermal death time curves for each age group of the three 

species at low temperatures. Superscript lowercase letters in thermal sensitivity (z’) 

and log10(Lt50) at -7˚C marked significant differences in slope and intercept between 

species with the same age (p < 0.05). Superscript uppercase letters marked significant 

differences between age groups for the same species (p < 0.05). 

Species R2 P value Thermal 

sensitivity (z’) 

CTmin(°C) 

 

log10(Lt50)  

at -7°C  

2 days      

M. dirhodum 0.94 <1*10-2 1.59A, a -8.58 2.77A, b 

S. avenae  0.96 <1*10-3 2.14A, a -8.52 2.49A, b 

R. padi  0.98 <1*10-2 1.73A, a -6.24 1.34B, a 

6 days      

M. dirhodum 0.93 <1*10-3 1.70A ,a -8.94 2.92A, b 

S. avenae  0.96 <1*10-4 1.83A, a -8.86 2.80A, b 

R. padi  0.98 <1*10-4 2.29A, a -6.92 1.74B, a 

12 days      

M. dirhodum 0.93 <1*10-2 1.19A, a -8.70 3.21A, b 

S. avenae 0.98 <1*10-3 1.67A, ab -8.55 2.71A, b 

R. padi  0.78 <1*10-2 2.94A, b -2.84 0.36A, a 
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Figure 2. Predicted daily injury accumulation based on the TDT parameters for the three species (age 6 days) under natural temperature 

fluctuations in the summer (May-August) of 2016. A) The temperature profile (grey, secondary y-axis) was used to project the daily 
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accumulation of injury by use of the TDT parameters (see the formula in the method part). The species-colored lines/steps at the bottom of the 

graph indicated the amount of injury accumulated per day relative to the amount of injury that would result in half the aphid dying (here set to 100 

with the black line). In the current run of this model, only temperatures above a Tc of 25.29°C (red dotted line), 29.34 °C (green dotted line) and 

28.82 °C (blue dotted line) were set to result in injury for M. dirhodum, R. padi and S.avenae, respectively. B) Boxplot summarizing the data from 

(A) and similar analyses for Beijing and Xinxiang in the summer (see figure S1A and B). Note that the y-axis was log10-transformed and the injury 

accumulation resulting in median lethal (100) was marked by the line at log10(Daily injury accumulation) = 2. To avoid comparing a lot of days 

without any injury accumulation, only days with injury accumulation (indicated as n in the graph) were summarized in this plot. Comparisons 

among species within sites were examined using Kruskal-Wallis Rank Sum Tests followed by Pairwise Wilcoxon Rank Sum Tests with a 

Benjamini-Hochberg correction – results were indicated on the plot. Asterisks marked significant differences (p < 0.05) between two groups. 
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Figure3. Predicted daily injury accumulation based on the TDT parameters for the three species of cereal aphids (M. dirhodum, S. 

avenae, R. padi) (age 6 days) under natural temperature fluctuations found in the winter (November-February) of 2016-2017. A) The 
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temperature profile (grey, secondary y-axis) was used to project the daily accumulation of injury by use of the TDT parameters (see the formula 

in the method part). The species-colored lines/steps at the bottom of the graph indicated the calculated amount of injury accumulated per day 

relative to the amount of injury that would result in half the aphids dying (here set to 100 with the black line). Injuries only accumulated when 

temperature dropped below a Tc’ of -5.15°C (red dotted line), -1.81 °C (green dotted line) and -4.79°C (blue dotted line) for M. dirhodum, R. padi 

and S.avenae, respectively B) Boxplot summarizing the data from (A) and similar analyses for Wuhan and Xinxiang in the winter (see figure S2 

A and B). Note that the y-axis was log10-transformed and the injury accumulation resulting in median lethal (100) was marked by the line at 

log10(Daily injury accumulation) = 2. To avoid comparing a lot of days without any injury accumulation, only days with injury accumulation 

(indicated as n in the graph) were summarized in this plot. Comparisons between species within sites were examined using Kruskal-Wallis Rank 

Sum Tests followed by Pairwise Wilcoxon Rank Sum Tests with a Benjamini-Hochberg correction. Asterisks marked significant differences (p < 

0.05) between two groups.
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Figure 4. Temperature profiles and predicted daily injury accumulation based on 

the TDT parameters for the three species of cereal aphids (M. dirhodum, S. 

avenae, R. padi) (age 6 days) under natural temperature fluctuations found in 

three sites in the summer months (May-August) of 2016 and winter months 

(November-February, 2016-2017). A) Map of the geographic locations of three sites 

indicated in different colors. B) Overview of temperature profiles in the three sites 

during summer (May-August 2016) (top) and winter months (Nov-Feb, 2016-2017) 

(bottom). C) and D) showed a comparison of log10(daily injury accumulation) between 

sites within species during summer months and winter months respectively. The 

comparisons were conducted using Kruskal-Wallis Rank Sum Tests followed by 

Pairwise Wilcoxon Rank Sum Tests with a Benjamini-Hochberg correction. *, #, and ‡ 

marked significant differences (p < 0.05) among sites. To avoid comparing a lot of days 

without any injury accumulation, only days with injury accumulation (indicated as n in 

the graph) were summarized in the plot. 

A) B) 

C) D) 
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Highlights 

• Thermal tolerance landscape reflected the survivals of cereal aphids at extreme 

temperatures. 

• Rhopalosiphum padi was more heat-tolerant and cold-vulnerable than Sitobion avenae 

and Metopolophium dirhodum.  

• Young nymphs generally had lower thermal tolerance than old nymphs or adults. 

• According to estimated thermal injury, R. padi was severely injured by cold while M. 

dirhodum was by heat. 

• Interspecific differences in thermal tolerance may drive the aphid community abundance 

change. 
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