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1.  Functional Connectivity Measures 

In this section, we briefly describe the mathematical formulations of two functional connectivity measures: the 

amplitude envelope correlation and the phase locking value. 

a.  Amplitude Envelope Correlation 

Consider a real valued signal     . Complexifying the signal using Hilbert transform  {.},      can be written as: 

       =      + i         (1) 

The analytic signal   (t) admits the following form: 

       = A(t).       A(t) ∈ R, A >= 0,     ∈ R (2) 

where A(t) is the instantaneous amplitude of      and      is the instantaneous phase, modulo 2π. The instantaneous 

amplitudes are then used to compute the Pearson correlation coefficient between all pairs of channels resulting in the 

AEC matrix [29] [30]. The approaches described here use a window-based approach which usually fails to extract 

meaningful information from small time windows especially from noisy measurements. Therefore, the instantaneous 

version of the amplitude envelope correlation was developed and tested  [9]. 

b. Dynamic Phase Locking Value 

The phase-locking value (PLV) is used to measure the synchrony between two signals using the phase differences. 

PLV was formulated to measure inter-trial variability by computing the average phase difference between trials. The 

PLV measure was extended to quantify the locking at a specific frequency f. A complex wavelet at the predefined 

frequency is used to filter the considered signals and the Hilbert transform is applied to compute the phase φi(f,t) of 

each signal. The PLV between N trials for a specific frequency f at time t between two signals is given by: 

  (3) 

where                                                   and         are the phase of the two signals at 

time t and trial n. The intuition behind PLV is that when the phase differences remain constant across trails, the 

signals remain locked as they vary. PLV is close to 1 when the differences remain constant and close to 0 otherwise. 

  

2.  Principal Component Analysis 

The principal component analysis is a technique that finds m dimensional subspace where the basis vectors 

correspond to the maximum variance in the vector space of a  -dimensional data vector                         is 

projected into the new subspace to find weights that describe the contribution of each vector. The data is first treated 



to remove the mean and then normalized. The basis of the PCA can be computed by finding the eigenvectors of the 

matrix     defined by: 

                   
    (4) 

where   is the mean of   and    is the       
data in the vector  . 

            
(5) 

where   is a diagonal matrix containing the variances of the principal components. PCA learns orthogonal basis 

directions [31]. 

Singular value decomposition (SVD) [32] of a     matrix A decomposes the signal into three matrices: a 

unitary real or complex matrix            rectangular diagonal non-negative real matrix            and a unitary 

real orthonormal matrix          . Therefore, 

          
(6) 

The diagonals of the matrix Σ are ordered in decreasing order allowing an easy way to reconstruct the original 

matrix A using the reduced basis. For good approximation, the reduction dimension r to can vary based on the 

application and the data.  

In this study, we employ SVD technique for PCA calculation to extract dominant networks across trials and 

across patients during simple and complex tasks. The resulting components comprise the spatial network 

configurations with their respective time dynamics. The extracted dynamic functional connectivity time series data is 

concatenated vertically for all patients to emphasize temporal similarities and then the resulting spatial components 

for each temporal component are averaged across the patients to find the dominant spatial networks. 

3. PCA vs DMD on toy data  

In this section, PCA and DMD are applied on simple synthetic oscillatory data to demonstrate how DMD is superior 

to PCA in terms of phase variability between measurements specifically for temporal latency jitters introduced 

naturally due to the variability of trials and subject responses. 

Consider 1.6-second long 8-channel synthetic time series, denoted by     where               sampled at 250 Hz in 

which the first three channels oscillate at 6.6Hz and exhibit some random phase lag between each other, and where 

channels 4,5,6,7,8 oscillate at 12.5 Hz in phase as shown in figures S1A and S2A. The amplitudes of the signals are 

0.5 and the data is contaminated with random noise of magnitude 0.05 (SNR = 20). 

Applying PCA on Y with 3 principal components extracts the temporal components that are illustrated in figure 

S1B, along with their corresponding spatial components in figure S1C. The first principal component, PC1, captures 

the 12.5Hz oscillations whose spatial principal component is high in channels 4-8 as seen in S1C in red. On the 

other hand, the second component, PC2, captures the 6.6 Hz oscillations of channels 1, 2, and 3 whose spatial 

principal component vector shows that even channels 5-8 rely on PC2 to reconstruct the initial data. However, these 

oscillatory components are not sinusoidal in nature although the data originally is sinusoidal. The reason for this 

behavior is the phase lags between the three channels. Finally, PC3 illustrated as the yellow time series in figure 

S1B, also plays a role in reconstructing the original signal. The mean square error of reconstructing the signals Y 

using PCA with three components was 0.0613. 

On the other hand, DMD is applied on the signals   using 6 modes (since DMD modes come in pairs that are 

homologous to the 3 components used in the PCA) and 20 time-delay embeddings (chosen arbitrarily). Figure S2B 

shows the real part of the time dynamics of modes 1, 3, and 5, and their corresponding imaginary parts are shown in 

figure S2C. Note that, the real parts of the time dynamics of modes 2, 4, and 6 overlap the real parts of modes 1, 3, 

and 5. The corresponding spatial components that were extracted by using the magnitude of the DMD mode matrix 



  are illustrated in figure S2D where mode 1 is active only in channels 4-8, while mode 2 explains the activity in 

channels 1-3. Finally, the spatial components of mode 3 are randomly expressed in all the channels knowing that 

their temporal dynamics are close to zero (as seen in figure S2B yellow signal), they have no significance. DMD 

overcomes the problem of the phase lags between signals and clearly distinguishes different oscillatory components 

by expressing their dynamics in different modes. 

 
Figure S1 PCA spatial and temporal components applied on synthetic data 

 
Figure S2 DMD spatial and temporal components applied on synthetic data 

 
Figure S3 DMD phase analysis of the synthetic data 

 

Finally, figure S3 shows the phase analysis of the DMD mode matrix Φ. As discussed above, mode 1 summarizes 

the dynamics of channels 4-8, while mode 2 explains channels 1-3.  



While channels 4-8 oscillate in phase with each other in mode 1 (yellow bars in figure S3A), channels 1-3 oscillate 

at different phase lags in mode 2 (purple bars in figure S3B). However, the magnitudes of the DMD modes shown in 

figure S2D clearly separates the activity in different channels even despite the phase lags. Therefore, the phase 

information is preserved as well and can be evaluated if needed. Finally, the mode frequencies are extracted from 

the eigenvalues of the DMD operator that capture the exact frequency values of the original data: 12.5 Hz for mode 

1 and 6.6 Hz for mode 3. Modes 5 and 6 were found to oscillate at 40 Hz that model the noisy components roughly 

and which is ignored in the analysis as seen in figure S3C. The mean square error of reconstructing the signals Y 

using DMD with six modes was 0.0107 which is less than that of the PCA.  

 

4. Results of the proposed methodology on simulated EEG data 

This dataset is composed of simulated human EEG time series based on an interconnected Neural Mass Model 

(NMM) that generates coherent oscillations in different brain structures similar to real EEG during a picture-

naming task [22]. The neural mass model constructs 66 regions of interest (ROI) from the standard anatomical 

parcellation of the Desikan-Killiany atlas. The data correspond to a 2000msec long time-series where a picture-

naming task was simulated by taking a baseline activity and then inputting six simulated networks consecutive in 

time from 1000 to 1535 msec that were activated to mimic the picture naming task by tuning the parameters of the 

NMM to generate the desired background and gamma activity as shown in figure S4. Using a sampling rate of 1024 

Hz, the gamma band activity [30-40 Hz] was used as it is the most relevant frequency band related to the cognitive 

tasks. 20 subjects with 100 trials each were simulated by varying the connectivity and the input noise uniformly 

resulting in 2000 2-second long simulations. A detailed description of these simulations can be found in [41]. 

 

Figure S4 Simulated network configuration (Adapted from [42]. © IOP Publishing Ltd. All rights reserved.). 

For the synthetic data, since the data is long and the dynamics shifts rapidly, we employed 2 principal components 

for each interval which is valid since evaluations are done per interval and by design, each interval has a single 

network configuration. The workflows depicted in figures 1, 2, and 3A are applied on this synthetic data.  

The networks were generated by varying parameters of the neural masses as desired in each interval   . As 

mentioned earlier, the dataset generated is source time series therefore the beamforming step is skipped and the 

dynamic functional connectivity is computed directly. The instantaneous phase-locking values are computed FOR 

each subject across trials according to equation (3) resulting in a 66 66 2049 dFC matrix. First, the inter-subject 

analysis at the six intervals T1 to T6 is performed. The dFC time series data of all the subjects are concatenated 

vertically and workflow 1 (shown in figures 1 and 2) is applied to extract dominant spatial components using PCA 

and the DMD techniques. The t-test with Bonferroni correction is applied to find only the significant values with a 

95% confidence. Two components are used for the PCA while   is set to 4 in the case of the DMD. Note that, with 

     , DMD extracts two networks since DMD modes come in pairs as discussed earlier. We employ the 

magnitudes of the complex modes. Figure S5 shows the 2 dominant networks using the PCA method for the six 

intervals applied separately across all subjects. Similarly, figure S6 shows the results for the DMD method. Both 

the PCA and the DMD approaches to capture the original chosen setup in all the intervals. 



 

Figure S5 Principal components in the six intervals of the simulated dataset using PCA 

 

Figure S6 Principal spatial modes in the six intervals of the simulated dataset using DMD 

Next, we apply the sliding window approach across the 2-second interval using a window size of 50 samples ( 49 

milliseconds) with 49 sample overlap (step size is 1 sample) to extract for each window the two dominant networks 

for both PCA-based and DMD-based approaches. The resulting instantaneous components are collected in a single 

matrix. 

Finally, PCA with 9 components (determined using DIFFIT) is applied to extract the dominant networks and the 

corresponding time dynamics across the whole experiment. The results for the PCA-based approach are shown in 

figure S7. It can be seen that PC1 which exhibits activity in the temporal, occipital, and prefrontal, is active in two 

major intervals: 1000-1100 msec,1300-1400 msec, and around 1500 msec homologous to the 1
st
, 4

th
, and 5

th 
interval. 

On the other hand, PC3 shows activity only in the interval 1450-1550msec which is homologous to the 6
th 

interval. 

The results for the DMD-based approach are shown in figure S8 where many of the networks are identified and 

their corresponding time evolutions are comparable with the original network configurations shown in figure S4. 



 

Figure S7 The principal spatial components across all intervals using the PCA-based networks 

 

Figure S8 The principal spatial components across all intervals using the DMD-based networks 



In this study, our aim was to learn dominant spatial configurations during specific tasks and identify the temporal 

timestamps of each. The main aim was to introduce the DMD approach and compare it to the PCA methodology. 

Since there exists inter-trial variability during the experimental acquisition of the data, we first compared DMD and 

PCA on a simple toy example where phase distortions were introduced between different time series and we 

compared their dominant spatial and temporal components. DMD with time delay embeddings was superior to the 

PCA method in various ways. First, DMD can compress the dynamics in multi-channel data spatially, temporally, 

and spectrally, especially for oscillatory data. Second, DMD compresses phase lagged dynamics of similar spectral 

components into a single mode while keeping track of the phase information of the channels. The advantages of the 

DMD can help overcome the limitations of the PCA specifically in multi-trial and multi-subject analysis, in which 

temporal variability exists. In addition, since multiple trials are generally averaged to increase the SNR value, DMD 

provides the necessary mechanism to overcome this problem. 

Next, we evaluated the proposed methodology on synthetic data to validate our approach before testing it on real 

MEG data. Here the data was simulated with known ground truth and the results of our methodology using the PCA-

based and the DMD-based approaches were compared. Both the PCA and the DMD approaches provided similar 

spatial configurations, however, the DMD approach’s temporal components were smoother. One limitation here was 

the lack of quantitative evaluation method since the study was performed on the data that was already simulated 

with the shown simulated networks of figure S4.  

 

Figure S9. Working Memory Networks using the PCA-based approach without tackling the sign ambiguity issue. A 

shows the four networks identified by the proposed algorithm during the working memory task that were classified as visual 

(blue), semantic (red), sensorimotor (yellow), auxiliary (purple). B shows the temporal evolution of these networks with the 

corresponding color codes. At the top of the figure 8B, the dominant network color codes show when the networks are mostly 

active. 



5. Sign Ambiguity in SVD 

The sign ambiguity of the singular value decomposition results in sign flipped components when the SVD is applied 

on different windows. Since we compute the principal connectivity components (and the DMD) in each window 

separately and collect them all to apply the final PCA for the complex memory task analysis, the temporal 

component of the final PCA will have sudden jumps from positive to negative as seen in figure S9B. The dominance 

of the connectivity networks is hard to identify. 

Since the temporal components using the proposed approach on multi-trial data results in the Fourier components 

that best fit the samples space, all windows’ temporal components have similar frequencies but may have opposite 

phases due to the sign ambiguity of the SVD as shown in figure S10A. Therefore, we applied a simple 

methodology to correct the signs of the connectivity components by tracking the distance between the principal 

temporal components of each window with all the others and adjusting the sign of the connectivity components by 

choosing the direction which resulted in a distance smaller than 0.5. This threshold was chosen since the distances 

were either close to 0 when the components were overlapping or close to 2 when they were out of phase.  Figure 

S10B shows the corrected temporal components whose corresponding connectivity components were also 

corrected. This change resulted in transforming the temporal dynamics of the global PCA used in finding the final 

dominant connectivity configurations to continuous and meaningful. The transformation can be seen by comparing 

figures S9B with figure 8B in the main document. We used the same method to correct the sign ambiguity in the 

DMD-based approach. 

 

Figure S10 The principal spatial components across all intervals using the DMD-based networks 

 

 

 

 



 

6. A detailed Workflow  

The workflow below is the same workflow depicted in the main document figure 2, however, we added the 

dimensions of the matrices in each step that may be helpful for tracking the matrices across the processing pipeline. 

 



Figure S11 Overall Workflow with dimensions of the matrices included in each step 


