

Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial

Robin Kate Kelley, Makoto Ueno, Changhoon Yoo, Richard Finn, Junji Furuse, Zhenggang Ren, Thomas Yau, Heinz-Josef Klümpen, Stephen Chan, Masato Ozaka, et al.

▶ To cite this version:

Robin Kate Kelley, Makoto Ueno, Changhoon Yoo, Richard Finn, Junji Furuse, et al.. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet, 2023, 401 (10391), pp.1853-1865. 10.1016/S0140-6736(23)00727-4. hal-04089083

HAL Id: hal-04089083 https://univ-rennes.hal.science/hal-04089083v1

Submitted on 9 Jul 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

- 1 Article Type: Fast-track Article Randomised Controlled Trial
- 2

Title: Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine
and cisplatin alone for advanced biliary tract cancer (KEYNOTE-966): a randomised, doubleblind, placebo-controlled phase 3 trial

6

Authors: Prof Robin Kate Kelley, MD,^{1*} Makoto Ueno, MD,^{2*} Prof Changhoon Yoo, MD,³ Prof
Richard S Finn, MD,⁴ Prof Junji Furuse, MD,⁵ Prof Zhenggang Ren, MD,⁶ Thomas Yau, MD,⁷
Heinz-Josef Klümpen, PhD,⁸ Prof Stephen L Chan, MD,⁹ Masato Ozaka, MD,¹⁰ Prof Chris
Verslype, MD,¹¹ Mohamed Bouattour, MD,¹² Prof Joon Oh Park, MD,¹³ Olga Barajas, MD,¹⁴ Uwe
Pelzer, MD,¹⁵ Prof Juan W Valle, MD,¹⁶ Li Yu, PhD,¹⁷ Usha Malhotra, MD,¹⁸ Abby B Siegel,
MD,¹⁸ Prof Julien Edeline, PhD,¹⁹ Prof Arndt Vogel, MD^{20*} on behalf of the KEYNOTE-966
Investigators†

14

15 Affiliations: ¹Department of Medicine (Hematology/Oncology), UCSF Helen Diller Family 16 Comprehensive Cancer Center, San Francisco, CA, USA; ²Department of Gastroenterology, 17 Kanagawa Cancer Center, Yokohama, Japan; ³Department of Oncology, Asan Medical Center; 18 University of Ulsan College of Medicine, Seoul, Republic of Korea; ⁴Department of Medicine, 19 Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 20 ⁵Department of Medical Oncology, Kyorin University Hospital, Tokyo, Japan (currently affiliated 21 with Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan); 22 ⁶Department of Hepatic Oncology, Liver Cancer Institute of Zhongshan Hospital, Fudan 23 University, National Clinical Research Center for Interventional Medicine, Shanghai, China; 24 ⁷Department of Medicine, University of Hong Kong, Hong Kong, China; ⁸Department of Medical 25 Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam, the 26 Netherlands; ⁹State Key Laboratory of Translational Oncology, Department of Clinical Oncology, 27 Sir Yue-Kong Pao Center for Cancer, the Chinese University of Hong Kong, Hong Kong; ¹⁰Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital of the 28 29 Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan; ¹¹Digestive Oncology, 30 University Hospitals Leuven, Leuven, Belgium; ¹²Liver Cancer Unit, Hôpital Beaujon, Clichy, 31 France; ¹³Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, 32 Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ¹⁴Department of 33 Medical Oncology, Arturo López Pérez Foundation, Santiago, Chile; ¹⁵Department of 34 Hematology, Oncology and Cancer Immunology, Charite Campus Mitte, Freie Universität Berlin, 35 Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; ¹⁶Division of Cancer 36 Sciences, University of Manchester and Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; ¹⁷Biostatistics and Research Decision 37 38 Sciences, Merck & Co., Inc., Rahway, NJ, USA; ¹⁸Global Clinical Development, Merck & Co., 39 Inc., Rahway, NJ, USA; ¹⁹INSERM, University Rennes, Department of Medical Oncology, CLCC 40 Eugène Marquis, COSS (Chemistry Oncogenesis Signaling), Rennes, France; ²⁰Department of 41 Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, 42 Germany 43 44 *Drs. Kelley, Ueno, and Vogel contributed equally to this article. 45 †The KEYNOTE-966 Investigators are listed in the appendix (pp 2-4). 46 47 Address for Correspondence 48 Prof Arndt Vogel, MD 49 Department of Gastroenterology, Hepatology and Endocrinology 50 Hannover Medical School 51 Carl-Neuberg-Str.1, 30625 Hannover, Germany 52 Email: vogel.arndt@mh-hannover.de

2

53 Tel: +49 511 532 9590

54

55 Summary

56 Background: Biliary tract cancers, which arise from the intrahepatic or extrahepatic bile ducts 57 and the gallbladder, generally have a poor prognosis and are rising in incidence worldwide. The standard-of-care treatment for advanced biliary tract cancer has been chemotherapy with 58 59 gemcitabine and cisplatin. Because most biliary tract cancers have an immune-suppressed 60 microenvironment, immune checkpoint inhibitor monotherapy is associated with a low objective 61 response rate. We conducted a study to determine whether adding the immune checkpoint inhibitor pembrolizumab to gemcitabine and cisplatin would improve outcomes compared with 62 63 gemcitabine and cisplatin alone in biliary tract cancer. 64 65 **Methods:** The randomised, double-blind, placebo-controlled phase 3 KEYNOTE-966 study

66 enrolled participants with previously untreated unresectable, locally advanced or metastatic 67 biliary tract cancer at 175 medical centres globally. Eligible participants were randomised (1:1) 68 to pembrolizumab 200 mg or placebo, both administered intravenously every 3 weeks 69 (maximum, 35 cycles), in combination with gemcitabine (1000 mg/m² intravenously on days 1 70 and 8 every 3 weeks; no maximum duration) and cisplatin (25 mg/m² intravenously on days 1 71 and 8 every 3 weeks; maximum, 8 cycles). Randomisation was stratified by geographic region, 72 disease stage, and site of origin. The primary endpoint of overall survival was evaluated in the 73 intention-to-treat population. The secondary endpoint of safety was evaluated in the as-treated 74 population. This study is registered at ClinicalTrials.gov, number NCT04003636.

75

Findings: Between October 4, 2019, and June 8, 2021, 1069 participants were randomised to
pembrolizumab plus gemcitabine and cisplatin (pembrolizumab group; n=533) or placebo plus
gemcitabine and cisplatin (placebo group; n=536). Median study follow-up at final analysis was

79	25.6 months (IQR 21.7-30.4). Median overall survival was 12.7 months (95% confidence
80	interval [CI] $11.5-13.6$) in the pembrolizumab group versus 10.9 months (95% CI $9.9-11.6$) in
81	the placebo group (hazard ratio 0.83 [95% CI $0.72-0.95$], one-sided p= 0.0034 [significance
82	threshold, p=0 \cdot 0200]). In the as-treated population, the maximum adverse event grade was 3-4
83	in 420 (79%) of 529 participants in the pembrolizumab group and 400 (75%) of 534 in the
84	placebo group and was grade 5 in 31 (6%) and 49 (9%) participants, respectively.
85	
86	Interpretation: Based on a statistically significant, clinically meaningful improvement in overall
87	survival compared with gemcitabine and cisplatin without any new safety signals,
88	pembrolizumab plus gemcitabine and cisplatin could be a new treatment option for patients with
89	previously untreated metastatic or unresectable biliary tract cancer.
90	
91	Funding: Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.

93 Panel: Research in Context

Evidence before this study: We searched PubMed and Google Scholar on February 11, 2023, 94 95 for English-language publications of randomised, controlled trials published since database 96 inception using the terms "PD-1 inhibitor" OR "PD-L1 inhibitor" OR "immune checkpoint 97 inhibitor" AND "unresectable" OR "metastatic" AND "biliary tract cancer" OR "BTC" OR 98 "cholangiocarcinoma" OR "gallbladder cancer." Several phase 2 trials of immune checkpoint 99 inhibitors for the treatment of biliary tract cancer were identified. The only phase 3 study was the 100 double-blind TOPAZ-1 trial of durvalumab plus gemcitabine and cisplatin versus placebo plus 101 gemcitabine and cisplatin in patients with previously untreated unresectable or metastatic biliary 102 tract cancer or with recurrent disease. Results of TOPAZ-1 showed that durvalumab plus 103 chemotherapy significantly improved overall survival versus placebo plus chemotherapy and 104 that the two treatment groups had similar safety profiles.

105

106 Added value of this study: KEYNOTE-966 is the first placebo-controlled study of a PD-1 107 inhibitor and the second study of a PD-1/PD-L1 pathway inhibitor to show a statistically 108 significant improvement in overall survival and a manageable safety profile in patients with 109 advanced biliary tract cancer. KEYNOTE-966 offers key findings beyond those of TOPAZ-1 110 owing to its larger population, enrolment of a greater proportion of participants outside of Asia, 111 the continuation of gemcitabine until disease progression, and more complete ascertainment of 112 important clinical biomarkers such as hepatitis B and C viral status, all of which may impact the 113 generalizability of outcomes to a global patient population.

114

Implications of all the available evidence: Results of KEYNOTE-966 add to the body of
evidence supporting the efficacy and safety of adding immune checkpoint inhibitors targeting
the PD-1/PD-L1 pathway to standard-of-care chemotherapy in the treatment of biliary tract
cancer. The statistically significant, clinically meaningful overall survival benefit observed in the

⁵

- 119 absence of new safety signals supports the combination of pembrolizumab, gemcitabine, and
- 120 cisplatin as a potential new first-line treatment option for patients with unresectable locally
- 121 advanced or metastatic biliary tract cancer.

122

123 Introduction

Biliary tract cancers, a complex family of epithelial malignancies arising from the intrahepatic or extrahepatic bile ducts and gallbladder, have a generally poor prognosis.¹ Risk factors include biliary tract injury secondary to chronic cysts or gallstones, liver fluke infection, and other inflammatory aetiologies such as chronic viral hepatitis and cirrhosis.^{1,2} Beyond anatomic heterogeneity, biliary tract cancers demonstrate substantial molecular heterogeneity, which is influenced by location and aetiology.³⁻⁵ Although biliary tract cancers are uncommon, accounting for <1% of all new cancer cases worldwide,⁶ the incidence is rising.^{1,2,7}

131

132 The chemotherapy combination of gemcitabine and cisplatin was established as the standard-133 of-care first-line therapy for advanced biliary tract cancer more than ten years ago based on 134 results of the phase 3 ABC-02 study.⁸ In ABC-02, median overall survival was 11.7 months for 135 gemcitabine plus cisplatin versus 8.1 months for gemcitabine alone (hazard ratio [HR] 0.64, 136 p<0.001). Despite extensive study, triplet chemotherapy regimens and combinations of targeted 137 therapies and chemotherapy do not improve efficacy compared with gemcitabine and 138 cisplatin.^{1,9-11} After disease progression, 5-flurouracil-based combinations demonstrate only modest efficacy.^{12,13} Patients with cancers harbouring specific molecular aberrations, including 139 140 FGFR2 fusions, IDH1 mutations, and mismatch repair deficiency, can derive benefit from 141 targeted therapies or immune checkpoint inhibitors based predominantly on activity observed in 142 studies conducted in the second-line or later setting.^{1,14,15} Because individual molecular subsets 143 are rare, treatment options are limited to chemotherapy for most patients. 144

145 The tumour microenvironment in most biliary tract cancers is characterized by

146 immunosuppressive or immune-excluded features,⁴ and response to inhibitors of programmed

- 147 cell death protein 1 (PD-1) and its ligand, PD-L1, given as monotherapy is correspondingly
- 148 low.¹⁶⁻¹⁸ Several chemotherapies, including gemcitabine and cisplatin, are known to modulate

the immune system through direct immunostimulatory mechanisms, downregulation of the
immunosuppressive microenvironment, and increased immunogenicity. ^{19,20} These
immunomodulatory effects provide a strong rationale for combining immunotherapy and
chemotherapy, particularly in cancers with an immunosuppressive microenvironment. The
randomised, double-blind, phase 3 TOPAZ-1 study of patients with advanced biliary tract cancer
showed that adding the PD-L1 inhibitor durvalumab to gemcitabine and cisplatin significantly
improved overall survival compared with gemcitabine and cisplatin alone (median overall
survival 12.8 months in the durvalumab group vs 11.5 months in the placebo group; HR 0.80
[95% CI 0·66-0·97]; two-sided p=0·021). ²¹

159 We assessed whether adding the anti–PD-1 monoclonal antibody pembrolizumab to

160 gemcitabine and cisplatin improved efficacy compared with gemcitabine and cisplatin alone as

161 first-line therapy for advanced biliary tract cancer.

162

163 Methods

164 Study Design and Participants

165 KEYNOTE-966 is a randomised, double-blind, placebo-controlled phase 3 study done at 175 166 medical centres in Asia-Pacific, Europe, North America, and South America (appendix pp 2-4). 167 Individuals were eligible for enrolment if they were aged ≥18 years, had histologically confirmed 168 unresectable locally advanced or metastatic extrahepatic cholangiocarcinoma (including mixed 169 hepatocellular carcinoma and cholangiocarcinoma), gallbladder cancer, or intrahepatic 170 cholangiocarcinoma, had disease measurable per Response Evaluation Criteria in Solid Tumors 171 (RECIST) version 1.1 determined by the investigator, had Eastern Cooperative Oncology Group 172 (ECOG) performance status 0 or 1, provided tumour tissue for biomarker assessment, had 173 adequate organ function, and had life expectancy >3 months. The only prior systemic therapy 174 permitted was neoadjuvant or adjuvant therapy completed ≥6 months before the diagnosis of

175 unresectable or metastatic disease. Individuals with past or ongoing hepatitis C virus (HCV) 176 infection were eligible. Individuals with controlled hepatitis B were eligible; this included 177 individuals who were positive for hepatitis B serum antigen (HBsAg) or had detectable hepatitis 178 B virus (HBV) DNA as long as they initiated antiviral therapy \geq 4 weeks before starting study 179 therapy and their viral load was <100 IU/mL. Individuals were excluded from enrolment if they 180 had ampullary cancer or had active autoimmune disease that required systemic treatment in the 181 previous two years. Full eligibility criteria are available in the protocol (appendix). Participants 182 self-reported their sex as female or male at birth.

183

184 The study protocol and its amendments, which included changes that affected study design 185 (summarized in the "Document History" section of the protocol [appendix]), were approved by 186 the appropriate local or national ethics body for each participating centre. All participants 187 provided written informed consent. The study was conducted in accordance with the Good 188 Clinical Practice requirements outlined by the International Council on Harmonisation, the 189 ethical principles originating with the Declaration of Helsinki, and all local regulations. Clinically 190 important protocol deviations occurred in 13 participants in the pembrolizumab group and 17 191 participants in the placebo group; these deviations were related to eligibility criteria, study drug 192 administration and discontinuation criteria, and trial procedures.

193

194 Randomisation and masking

Participants were randomised (1:1) to pembrolizumab or placebo by study investigators using a central interactive voice-response system (Almac Clinical Technologies, Souderton, PA, USA) and a randomisation list generated by the study funder. Randomisation was stratified by geographic region (Asia *vs* non-Asia), disease stage (locally advanced *vs* metastatic), and site of origin (extrahepatic *vs* gallbladder *vs* intrahepatic). Participants were randomised in blocks of 4 per stratum. Participants, investigators, and those collecting or analysing the data, including

9

representatives of the sponsor, were masked to treatment assignment. Local pharmacists were
aware of assignments to support treatment preparation. In the event of medical emergency,
treatment assignment could be unmasked by contacting an emergency unblinding call centre.

204

205 Procedures

206 Pembrolizumab 200 mg or saline placebo was administered intravenously once every three 207 weeks. Gemcitabine 1000 mg/m² and cisplatin 25 mg/m² were administered intravenously on 208 days one and eight of three-week cycles. All treatment was continued until disease progression, 209 unacceptable toxicity, investigator decision, withdrawal of consent, or other reason, whichever 210 occurred first; pembrolizumab and placebo were limited to 35 cycles, and cisplatin was limited to 211 eight cycles. Participants who discontinued gemcitabine, cisplatin, or both because of 212 unacceptable toxicity could continue pembrolizumab or placebo and vice versa. Participants 213 who stopped all study treatment were followed on-study unless they withdrew consent. 214 Crossover was not permitted. Full details regarding treatment decisions, including guidelines for 215 treatment interruption and discontinuation and dose reductions to manage adverse events (dose 216 reductions of pembrolizumab and placebo not permitted), are found in the protocol (appendix). 217

218 The presence of antibodies (IgG) against HCV was determined in blood during screening; HCV 219 viral load was determined if anti-HCV antibodies were present. The presence of antibodies (total 220 and IgM) against hepatitis B core antibody, HBV viral load, and HBsAg were determined in 221 blood during screening; guidelines for HBV assessment during study treatment are available in 222 the protocol (appendix). PD-L1 combined positive score (CPS) was determined in tumour tissue 223 using PD-L1 IHC 22C3 pharmDx (Agilent Technologies; Carpinteria, CA, USA). Microsatellite 224 instability (MSI) status was assessed in tumour tissue. The names and locations of the central 225 laboratories that tested HCV, HBV, PD-L1, and MSI status are summarized in the appendix (p 226 8).

10

227

Contrast-enhanced computed tomography (preferred) or magnetic resonance imaging of the 228 229 chest, abdomen, and pelvis was performed within 4 weeks before randomisation, 6 weeks after 230 first study treatment administration, then every 6 weeks through week 54 and every 12 weeks 231 thereafter. Contrast-enhanced magnetic resonance imaging (preferred) or computed 232 tomography of the brain and whole-body radionuclide bone scans were performed as clinically 233 indicated. Imaging was continued until disease progression assessed by RECIST version 1.1 234 according to masked independent central review, start of new anticancer therapy, death, or 235 withdrawal of consent. Survival was assessed every 12 weeks until death, withdrawal of 236 consent, or study end.

237

238 Physical examination and laboratory, haematology, and chemistry analyses were done during 239 screening, regularly during study treatment, and at the end of treatment according to the 240 protocol (appendix). Adverse events and laboratory abnormalities were assessed regularly 241 throughout treatment and up to 30 days after discontinuation (≤90 days for serious events in the 242 absence of new anticancer therapy), classified according to the Medical Dictionary for 243 Regulatory Activities, version 25.1, and graded according to the National Cancer Institute 244 Common Terminology Criteria for Adverse Events, version 5. Potentially immune-mediated 245 adverse events and infusion reactions were based on a list of terms prepared by the sponsor 246 and considered regardless of attribution to study treatment by the investigator.

247

248 Outcomes

The primary endpoint was overall survival, defined as time from randomisation to death due to any cause. Secondary endpoints were progression-free survival, objective response rate, and duration of response, all assessed according to RECIST version 1.1 per masked independent central review, and safety. Progression-free survival was defined as time from randomisation to

11

253 first documented progressive disease or death due to any cause, whichever occurred first. 254 Objective response rate was defined as the proportion of participants with a best overall 255 response of complete or partial response. Duration of response was defined as the time from 256 first documented evidence of complete or partial response until disease progression or death 257 due to any cause, whichever occurred first. Change from baseline to week 18 in the global 258 health status/quality of life scale of the European Organisation for Research and Treatment of 259 Cancer 30-Item Core Quality of Life Questionnaire (EORTC QLQ-C30) was a prespecified 260 exploratory endpoint. The remaining prespecified exploratory endpoints are summarized in the 261 protocol (appendix) and will be presented in future publications.

262

263 Statistical Analysis

264 The overall type 1 error rate was strictly controlled at one-sided α =0.025 for all overall survival, 265 progression-free survival, and objective response hypotheses using the graphical method of 266 Maurer and Bretz. All alpha was initially assigned to test overall survival. Per the multiplicity 267 diagram for alpha re-allocation (appendix p 5), if the overall survival comparison was significant, 268 alpha was reallocated to test progression-free survival and objective response rate. Within each 269 endpoint, type 1 error control across the interim and final analyses was maintained using the 270 minimum alpha spending strategy with a Lan-DeMets spending function approximating O'Brien-271 Fleming boundaries. The one-sided p-value boundaries for declaring superiority of 272 pembrolizumab plus chemotherapy versus placebo plus chemotherapy were 0.0200 for overall 273 survival, 0.0125 for progression-free survival, and 0.0125 for objective response rate. 274 With enrolment of 1069 participants, based on a target of 818 deaths and two interim analyses 275 and assuming an exponential distribution of HR=1 for the first two months and HR=0.75 after 276 two months, the study had approximately 93% power to identify a significant overall survival 277 benefit for pembrolizumab plus gemcitabine and cisplatin at one-sided α =0.025. With enrolment 278 of 1069 participants, based on a target of 786 events at the final progression-free survival

12

279 analysis and assuming an exponential distribution of HR=1 for the first two months and HR=0.7 after two months, the study had approximately 92% power to identify a significant progression-280 281 free survival benefit for pembrolizumab plus gemcitabine and cisplatin at one-sided $\alpha = 0.0125$. 282 With enrolment of 1069 participants and assuming an objective response rate of 25% in the 283 placebo group, the study had 91% power to detect a true difference in response rate of 10% at 284 one-sided α =0.0125. The prespecified final analysis of progression-free survival and objective 285 response rate was at the first interim analysis. Post hoc analyses of progression-free survival 286 and objective response rate were performed at the final analysis.

287

Overall survival, progression-free survival, and duration of response were estimated using the Kaplan-Meier method. Timepoints of interest were 12 and 24 months for overall survival, 6 and 12 months for progression-free survival and duration of response at the first interim analysis, and 12 and 24 months for progression-free survival and duration of response at final analysis. Censoring rules for overall survival, progression-free survival, and duration of response are summarised in the appendix (p 9).

294

295 Between-group comparisons of overall survival and progression-free survival were assessed 296 using a stratified log-rank test; the magnitude of the treatment difference (i.e., the HR and 95% 297 CI) was calculated using a stratified Cox regression model with Efron's method of tie handling 298 and treatment as a covariate. Between-group comparisons of objective response rate were 299 assessed using the stratified Miettinen and Nurminen method with weights proportional to the 300 stratum size. The randomisation stratification factors were applied to the stratified log-rank test, 301 the stratified Cox regression model, and the stratified Miettinen and Nurminen method. To 302 assess consistency of the treatment effect, the protocol prespecified descriptive subgroup 303 analyses based on the stratification factors and other demographic and clinical characteristics. 304 An unstratified Cox model with treatment as a covariate was used to calculate the magnitude of

13

305 the treatment difference in each subgroup category; confidence intervals for subgroup analyses 306 were at the nominal 95% confidence level without adjustment for multiplicity. If the number of 307 participants in a subgroup category was <5% of the intention-to-treat population, subgroup 308 analysis was not performed for that category and the subgroup was not displayed in the forest 309 plot.

310

311 The full statistical analysis plan is available in the protocol (appendix). Efficacy was assessed in 312 the intention-to-treat population (ie, all participants randomised to a treatment group; only those 313 participants with a best overall response of complete or partial response were included in 314 analyses of duration of response. Safety and treatment exposure were assessed in the as-315 treated population (ie, all randomised participants who received ≥1 dose of any study 316 treatment). An independent data and safety monitoring committee oversaw the study and 317 assessed efficacy and safety at prespecified interim analyses. After reviewing overall survival 318 results from the first and second interim analyses, the independent monitoring committee 319 reported that superiority for the pembrolizumab group was not achieved and recommended the 320 study continue as planned. Sample size and power calculations were performed using R 321 (version 3.6.1 with "gsDesign" version 3.0-5 and "simtrial" version 0.1.6 packages). Statistical 322 analyses were done using SAS (version 9.4). This study is registered with ClinicalTrials.gov 323 (number NCT04003636) and is ongoing but closed to enrolment.

324

325 Role of the funding source

In collaboration with the academic authors, authors employed by the study funder contributed to study design, data analysis, data interpretation, and writing this report. The funder maintained the study database and ensured data were collected according to the protocol. All authors had access to the data and vouch for data accuracy and completeness, fidelity of the study to the

14

protocol and its amendments, and study conduct in accordance with Good Clinical Practiceguidelines.

332

333 Results

334 Between October 4, 2019, and June 8, 2021, 1069 participants were randomised to 335 pembrolizumab plus gemcitabine and cisplatin (pembrolizumab group; n=533) or placebo plus 336 gemcitabine and cisplatin (placebo group; n=536) and included in the intention-to-treat 337 population (figure 1). The as-treated population included 529 participants in the pembrolizumab 338 group (n=527 who received \geq 1 dose of all study drugs and n=2 who received \geq 1 dose of 339 pembrolizumab and gemcitabine only) and 534 participants in the placebo group (all 340 received ≥1 dose of all study drugs). Baseline demographics and participant characteristics 341 were generally balanced between treatment groups (table 1). Overall, 552 (52%) of 1069 342 participants were male, 567 (53%) were aged <65 years, 486 (45%) were enrolled in Asia, 943 343 (88%) had metastatic disease at enrolment, and 633 (59%) had tumours of intrahepatic origin 344 (table 1). Eight (2%) participants in the pembrolizumab group and five (1%) participants in the 345 placebo group had mixed hepatocellular carcinoma and cholangiocarcinoma.

346

347 Median study follow-up at final analysis, defined as time from randomisation to the December 348 15, 2022, data cutoff, was 25.6 months (IQR 21.7-30.4). In the as-treated population, 489 (92%) 349 of 529 participants in the pembrolizumab group and 504 (94%) of 534 participants in the 350 placebo group discontinued treatment, most commonly because of progressive disease (figure 351 1). Median treatment duration was 6.37 months (IQR 2.79-10.84) in the pembrolizumab group 352 and 5.54 months (IQR 2.53-9.69) in the placebo group. Median number of cycles administered 353 was 9.00 (IQR 4.00-16.00) and 8.00 (IQR 4.00-14.00), respectively. A summary of cycles 354 administered by treatment component is in the appendix (p 10). In the intention-to-treat

15

population, 253 (47%) of 533 participants in the pembrolizumab group and 261 (49%) of 536
participants in the placebo group received ≥1 subsequent anticancer therapy (appendix p 11).

358 At final analysis, 414 (78%) of 533 participants in the pembrolizumab group and 443 (83%) of 359 536 participants in the placebo group had died. Median overall survival was 12.7 months (95% 360 Cl 11·5-13·6) in the pembrolizumab group and 10·9 months (95% Cl 9·9-11·6) in the placebo 361 group; estimated 24-month overall survival rates were 25% (95% CI 21-29) and 18% (95% CI 362 15-22; figure 2A). The efficacy boundary for declaring a statistically significant overall survival 363 benefit for the pembrolizumab group was met (HR 0.83 [95% CI 0.72-0.95]; p=0.0034). 364 Descriptive subgroup analysis showed a benefit for the pembrolizumab group in most 365 prespecified subgroups, including those for PD-L1 CPS <1 and CPS \geq 1 (figure 2B).

366

367 With 361 (68%) of 533 participants in the pembrolizumab group and 391 (73%) of 536 368 participants in the placebo group having experienced a progression-free survival event at the 369 first interim analysis (median study follow-up as of the December 15, 2021, data cutoff, 13.6 370 months [IQR 9.7-18.4]), median progression-free survival was 6.5 months (95% CI 5.7-6.9) in 371 the pembrolizumab group and 5.6 months (95% CI 5.1-6.6) in the placebo group; estimated 12-372 month progression-free survival rates were 25% (95% CI 21-30) and 20% (95% CI 16-24; figure 373 3). The efficacy boundary for declaring a statistically significant progression-free survival benefit 374 for the pembrolizumab group was not met (HR 0.86 [95% CI 0.75-1.00]; p=0.023). A post hoc 375 analysis showed similar outcomes for progression-free survival at the final analysis (HR 0.87 376 [95% CI 0.76-0.99]; appendix p 6).

377

At the first interim analysis, 153 (29% [95% CI 25-33]) of 533 participants in the pembrolizumab group and 153 (29% [95% CI 25-33]) of 536 participants in the placebo group had complete or partial response (table 2). The efficacy boundary for declaring a statistically significant objective

16

response rate benefit for the pembrolizumab group was not met (treatment difference 0·2 [95%
CI -5·2 to 5·6]; p=0·47). Median duration of response was 9·7 months (95% CI 6·9-12·2) in the
pembrolizumab group and 6·9 months (95% CI 5·7-8·2) in the placebo group (appendix p 7). At
final analysis, objective response rates were similar, and 24-month estimates of
ongoing response were 18% in the pembrolizumab group and 6% in the placebo group
(appendix pp 7 and 12).

387

388 In the as-treated population at the final analysis, adverse events of any cause occurred in 524 389 (99%) of 529 participants in the pembrolizumab group and 532 (<100%) of 534 participants in 390 the placebo group. The maximum toxicity grade was 3 or 4 in 420 (79%) participants in the 391 pembrolizumab group and 400 (75%) participants in the placebo group. Adverse events led to 392 death in 31 (6%) participants in the pembrolizumab group and 49 (9%) participants in the 393 placebo group (appendix p 13). Adverse events led to discontinuation of \geq 1 study drug in 138 394 (26%) participants in the pembrolizumab group and in 122 (23%) participants in the placebo 395 group; discontinuation of all study drugs occurred in 35 (7%) and 39 (7%) participants, 396 respectively. Adverse events that occurred in $\geq 10\%$ of participants in either group are 397 summarized in table 3. No cases of HBV-associated hepatitis, defined as HBV reactivation plus hepatitis flare by the American Association for the Study of Liver Diseases,²² were observed. 398 399 400 Treatment-related adverse events occurred in 493 (93%) of 529 participants in the

401 pembrolizumab group, including 369 (70%) with a maximum toxicity of grade 3 or 4, 102 (19%)

402 who discontinued ≥1 study drug, and 18 (3%) who discontinued all study drugs. Treatment-

403 related adverse events occurred in 500 (94%) of 534 participants in the placebo group, including

404 367 (69%) with a grade 3 or 4 event, 81 (15%) who discontinued \geq 1 study drug, and 14 (3%)

405 who discontinued all study drug. Treatment-related adverse events led to death in 8 (2%)

406 participants in the pembrolizumab group and 3 (1%) participants in the placebo group (appendix

17

p 14). Treatment-related adverse events that occurred in ≥50% of participants in either
treatment group were decreased neutrophil count (321 [61%] participants in the pembrolizumab
group and 320 [60%] participants in the placebo group) and anaemia (278 [53%] and 269 [50%]
participants, respectively; appendix p 13).

411

412 Potentially immune-mediated adverse events and infusion reactions occurred in 117 (22%) of 413 529 participants in the pembrolizumab group and 69 (13%) of 534 participants in the placebo 414 group, including 37 (7%) in the pembrolizumab group and 21 (4%) in the placebo group who 415 experienced a grade 3 or 4 event (appendix p 15). The only potentially immune-mediated event 416 that led to death was pneumonitis that occurred in 1 (<1%) participant in the pembrolizumab 417 group. 48 (9%) participants in the pembrolizumab group and 26 (5%) participants in the placebo 418 group received systemic corticosteroids to manage immune-mediated adverse events and 419 infusion reactions. Corticosteroid use for individual immune-mediated AEs is in the appendix (p 420 16). Potentially immune-mediated AEs that occurred in \geq 5% of participants in either group were 421 hypothyroidism (46 [9%] participants in the pembrolizumab group and 14 [3%] participants in the 422 placebo group) and pneumonitis (26 [5%] and 10 [2%], respectively; appendix p 15).

423

Among evaluable participants in the pembrolizumab (n=518) and placebo (n=517) groups, leastsquares mean change from baseline to week 18 in the global health status/quality of life scale of the EORTC QLQ-C30 was 2.5 (95% Cl -4.5 to -0.5) in both the pembrolizumab and placebo groups (difference in least-square means 0.0 [95% Cl -2.5 to 2.6]).

428

429 Discussion

430 In the randomised, placebo-controlled phase 3 KEYNOTE-966 study, pembrolizumab plus

431 gemcitabine and cisplatin significantly improved overall survival compared with gemcitabine and

432 cisplatin alone as first-line therapy for unresectable locally advanced or metastatic biliary tract

18

433 cancer. The overall survival curves did not cross, separated early, and remained separated 434 throughout follow-up, with 24-month survival estimates of 25% in the pembrolizumab group and 435 18% in the placebo group. Median duration of response was also prolonged in the 436 pembrolizumab group (9.7 months vs 6.9 months at the first interim analysis). The overall 437 survival benefit of adding pembrolizumab to gemcitabine and chemotherapy was generally 438 consistent across most prespecified subgroups, including those based on geographic region 439 and disease aetiology. There was a trend towards improved benefit with pembrolizumab in 440 participants with intrahepatic tumour origin, although the 95% CIs for the intrahepatic, 441 extrahepatic, and gallbladder subgroups overlapped one another and the 95% CI for the 442 intention-to-treat population. Descriptive subgroup analyses should be interpreted with caution 443 because they were not adjusted for multiplicity and the trial was not powered to compare 444 outcomes in individual subgroups.

445

446 KEYNOTE-966 is only the third global phase 3 study to demonstrate a significant overall 447 survival improvement in biliary tract cancer. Following on TOPAZ-1, KEYNOTE-966 validates 448 the role of immune checkpoint inhibitors that target the PD-1/PD-L1 pathway in combination with 449 chemotherapy for treating advanced biliary tract cancer. KEYNOTE-966 and TOPAZ-1 are 450 similar in many aspects, but there are several differences. One difference is the gemcitabine 451 duration. In TOPAZ-1, gemcitabine was limited to eight cycles,²¹ whereas in KEYNOTE-966, 452 gemcitabine could be given until disease progression or intolerable toxicity, with no maximum 453 number of cycles. Overall, 43% of participants in the pembrolizumab group and 39% of 454 participants in the placebo group received ≥ 9 cycles of gemcitabine, including 32% and 27%, 455 respectively, who received ≥12 cycles. The different gemcitabine durations in KEYNOTE-966 456 and TOPAZ-1 reflect heterogeneity of clinical practice and provide complementary data that 457 accommodate different standards of care worldwide. KEYNOTE-966 stratified randomisation by 458 geographic region, whereas TOPAZ-1 did not. Further, KEYNOTE-966 enrolled a larger

19

459 proportion of participants outside of Asia (55% vs 45% in TOPAZ-1) and a larger number of 460 participants overall (n=1069 vs n=685).²¹ It is reassuring that the relative benefit of 461 pembrolizumab plus gemcitabine and cisplatin in the large non-Asian population was similar to 462 that observed in the intention-to-treat population. There was more complete ascertainment of 463 biomarkers in KEYNOTE-966, including PD-L1 and viral hepatitis status, which provides greater 464 confidence in the use of the combination in groups with and without these key covariates. The 465 shape of the overall survival curves and the time they separated was different between the 466 studies. In KEYNOTE-966, the curves separated in favour of the pembrolizumab group at 467 approximately month two and maintained a relatively consistent separation over time. In 468 TOPAZ-1, the curves crossed and did not separate in favour of the durvalumab group until 469 approximately month six and the relative benefit in the durvalumab group seemed to increase 470 with longer follow-up. For regions where gemcitabine continuation is standard-of-care, it is 471 reassuring that the benefit of adding pembrolizumab is maintained beyond month six. A notable similarity between KEYNOTE-966 and TOPAZ-1 is the lack of a relationship between higher 472 473 PD-L1 expression and improved outcomes with chemoimmunotherapy. This is despite the use 474 of different PD-L1 assays and scoring methods in the two studies.²¹ The lack of relationship 475 between PD-L1 expression and outcomes to chemoimmunotherapy has been observed in other tumour types, including non-small cell lung cancer.23 476

477

There was a trend towards improved progression-free survival with pembrolizumab plus gemcitabine and cisplatin at the first interim analysis of KEYNOTE-966, which was the prespecified final analysis of progression-free survival, although the difference was not statistically significant. The curves separated around month three and remained separated in a post hoc analysis performed at the protocol-specified final analysis. Assessing progression-free survival in biliary tract cancers is complex and often relies on non-radiographic factors such as biliary obstruction, liver function, and serum carbohydrate antigen 19-9 expression. Thus,

20

485 progression-free survival assessed per RECIST version 1.1 may not be the best measure of progression-free survival in biliary tract cancer. There was also no difference between treatment 486 487 groups in objective response rate. The objective response rate in the placebo group was higher 488 than that observed in TOPAZ-1²¹ but similar to that observed for gemcitabine and cisplatin in other recent studies.^{24,25} Responses in the pembrolizumab group were more durable than those 489 490 in the placebo group, with 18% of responders in the pembrolizumab group and 6% of 491 responders in the placebo group estimated to be alive and without progressive disease at 24 492 months at the final analysis.

493

494 The adverse event profile of pembrolizumab plus gemcitabine and cisplatin was as expected 495 based on the known profiles of the individual treatment components, and the incidence of 496 adverse events was generally similar between groups. The most common adverse events were 497 blood count-related abnormalities, nausea, and fatigue, events known to be associated with 498 chemotherapy. As expected, potentially immune-mediated adverse events were more common 499 in the pembrolizumab group. These events were manageable with appropriate supportive 500 therapy. The use of systemic corticosteroids to manage immune-mediated adverse events was 501 generally low (used by <10% of participants in the as-treated population). Health-related quality 502 of life was maintained when pembrolizumab was added to gemcitabine and cisplatin.

503

Limitations of this study include the disproportionately larger enrolment of participants with intrahepatic tumours compared with population frequencies,^{1,7} resulting in smaller sample sizes for extrahepatic cholangiocarcinoma and gallbladder cancer that could impact subgroup analysis. A bias in favour of intrahepatic tumours has been observed in other studies, including TOPAZ-1²¹ and may reflect the rising incidence of intrahepatic cholangiocarcinoma worldwide.^{1,7} The requirement for tumour tissue at study entry may have also contributed to a selection bias for intrahepatic tumours because they are more accessible for tumour sampling. Given the low

21

511 prevalence of MSI-high biliary tract tumours,²⁶⁻³⁰ we were unable to assess outcomes by MSI 512 status because only ten participants with known MSI-high tumours were enrolled. Samples for 513 biomarker assessment were collected from consenting participants, and translational analyses 514 are ongoing. A dedicated analysis of complete patient-reported outcomes data will be presented 515 in the future.

516

517 In conclusion, KEYNOTE-966 met its primary endpoint as pembrolizumab plus gemcitabine and

518 cisplatin resulted in a statistically significant, clinically meaningful improvement in overall

519 survival compared with gemcitabine and cisplatin alone without new safety signals in

520 participants with previously untreated metastatic or unresectable biliary tract cancer.

521 Pembrolizumab plus gemcitabine and cisplatin could be a new treatment option for this 522 population.

523

524 Contributors

RKK, RSF, JF, ZR, JWV, LY, UM, ABS, and AV participated in the conception, design, and
planning of the study. RKK, CY, RSF, JF, ZR, SLC, JWC, JE, and AV served on the study

527 advisory committee. RKK, MU, CY, RSF, JF, ZR, TY, H-JK, SLC, MO, CV, MB, JOP, OB, UP,

- 528 JWV, JE, and AV enrolled and treated participants an acquired data. LY performed the
- 529 statistical analysis. RKK, MU, RSF, LY, UM, ABS, and AV analysed and interpreted the data.
- 530 RKK, LY, UM, and ABS verified the study data. RKK, MO, CY, RSF, JF, ZR, TY, H-JK, SLC,
- 531 MO, CV, MB, JOP, OB, UP, JWV, LY, UM, ABS, JE, and AV had access to the data, provided

532 critical review of the manuscript, and approved the submitted draft.

533

534 **Declaration of interests**

- 535 RKK, MU, BY, RSF, JF, ZR, TY, H-JK, SLC, MO, CV, MB, JOP, OB, UP, JWV, JE, and AV
- report funding to their institution from Merck Sharp & Dohme LLC, a subsidiary of Merck & Co.,

22

537 Inc., Rahway, NJ, USA (MSD) to support conduct of this study. All authors received medical 538 writing and editorial support for the preparation of this manuscript from MSD. RKK additionally 539 reports advisory committee membership from MSD; grants or contracts to the institution from 540 Agios, AstraZeneca, Bayer, BMS, Eli Lilly, EMD Serono, Genentech/Roche, Loxo Oncology, 541 MSD, Novartis, Partner Therapeutics, QED, Relay Therapeutics, Surface Oncology, and Taiho; 542 consulting fees (advisory board payments) to self from Compass Therapeutics, Kinnate, Exact 543 Sciences, Regeneron, and Tyra Biosciences; consulting fees (advisory board or steering 544 committee payments) to institution from Agios, AstraZeneca, Exelixis, Ipsen, and MSD; travel 545 support from AstraZeneca and MSD; participation on a data safety monitoring board 546 (uncompensated) from Genentech/Roche and MSD; Scientific and Medical Advisory Board co-547 hair (uncompensated) for the Cholangiocarcinoma Foundation; and member of Governance 548 Board (uncompensated) for the International Liver Cancer Association. MU additionally reports 549 grants or contracts to the institution from Taiho Pharmaceutical, AstraZeneca, Merck 550 Biopharma, MSD, Astellas Pharma, Eisai, Ono Pharmaceutical, Daiichi Sankyo, Novartis, 551 Boehringer Ingelheim, and J-pharma and payment or honoraria to self from Taiho 552 Pharmaceutical, AstraZeneca, Yakult Honsha, MSD, Nihon Servier, Ono Pharmaceutical, 553 Incyte, Chugai Pharmaceutical, Boehringer Ingelheim, J-pharma, Takeda Pharmaceutical, 554 Mylan EPD, Delta-Fly Pharma, and Novartis. CY additionally reports grants or contracts to self 555 from Servier, Bayer, AstraZeneca, Ono Pharmaceuticals, Celgene, Ipsen, Boryung 556 Pharmaceuticals, Ildong Pharmaceuticals, CKD Pharmaceuticals, and HH inno.N; consulting 557 fees to self from Servier, Bayer, AstraZeneca, MSD, Eisai, Celgene, Bristol Myers Squibb, 558 Debiopharm, Ipsen, Kyowa Kirin, Novartis, Boryung Pharmaceuticals, Merck Serono, 559 Mundipharma, Roche, and Janssen; and payment or honoraria to self from Servier, Bayer, 560 AstraZeneca, MSD, Eisai, Celgene, Bristol Myers Squibb, Debiopharm, Ipsen, Kyowa Kirin, 561 Novartis, Boryung Pharmaceuticals, Merck Serono, Mundipharma, Roche, and Janssen.

23

562 RSF additionally reports grants or contracts to the institution from Adaptimmune, Bayer, Bristol-563 Myers Squibb, Eisai, Eli Lilly, Pfizer, Roche, and Genentech; consulting fees to self from 564 AstraZeneca, Bayer, Bristol-Myers Squibb, Exelixis, Cstone, Hengrui, Eisai, Eli Lilly, MSD, 565 Pfizer, Roche, and Genentech; payment or honoraria to self from Genentech; and participation 566 on a data safety monitoring or advisory board from AstraZeneca, and Hengrui. JF additionally 567 reports grants or contracts from Astellas, AstraZeneca, Incyte Biosciences Japan, Eisai, MSD, 568 Ono Pharmaceutical, Sanofi, J-Pharma, Daiichi Sankyo, Sumitomo Dainippon, Taiho 569 Pharmaceutical, Takeda, Delta-Fly Pharma, and Chugai Pharma; payment or honoraria from 570 Ono Pharmaceutical, Chugai Pharmaceutical, Incyte Biosciences Japan, Eisai, Eli Lilly Japan, 571 AstraZeneca, Yakult Honsha, Servier Japan, MSD, Novartis Pharma, Takeda, Bayer, Taiho 572 Pharmaceutical, EA Pharma, Teijin Pharma, Dajichi Sankyo, and Terumo; and participation on a 573 data safety monitoring board or advisory board from Onco Therapy Science, Chugai Pharma, 574 Astellas, AstraZeneca, Takara bio, Merck Bio, MSD, and Taiho Pharmaceutical. ZR additionally 575 reports consulting fees from MSD, AstraZeneca, and Roche and payment or honoraria for 576 lectures from Bayer, MSD, and Roche. TY additionally reports consulting fees from BMS, MSD, 577 AstraZeneca, Eisai, and Ipsen; support for attending meetings and/or travel from Roche and 578 Bayer; stock or stock options in Moderna; medical writing support from Taiho and Ispen; and 579 payments to institution for clinical trial investigatorship from BMS, MSD, Exelixis, Eli Lilly, 580 AstraZeneca, Roche, and Taiho. H-JK additionally reports payment or honoraria to the 581 institution from MEDtalks and Ipsen and payments made to the institution for participation on an 582 advisory board from AstraZeneca, Janssen, MSD, and Ipsen. SLC additionally reports 583 consulting fees to self from MSD, AstraZeneca, Eisai, Roche, and Bayer; payment or honoraria 584 to self from MSD, AstraZeneca, Eisai, Roche, and Bristol-Myers Squibb; and support for 585 attending meetings and/or travel from Ipsen and Novartis. MO additionally reports payment or 586 honoraria from Taiho Pharmaceutical, Yakult Honsha, MSD, Ono Pharmaceutical, Nihon, 587 Servier, Bayer, and Pfizer. CV additionally reports consulting fees from Bayer, MSD, Roche,

24

588 Ipsen, and AstraZeneca and payment or honoraria from Bayer, MSD, Roche, Ipsen, and 589 AstraZeneca. MB additionally reports consulting fees from Bayer Pharma, MSD, Eisai, Sirtex 590 Medical, BMS, Roche, and AstraZeneca and payment or honoraria from Bayer Pharma, MSD, 591 Sirtex Medical, BMS, Roche, and AstraZeneca. JOP additionally reports grants or contracts 592 from BMS (Celgene), Servier, MedPacto, Eutilex, and ABL Bio; support for attending meetings 593 and/or travel from Minneamrita Therapeutics; and participation on a data safety monitoring 594 board or advisory board for AstraZeneca, Adicet, and Merck Serono. OB reports no additional 595 disclosures. UP reports no additional disclosures. JWV additionally reports consulting fees to 596 self from Ipsen, Novartis, AstraZeneca, Merck, Pfizer, PCI Biotech, Incyte, Keocyt, QED 597 Therapeutics, Pieris Pharmaceuticals, Genoscience Pharma, Mundipharma, Wren Laboratories, 598 Nucana, Debiopharm Group, Imaging Equipment Limited, Hutchison MediPharma, Zymeworks, 599 Aptitude Health, Sirtex Medical, Baxter, Medivir, Cantargia AB, Autem Medical, Taiho Oncology, 600 Servier, and Boehringer Ingelheim; payments to self for speakers bureaus from Novartis, Ipsen, 601 Nucana, Imaging Equipment Limited, Mylan, Incyte, Servier, and Delcath Systems; and support 602 for attending meetings and/or travel from Nucana, Lilly, Roche, and AstraZeneca/MedImmune. 603 LY additionally reports salary for full-time employment from MSD. UM additionally reports salary 604 for full-time employment from MSD and stock ownership in Merck & Co., Inc., Rahway, NJ, 605 USA. ABS additionally reports salary for full-time employment from MSD and stock ownership in 606 Merck & Co., Inc., Rahway, NJ, USA. JE additionally reports grants or contracts from BMS, 607 Beigene, and Boston Scientific and payment or honoraria from MSD, Eisai, BMS, AstraZeneca, 608 Bayer, Roche, Ipsen, Basilea, Merck Serono, Incyte, Servier, Beigene, Taiho, and Boston 609 Scientific. AV additionally reports consulting fees to self from AstraZeneca, Amgen, Beigene, 610 Böhringer Mannheim, BMS, BTG, Daiichi Sankyo, Eisai, Incyte, Ipsen, MSD, Pierre Fabre, 611 Roche, Servier, Sirtex, Taiho, and Terumo; payment or honoraria to self from AstraZeneca, 612 Amgen, Beigene, Böhringer Mannheim, BMS, BTG, Daiichi Sankyo, Eisai, GSK, Imaging 613 Equipment Ltd (AAA), Incyte, Ipsen, Jiangsu Hengrui Medicines, MSD, Pierre Fabre, Roche,

25

Servier, Sirtex, Taiho, and Terumo; and participation on a data safety monitoring board or
advisory board from AstraZeneca, Amgen, Beigene, Böhringer Mannheim, BMS, BTG, Daiichi
Sankyo, Eisai, Incyte, Ipsen, MSD, Pierre Fabre, Roche, Servier, Sirtex, Taiho, and Terumo.

618 Data Sharing

619 Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA (MSD) is 620 committed to providing qualified scientific researchers access to anonymized data and clinical 621 study reports from the company's clinical trials for the purpose of conducting legitimate scientific 622 research. MSD is also obligated to protect the rights and privacy of trial participants and, as 623 such, has a procedure in place for evaluating and fulfilling requests for sharing company clinical 624 trial data with gualified external scientific researchers. The MSD data sharing website (available 625 at: <u>http://engagezone.msd.com/ds_documentation.php</u>) outlines the process and requirements 626 for submitting a data request. Feasible requests will be reviewed by a committee of MSD 627 subject matter experts to assess the scientific validity of the request and the qualifications of the 628 requestors. In line with data privacy legislation, submitters of approved requests must enter into 629 a standard data-sharing agreement with MSD before data access is granted. Data will be made 630 available for request after product approval in the US and EU or after product development is 631 discontinued. There are circumstances that may prevent MSD from sharing requested data, 632 including country or region-specific regulations. If the request is declined, it will be 633 communicated to the investigator. Access to genetic or exploratory biomarker data requires a 634 detailed statistical analysis plan that is collaboratively developed by the requestor and MSD 635 subject matter experts; after approval of the statistical analysis plan and execution of a data-636 sharing agreement, MSD will either perform the proposed analyses and share the results with 637 the requestor or will construct biomarker covariates and add them to a file with clinical data that 638 is uploaded to a SAS portal so that the requestor can perform the proposed analyses.

639

26

640

641 Acknowledgments

- 642 This study was funded by Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc.,
- Rahway, NJ, USA (MSD). We thank the patients and their families and caregivers for
- 644 participating in the study; the investigators and site personnel; the members of the independent
- 645 data and safety monitoring committee; and the following employees of MSD: Melissa Buckland,
- 646 Shu-An Lin, and Jen Villetard for study support; Olga Kuznetsova, Saidi Palla, and Shuyan
- 647 (Sabrina) Wan for statistical support; Shital Kamble for input on health-related quality of life; and
- 648 Melanie A. Leiby for medical writing and editorial assistance.

649

650 **References**

1. Valle JW, Kelley RK, Nervi B, Oh DY, Zhu AX. Biliary tract cancer. *Lancet* 2021; 397:
428-44.

Clements O, Eliahoo J, Kim JU, Taylor-Robinson SD, Khan SA. Risk factors for
intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis. *J Hepatol* 2020; **72**: 95-103.

3. Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of
etiologically distinct subtypes of cholangiocarcinoma. *Cancer Discov* 2017; **7:** 1116-35.

4. Job S, Rapoud D, Dos Santos A, et al. Identification of four immune subtypes

659 characterized by distinct composition and functions of tumor microenvironment in intrahepatic

660 cholangiocarcinoma. *Hepatology* 2020; **72:** 965-81.

Mody K, Jain P, El-Refai SM, et al. Clinical, genomic, and transcriptomic data profiling of
biliary tract cancer reveals subtype-specific immune signatures. *JCO Precis Oncol* 2022; 6:
e2100510.

6. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates
of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2021;
71: 209-49.

567 7. Jiang Y, Jiang L, Li F, et al. The epidemiological trends of biliary tract cancers in the
568 United States of America. *BMC Gastroenterol* 2022; **22:** 546.

8. Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for
biliary tract cancer. *N Engl J Med* 2010; **362:** 1273-81.

9. Phelip JM, Desrame J, Edeline J, et al. Modified FOLFIRINOX versus CISGEM

672 chemotherapy for patients with advanced biliarytract cancer (PRODIGE 38 AMEBICA): a

673 randomized phase II study. J Clin Oncol 2022; 40: 262-71.

28

10. loka T, Kanai M, Kobayashi S, et al. Randomized phase III study of gemcitabine,

675 cisplatin plus S-1 versus gemcitabine, cisplatin for advanced biliary tract cancer (KHBO1401-

676 MITSUBA). J Hepatobiliary Pancreat Sci 2023; **30:** 102-10.

11. Shroff RT, Guthrid KA, Scott AJ, et al. SWOG 1815: a phase III randomized trial of

678 gemcitabine, cisplatin, and nab-paclitaxel versus gemcitabine and cisplatin in newly diagnosed,

advanced biliary tract cancers. *J Clin Oncol* 2023; **41** (suppl 4): LBA490.

680 12. Lamarca A, Palmer DH, Wasan HS, et al. Second-line FOLFOX chemotherapy versus

active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label,

randomised, controlled trial. *Lancet Oncol* 2021; **22:** 690-701.

13. Yoo C, Kim KP, Jeong JH, et al. Liposomal irinotecan plus fluorouracil and leucovorin

684 versus fluorouracil and leucovorin for metastatic biliary tract cancer after progression on

685 gemcitabine plus cisplatin (NIFTY): a multicentre, open-label, randomised, phase 2b study.

686 *Lancet Oncol* 2021; **22:** 1560-72.

687 14. Goyal L, Meric-Bernstam F, Hollebecque A, et al. Futibatinib for FGFR2-rearranged
688 intrahepatic cholangiocarcinoma. *N Engl J Med* 2023; **388**: 228-39.

689 15. Marabelle A, Le DT, Ascierto PA, et al. Efficacy of pembrolizumab in patients with

690 noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the

691 phase II KEYNOTE-158 study. *J Clin Oncol* 2020; **38:** 1-10.

Kim RD, Chung V, Alese OB, et al. A phase 2 multi-institutional study of nivolumab for
patients with advanced refractory biliary tract cancer. *JAMA Oncol* 2020; 6: 888-94.

17. Piha-Paul SA, Oh DY, Ueno M, et al. Efficacy and safety of pembrolizumab for the

695 treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028

696 studies. Int J Cancer 2020; **147:** 2190-8.

697 18. Doki Y, Ueno M, Hsu CH, et al. Tolerability and efficacy of durvalumab, either as

698 monotherapy or in combination with tremelimumab, in patients from Asia with advanced biliary

tract, esophageal, or head-and-neck cancer. *Cancer Med* 2022; **11:** 2550-60.

29

700 19. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and
701 targeted anticancer therapies: reinstating immunosurveillance. *Immunity* 2013; **39**: 74-88.
702 20. de Biasi AR, Villena-Vargas J, Adusumilli PS. Cisplatin-induced antitumor
703 immunomodulation: a review of preclinical and clinical evidence. *Clin Cancer Res* 2014; **20**:
704 5384-91.

705 21. Oh DY, He AR, Qin S, et al. Durvalumab plus cemcitabine and cisplatin in advanced
706 biliary tract cancer. *NEJM Evid* 2022; **1:** 1-11.

707 22. Terrault NA, Lok ASF, McMahon BJ, et al. Update on prevention, diagnosis, and

treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. *Hepatology* 2018; 67: 156099.

710 23. Garassino MC, Gadgeel S, Speranza G, et al. Pembrolizumab plus pemetrexed and

711 platinum in nonsquamous non-small-cell lung cancer: 5-year outcomes from the phase 3

712 KEYNOTE-189 study. *J Clin Oncol* 2023; DOI: 10/1200/JCO.22.01989.

713 24. Morizane C, Okusaka T, Mizusawa J, et al. Combination gemcitabine plus S-1 versus

714 gemcitabine plus cisplatin for advanced/recurrent biliary tract cancer: the FUGA-BT

715 (JCOG1113) randomized phase III clinical trial. Ann Oncol 2019; **30**: 1950-8.

716 25. Valle JW, Vogel A, Denlinger CS, et al. Addition of ramucirumab or merestinib to

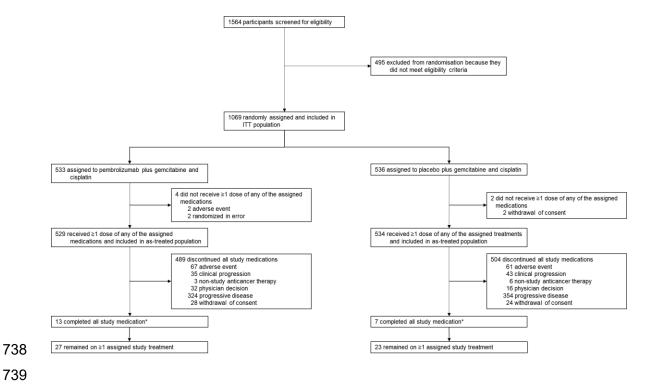
717 standard first-line chemotherapy for locally advanced or metastatic biliary tract cancer: a

randomised, double-blind, multicentre, phase 2 study. *Lancet Oncol* 2021; **22**: 1468-82.

719 26. Winkelmann R, Schneider M, Hartmann S, et al. Microsatellite instability occurs rarely in

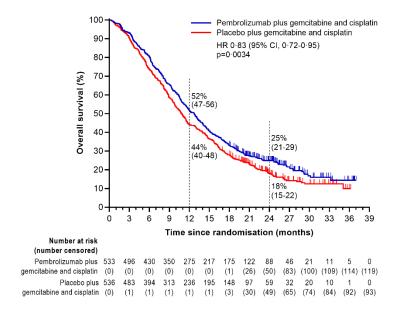
patients with cholangiocarcinoma: a retrospective study from a German tertiary care hospital. Int

721 *J Mol Sci* 2018; **19:** 1421.


722 27. Weinberg BA, Xiu J, Lindberg MR, et al. Molecular profiling of biliary cancers reveals
723 distinct molecular alterations and potential therapeutic targets. *J Gastrointest Oncol* 2019; 10:
724 652-62.

30

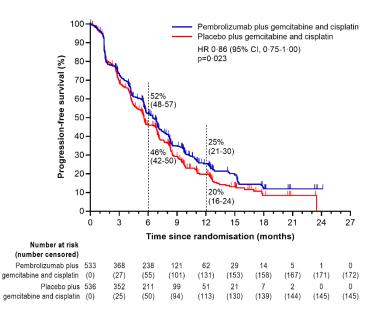
Ahn S, Lee JC, Shin DW, Kim J, Hwang JH. High PD-L1 expression is associated with
therapeutic response to pembrolizumab in patients with advanced biliary tract cancer (vol 23, pg
12348, 2020). *Sci Rep-Uk* 2020; **10:** 12348.


- Ando Y, Kumamoto K, Matsukawa H, et al. Low prevalence of biliary tract cancer with
 defective mismatch repair genes in a Japanese hospital-based population. *Oncol Lett* 2022; 23:
- 730 4.
- 30. Wang L, Zhu H, Zhao Y, et al. Comprehensive molecular profiling of intrahepatic
- cholangiocarcinoma in the Chinese population and therapeutic experience. *J Transl Med* 2020;
- 733 **18:** 273.
- 734

- 735 Figure 1. Trial Profile. *Completed includes participants who received 35 cycles of
- pembrolizumab or placebo without alternative reason for discontinuation of any drug if given
- 737 beyond 35 cycles of pembrolizumab or placebo.

740 Figure 2. Overall survival in the intention-to-treat population at the final analysis. (A) Kaplan-Meier estimates of overall survival; tick marks indicate censored data. (B) Overall 741 742 survival in subgroups for which all categories included $\geq 5\%$ of the intention-to-treat population, 743 with the vertical grey shaded band indicating the 95% CI for the overall population. The analysis 744 for the overall population is based on the same stratified Cox regression model as conducted for 745 the primary analysis. Subgroup analyses were conducted using an unstratified Cox model with 746 treatment as a covariate. The confidence intervals for the subgroups are at the nominal 95% 747 confidence level without adjustment for multiplicity. ECOG=Eastern Cooperative Oncology

- 748 Group.
- 749 **A**.


750

	Events/participants			Hazard ratio (9
	Pembrolizumab plus gemcitabine and cisplatin	Placebo plus gemcitabine and cisplatin		
rall	414/533	443/536		0.83 (0.72-0.95
65 years	210/269	242/298		0.88 (0.73-1.05
65 years	204/264	201/238		0.79 (0.65-0.97
-				
emale	200/253	220/264		0.85 (0.70-1.03
/ale	214/280	223/272		0.83 (0.69-1.00
graphic region				
sia	185/242	201/244	•	0.88 (0.72-1.08
lot Asia	229/291	242/292	—	0.80 (0.67-0.96
G performance stat	JS			
	186/258	177/228	•	0.87 (0.71-1.07
	227/274	266/308	•	0.84 (0.70-1.00
king status				
Current	42/56	38/49	•	- 0.90 (0.58-1.40
ormer	160/205	160/191	•	0.87 (0.70-1.09
lever	212/272	244/295		0.82 (0.68-0.98
piotic use within 1 m	onth of study start			
lo	190/242	213/263	•	0.86 (0.71-1.05
'es	224/291	230/273		0.81 (0.68-0.98
of origin				
Extrahepatic	78/98	83/105		- 0.99 (0.73-1.35
allbladder	102/115	104/118	•	0.96 (0.73-1.26
trahepatic	234/320	256/313	_	0.76 (0.64-0.91
se status				
cally advanced	37/60	52/66 -		0.69 (0.45-1.06
tastatic	377/473	391/470		0.85 (0.74-0.98
stent or drain				
- D	388/500	406/495		0.85 (0.74-0.98
25	26/33	37/41 -	•	0.72 (0.43-1.19
chemotherapy				
0	382/483	408/488		0.86 (0.75-0.99
es	32/50	35/48	•	0.66 (0.41-1.08
1 combined positive	escore			
:1	86/113	87/110	•	0.84 (0.62-1.14
1	287/363	309/365		0.85 (0.72-1.00
Jnknown	41/57	47/61	•	0.77 (0.51-1.18
				—— `
		4	0.5 0.7 1	1.5
				ours placebo
		plu		s gemcitabine 1 cisplatin

755 Figure 3. Kaplan-Meier estimates of progression-free survival assessed per masked

756 independent central review in the intention-to-treat population at the first interim

analysis. Tick marks indicate censored data.

Table 1. Baseline demographic and clinical characteristics in the intention-to-treat

761 population

Pembrolizumab plus	Placebo plus gemcitabine
gemcitabine and cisplatin	and cisplatin group (n=536)
group (n=533)	
64.0 (57.0-71.0)	63.0 (55.0-70.0)
269 (50%)	298 (56%)
264 (50%)	238 (44%)
253 (47%)	264 (49%)
280 (53%)	272 (51%)
	<u> </u>
2 (<1%)	1 (<1%)
245 (46%)	250 (47%)
11 (2%)	3 (1%)
5 (1%)	2 (<1%)
1 (<1%)	0
256 (48%)	268 (50%)
13 (2%)	12 (2%)
	<u> </u>
242 (45%)	244 (46%)
291 (55%)	292 (54%)
	gemcitabine and cisplatin group (n=533) 64·0 (57·0-71·0) 269 (50%) 264 (50%) 264 (50%) 280 (53%) 280 (53%) 280 (53%) 280 (53%) 245 (46%) 11 (2%) 5 (1%) 1 (<1%) 256 (48%) 13 (2%)

	Pembrolizumab plus	Placebo plus gemcitabine
	gemcitabine and cisplatin	and cisplatin group (n=536)
	group (n=533)	
0	258 (48%)	228 (43%)
1	274 (51%)	308 (57%)
≥2	1 (<1%)	0
Site of origin		1
Extrahepatic	98 (18%)	105 (20%)
Gallbladder	115 (22%)	118 (22%)
Intrahepatic	320 (60%)	313 (58%)
Disease status		1
Locally advanced	60 (11%)	66 (12%)
Metastatic	473 (89%)	470 (88%)
Biliary stent or drain		
No	500 (94%)	495 (92%)
Yes	33 (6%)	41 (8%)
Prior chemotherapy adminis	stered as neoadjuvant or adjuvant t	herapy
No	483 (91%)	488 (91%)
Yes	50 (9%)	48 (9%)
No prior photodynamic	533 (100%)	536 (100%)
therapy		
Prior radiation therapy	I	1
No	512 (96%) 508 (95%	
Yes	21 (4%)	28 (5%)
Antibiotic use within 1 mont	n of study start	

	Pembrolizumab plus	Placebo plus gemcitabine
	gemcitabine and cisplatin	and cisplatin group (n=536)
	group (n=533)	
No	242 (45%)	263 (49%)
Yes	291 (55%)	273 (51%)
MSI status		
MSI-H	6 (1%)	4 (1%)
MSS	433 (81%)	422 (79%)
Unknown	94 (18%)	110 (21%)
Hepatitis B status		
Any viral hepatitis B*	164 (31%)	165 (31%)
Chronic infection	14 (3%)	16 (3%)
Clinically resolved	150 (28%)	149 (28%)
infection		
No viral hepatitis B	366 (69%)	366 (68%)
Missing	3 (1%)	5 (1%)
Hepatitis C status		
Any viral hepatitis C†	19 (4%)	14 (3%)
Active infection	1 (<1%)	1 (<1%)
Prior infection	18 (3%)	13 (2%)
No viral hepatitis C	514 (96%)	520 (97%)
Missing	0	2 (<1%)
PD-L1 combined positive sco	bre	1
<1	113 (21%)	110 (21%)
≥1	363 (68%)	365 (68%)

		Pembrolizumab plus	Placebo plus gemcitabine					
		gemcitabine and cisplatin	and cisplatin group (n=536)					
		group (n=533)						
	Unknown	57 (11%)	61 (11%)					
762	Data are median (IQR) or n (%). ECOG=Eastern Cooperative Oncology Group.							
763	763 MSI=microsatellite instability. MSI-H=microsatellite instability high. MSS=microsatellite stable.							
764	*Chronic hepatitis B infection included participants positive for hepatitis B surface antigen or							
765	5 who had hepatitis B DNA ≥20 IU/mL. Clinically resolved hepatitis B infection included							

766 participants positive for hepatitis B core antibody and negative for hepatitis B surface antigen

767 with hepatitis B DNA <20 IU/mL. †Chronic hepatitis C infection included participants positive for

768 hepatitis C IgG antibody and a numeric value for hepatitis C virus RNA. Prior hepatitis C

769 infection included participants positive for hepatitis C IgG antibody but undetectable hepatitis C

virus RNA.

771

772 Table 2. Summary of response in the intention-to-treat population at the first interim

analysis.

	Pembrolizumab plus	Placebo plus gemcitabine
	gemcitabine and cisplatin	and cisplatin group (n=536)
	group (n=533)	
Objective response rate	153 (29% [25-33])	153 (29% [25-33])
Disease control rate	399 (75% [71-79])	407 (76% [72-80])
Best overall response		
Complete response	11 (2%)	7 (1%)
Partial response	142 (27%)	146 (27%)
Stable disease*	246 (46%)	254 (47%)
Progressive disease	102 (19%)	96 (18%)
Not evaluable†	8 (2%)	9 (2%)
Not assessed‡	24 (5%)	24 (4%)
Time to response, months	2.8 (1.5-4.1)	2.8 (1.5-4.2)
Duration of response,§	9.7 (6.9-12.2)	6.9 (5.7-8.2)
months		
Extended duration of response	§	
≥3 months	93%	91%
≥6 months	67%	56%
≥9 months	51%	39%
≥12 months	41%	28%

774

Data are n (% [95% CI]), n (%), median (IQR) (for time to response), median (95% CI) (for

duration of response), or %. *Stable disease includes participants with stable disease, non-

complete response or non-progressive disease, and no evidence of disease. †Not evaluable

- includes participants whose post-baseline imaging assessments were not evaluable for best
- overall response. ‡Not assessed includes participants for whom no post-baseline imaging
- assessments were available. §Estimated using the Kaplan-Meier method.

Table 3. Adverse events of any cause that occurred in ≥15% of participants in either

	Pembrolizumab plus			Placebo plus gemcitabine and				
	gemcitabine and cisplatin			cisplatin group				
		group	(n=529)			(n=534)		
	Grade	Grade	Grade	Grade	Grade	Grade	Grade	Grade
	1-2	3	4	5	1-2	3	4	5
Any event	73	287	133	31	83	270	130	49
	(14%)	(54%)	(25%)	(6%)	(16%)	(51%)	(24%)	(9%)
Decreased	73	167	90	0	74	171	82	0
neutrophil count	(14%)	(32%)	(17%)		(14%)	(32%)	(15%)	
Anaemia	171	150	2	0	159	150	4 (1%)	0
	(32%)	(28%)	(<1%)		(30%)	(28%)		
Nausea	221	12	0	0	234	12	0	0
	(42%)	(2%)			(44%)	(2%)		
Decreased platelet	117	64	30	0	105	67	40	0
count	(22%)	(12%)	(6%)		(20%)	(13%)	(7%)	
Fatigue	161	25	1	0	150	22	0	0
	(30%)	(5%)	(<1%)		(28%)	(4%)		
Constipation	184	2	0	0	187	3 (1%)	0	0
	(35%)	(<1%)			(35%)			
Decreased appetite	137	6 (1%)	1	0	140	15	0	0
	(26%)		(<1%)		(26%)	(3%)		
Decreased white	80	57	4 (1%)	0	80	44	3 (1%)	0
blood cell count	(15%)	(11%)			(15%)	(8%)		

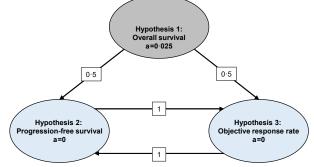
	Pembrolizumab plus			Placebo plus gemcitabine and				
	gemcitabine and cisplatin			cisplatin group				
		group	(n=529)		(n=534)			
	Grade	Grade	Grade	Grade	Grade Grade Grade			Grade
	1-2	3	4	5	1-2	3	4	5
Pyrexia	127	12	0	0	99	5 (1%)	0	0
	(24%)	(2%)			(19%)			
Vomiting	108	14	0	0	121	7 (1%)	0	0
	(20%)	(3%)			(23%)			
Diarrhoea	92	11	0	0	87	10	0	1
	(17%)	(2%)			(16%)	(2%)		(<1%)
Abdominal pain	82	10	0	0	103	19	0	0
	(16%)	(2%)			(19%)	(4%)		
Rash	87	3 (1%)	0	0	47	2	0	0
	(16%)				(9%)	(<1%)		
Increased aspartate	72	16	0	0	77	19	2	0
aminotransferase	(14%)	(3%)			(14%)	(4%)	(<1%)	
Increased alanine	75	12	0	0	99	14	0	0
aminotransferase	(14%)	(2%)			(19%)	(3%)		
Hypomagnesaemia	74	5 (1%)	0	0	73	5 (1%)	1	0
	(14%)				(14%)		(<1%)	
Pruritus	77	0	0	0	51	0	0	0
	(15%)				(10%)			
Asthenia	64	10	1	0	76	19	0	0
	(12%)	(2%)	(<1%)		(14%)	(4%)		

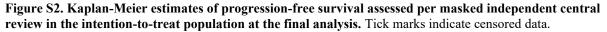
	Pembrolizumab plus				Placebo plus gemcitabine and			
	gemcitabine and cisplatin					cisplati	n group	
	group (n=529)				(n=	534)		
	Grade	Grade	Grade	Grade	Grade	Grade	Grade	Grade
	1-2	3	4	5	1-2	3	4	5
Peripheral oedema	73	0	0	0	78	7 (1%)	0	0
	(14%)				(15%)			

Data are n (%).

Supplemental Appendix

Table of Contents


Investigator list
Figure S1. Multiplicity diagram for alpha re-allocation
Figure S2. Kaplan-Meier estimates of progression-free survival assessed per masked independent central review in the intention-to-treat population at the final analysis
Figure S3. Kaplan-Meier analyses of duration of response assessed per masked independent central review in the intention-to-treat population
Table S1. Central laboratories used in KEYNOTE-966 8
Table S2. Censoring rules for progression-free survival and duration of response
Table S3. Number of cycles administered for each component of study treatment in treated participants at the final analysis 10
Table S4. Summary of subsequent anticancer therapy in the intention-to-treat population at the final analysis 11
Table S5. Summary of response in the intention-to-treat population at the first interim analysis and at the final analysis 12
Table S6. Adverse events that led to death in the as-treated population at the final analysis 13
Table S7. Treatment-related adverse events that occurred in \geq 5% of participants either treatment group in the safety population at the final analysis
Table S8. Potentially immune-mediated adverse events and infusion reactions in the as-treated population at the final analysis 15
Table S9. Use of corticosteroids for the treatment of potentially immune-mediated adverse events and infusion reactions in participants in the safety population who experienced an event at the final analysis
Study Protocol


	tors that scheened ≥1 participant for enrolment	Principal Investigator
Argentina	Fundacion Favaloro	Mendez, Guillermo
	Centro Medico San Roque	Segovia, Ruben
	Hospital Municipal de Gastroenterolgia Dr. Bonorino Udaondo	Carballido, Marcela (current)
	CENTIC	Iseas, Soledad (former)
	CEMIC Centre Questionice Dising Internal	Grasselli, Julieta
Australia	Centro Oncologico Riojano Integral Eastern Health	Kaen, Diego Lee, Margaret
Australia	Gallipoli Medical Research Foundation	Joubert, Warren
	Liverpool Hospital	Roohullah, Aflah
	Mid North Coast Cancer Institute	Begbie, Stephen
	Western Health-Sunshine Hospital	Geneser, Keri-Lee (current)
	western ricatti-Sunshine riospital	Anand, Sumitra (former)
Belgium	Saint-Luc UCL	Borbath, Ivan
Deigium	CHU de Liege	Collignon, Joelle
	UZ Gent	Geboes, Karen
	Erasme Hospital	Demols, Anne
	UZ Leuven	Verslype, Chris
	Grand Hopital de Charleroi	Sinapi, Isabelle
Brazil	Associacao Hospitalar Moinhos de Vento	Weschenfelder, Rui
	A.C. Camargo Cancer Center	Camandaroba, Marcos
	Hospital Nossa Senhora de Conceicao	Alves, Gustavo
	ONCOSITE - Centro de Pesquisa Clinica em Oncologia	Franke, Fabio
	Hospital Paulistano - Amil Clinical Research	Kinupe Abrahao, Ana Beatriz
	Instituto COI de Pesquisa Educacao Gestao	Victorino, Ana Paula
	Instituto do Cancer do Estado de Sao Paulo - ICESP	Moniz, Camila
	BP – A Beneficencia Portuguesa de São Paulo-Medical Oncology	de Carvalho, Ricardo Saraiva
Canada	McGill University Health Centre	Asselah, Jamil
	Centre Hospitalier de l'Universite de Montreal - CHUM	Aubin, Francine
	Hamilton Health Sciences - Juravinski Cancer Centre	McWhirter, Elaine (current)
		Kazemi, Ghazaleh (former)
	Cross Cancer Institute	Easaw, Jacob
	Tom Baker Cancer Centre	Tam, Vincent
Chile	Pontificia Universidad Catolica de Chile	Nervi, Bruno
	Servicios Medicos Urumed	Fernandez, Plinio
	Centro Investigación del Cáncer James Lind	Yanez Weber, Patricio
	Fundacion Arturo Lopez Perez FALP	Uribe, Rodrigo (current)
		Barajas, Olga (former)
	Sociedad Oncovida S.A.	Salman, Pamela (current)
		Painemeal, Claudio (former)
ct.	IC La Serena Research	Morales, Luisa
China	Eastern Theater General Hospital, Qinhuai District Medical Area -	Qin, Shukui
	Department of Oncology	D 71
	Zhongshan Hospital Fudan University	Ren, Zhenggang
	First Affiliated Hospital of the Third Military Medical University	Liang, Houjie
	The First Hospital of Jilin University	Li, Wei
	Hunan Cancer Hospital	Gu, Shanzhi
	Harbin Medical University Cancer Hospital	Bai, Yuxian
	Zhejiang Cancer Hospital The First Affiliated Hospital Zhejiang University	Ying, Jieer
	The 900th Hospital of the Joint Logistics Support Force of the Chinese	Liang, Tingbo Li, Dongliang
	People's Liberation Army	Li, Dolighang
	Beijing Cancer Hospital	Hao, Chunyi
	Anhui Provincial Hospital	Pan, Yueyin
	Hunan Provincial People Hospital	Peng, Chuang
	The First Affiliated Hospital of Xi'an Jiaotong University	Geng, Zhimin
	Tangdu Hospital	Su, Haichuan
	West China Hospital of Sichuan University	Gou, Hongfeng
	Peking Union Medical College Hospital	Zhao, Haitao
	Fujian Provincial Cancer Hospital	Yu, Wenchang
	Tianjin Medical University Cancer Institute & Hospital	Song, Tianqiang
	The Third Xiangya Hospital of Central South University	Cao, Ke
	Renji Hospital Shanghai Jiaotong University School of Medicine	Mao, Yimin
	Fudan University Shanghai Cancer Center	Wang, Lu
	Guangdong Provincial People's Hospital	Chen, Xiaoming
France	Centre Eugene Marquis	Edeline, Julien (current)

Country/Region	Site Name	Principal Investigator
	Gustave Roussy	Smolenschi, Cristina (current)
		Malka, David (former)
	CHU Bordeaux Haut-Leveque	Blanc, Jean-Frederic
	A.P.H. Paris, Hopital Beuajon	Bouattour, Mohamed
	CHU de Montpellier - Hopital Saint-Eloi	Assenat, Eric
	CHU Clermont-Ferrand - Site Estaing	Pezet, Denis (current)
-		Petorin, Caroline (former)
Germany	Klinikum der Ludwig - Maximilian Universitate Munchen	Heinemann, Volker
	Medizinische Hochschule Hannover	Vogel, Arndt
	Krankenhaus Nordwest	Goetze, Thorsten
	Universitaetsklinikum Ulm	Seufferlin, Thomas
	Universitaetsklinikum Hamburg - Eppendorf	Schulze, Kornelius
	Universitaetsklinikum Berlin CCM	Pelzer, Uwe
	Universitaetsklinikum Magdeburg A.o.R.	Venerito, Marino
	Universitaetsklinikum Essen	Kasper-Virchow, Stefan
	Universitaetsklinikum Koeln	Waldschmidt, Dirk Thomas
	Universitaetsklinikum Aachen AOER	Berres, Marie-Luise
Hong Kong	Queen Mary Hospital	Yau, Thomas
	Queen Elizabeth Hospital	Ho, Wang Kwong (current)
		Lam, Ho Ching (former)
	Prince of Wales Hospital	Chang, Stephan Lam
	Princess Margaret Hospital	Cheng, Ashley
	Pamela Youde Nethersole Eastern Hospital	Wong, Chun Yin (current)
Incloud	Of Vincont's Linivarity II it-1	Lee, Wai Man Sarah (former) McDermott, Ray
Ireland	St Vincent's University Hospital	
	Tallaght University Hospital	Kelleher, Fergal
r 1	Cork University Hospital	Power, Derek
srael	Sourasky Medical Center	Geva, Ravit
	Rabin Medical Center	Stemmer, Salomon
	Rambam Health Care Campus - Oncology Division	Ben-Aharon, Irit
	Hadassah Ein Karem - Sharett Institute of Oncology	Hubert, Ayala
Italy	Aziena Ospedaliero Universitaria Pisana	Masi, Gianluca (current)
		Falcone, Alfredo (former)
	Fondazione Policlinico Universitario Campus Bio-Medico	Tonini, Giuseppe
	Universia Cattolica del Sacro Cuore - Policlinico Gemelli	Tortora, Giampaolo
	A.O. di Rilievo Nazionale e di alta Specializzione Garibaldi	Bordonaro, Robert
	ASST Grande Ospedale Metropolitano Niguarda	Siena, Salvatore
	AOU di Bologna Policlinico S Orsola Malpighi	Brandi, Giovanni
-	Azienda Ospedaliera Universitaria di Verona	Milella, Michele
Japan	Kyorin University Hospital	Mizutani, Tomonori (current)
		Furuse, Junji (former)
	National Hospital Organization Kyushu Cancer Center	Sugimoto, Rie (current)
		Furukawa, Masayuki (former)
	Kanagawa Cancer Center	Ueno, Makoto
	Aichi Cancer Center Hospital	Mizuno, Nobumasa
	National Cancer Center Hospital East	Sasaki, Mitsuhito
	The Cancer Institute Hospital of JFCR	Ozaka, Masato
	Kyoto University Hospital	Kanai, Masahi
	Osaka University Hospital	Satho, Taroh
	Kagawa University Hospital	Tsuji, Akihito
	Kobe City Medical Center General Hospital	Yasui, Hisateru
Malaysia	Institute Kanser Negara - National Cancer Institute	Wong, Yoke Fui (current)
	YY 5 1YZ 1 Y	Tan, Chih Kiang (former)
	Hospital Kuala Lumpur	Jeyasingam, Vaishnavi
	University Malaya Medical Centre	Wan Isahk, Wan Zamaniah
	Pantai Hospital Kuala Lumpur	Low, John
	Hospital Sultan Ismail	Lim, Chun Sen
	Hosital Pulau Pinang	Tan, Ai Lian
Netherlands	Maastricht University Medical Centre	De Vos, Judith
	AMC	Klumpen, Heinz
	UMCG	de Groot, D.J.A.
	Universitair Mesich Centrum Utrecht	Haj Mohammad, Nadia
	Erasmus University Medical Center	Eskens, Fredericus
New Zealand	Auckland City Hospital	Sasidharan, Rita
Republic of Korea	Asan Medical Center	Yoo, Changhoon
<u>.</u>	Samsung Medical Center	Park, Joon Oh
	Korea University Guro Hospital	Oh, Sang Cheul

Country/Region	Site Name	Principal Investigator
·	Seoul National University Bundang Hospital	Kim, Jin Won
	Kyungpook National University Chilgok Hospital	Kim, Jong Gwang
	CHA Bundang Medical Center CHA University	Chon, Hong Jae
	Severance Hospital Yonsei University Health System	Choi, Hye Jin (current)
		Lee, Choong-kun former)
	Chonnam National University Hwasun Hospital	Hwang, Juneul
	Ajou University Hospital, Clinical Research Center	Lee, Hyun Woo
	The Catholic University of Korea, Seoul St. Mary's Hospital	Lee, Myung Ah
	Chungnam National University Hospital	Ryu, Hyewon
Spain	Hospital Regional Universitario Carlos Haya	Ales Diaz, Immaculada
	Hospital General Universitari Vall d'Hebron	Macarulla Mercade, Teresa (current) Verdaguer Mata, Helena (former)
	Hospital General Universitario Gregorio Maranon	Munoz Martin, Andres Jesús
	Hospital Universitario General de Asturias	Jimenez Fonseca, Paula
	Hospital Universitario HM Sanchinarro	Cubillo Gracian, Antonio
Taiwan	Chang Gung Medical Foundation, Linkou	Chen, Jen-Shi
	National Taiwan University Hospital	Hsu, Chiun
	Taipei Veterans General Hospital	Chen, Ming-Huang
	China Medical University Hospital	Bai, Li-Yuan
	National Cheng Kung University Hospital	Yen, Chia-Jui
	Chang Gung Medical Foundation, Kaohsiung Branch	Chiu, Tai-Jan
Thailand	Sunpasithiprasong Hospital	Juengsamarn, Jitlada
	King Chulalongkorn Memorial Hospital	Tanasanvimon, Suebpong
	Srinagarind Hospital	Sookprasert, Aumkhae
	Udon Thani Cancer Hospital	Butthongkomvong, Kritiya
	Maharaj Nakorn Chiang Mai Hospital	Suksombooncharoen, Thatthan
	Sriraj Hospital	Soparattanapaisarn, Nopadol
	Ramathibodi Hospital	Ngamphaiboon, Nuttapong
Türkiye	Abdurrahman Yutaslan Onkologi Hastanesi	Oksuzoglu, Berna
	Göztepe Prof. Dr. Süleyman Yalçın Şehir Hastanesi-oncology	Gumus, Mahmut
	Gazi Universitesi Tip Fakultesi	Yazici, Ozan
	Hacettepe University Faculty of Medicine	Yalcin, Suayib
	Baskent University Adana Training Hospital	Kose, Fatih (current)
		Ozyilkan, Ozgur (former)
	Erciyes Universitesi Tip Fakultesi	Inanc, Mevlude
	Inonu Universitesi Medical Fakultesi	Harputluoglu, Hakan
	Izmir Medical Park Hospital Department of Medical Oncology	Arslan, Cagatay
	Istanbul Universitesi Cerrahpasa Tip Fakultesi	Ozguroglu, Mustafa
United Kingom	Belfast City Hospital	Eatock, Martin
	University Hospital Coventry and Warwickshire NHS Trust	Scott-Brown, Martin
	Royal Free London NHS Foundation Trust	Gillmore, Roopinder
	Imperial College Healthcare NHS Trust - Hammersmith Hospital	Wasan, Harpeet
	Royal Marsden Hospital (Sutton)	Starling, Naureen
	Royal Marsden Hospital (Chelsea)	Starling, Naureen
United States of	University of California San Diego Moores Cancer Center	Burgoyne, Adam
America	Columbia University Herbert Irving Cancer Center	Bates, Susan
	University of Colorado Hospital	Davis, Sarah
	Winship Cancer Institutue of Emory University	Gbolahan, Olumide (current)
		Diab, Maria (former)
		Akce, Mehmet (former)
	University of California Los Angeles - Santa Monica	Finn, Richard
	University of Alabama at Birmingham Comprehensive Cancer Center	Outlaw, Darryl (current) Gbolahan, Olumide (former)
	University of California - San Francisco	Kelley, Robin
	Blue Ridge Cancer Care	Kochenderfer, Mark
	Laura and Isaac Perlmutter Cancer Center at NYU Langone Health	Beri, Nina
	Charleston Oncology	Lingerfelt, Brian
	OHSU Center for Health & Healing	Lopez, Charles
	Northwest Georgia Oncology Centers PC	McCune, Steven
	Saint Francis Health System	Yang, Xuezhong
	Yale University	Stein, Stacey
	University of Oklahoma - Stephenson Oklahoma Cancer Center	Hatoum, Hassan
	Decatur Memorial Hospital	Wade, James
	Decatur Memorial Rospital	wade, James

Figure S1. Multiplicity diagram for alpha re-allocation. The initial alpha allocated to each hypothesis is shown under the individual hypotheses. The weights for reallocation should superiority be demonstrated for a hypothesis are shown in the boxes on the lines connecting individual hypotheses.

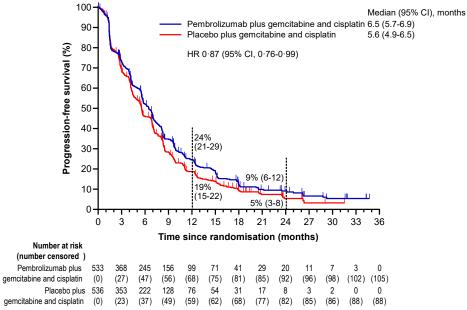
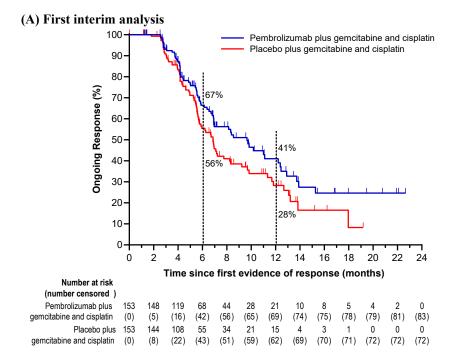
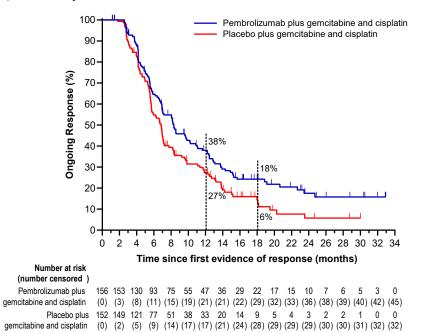




Figure S3. Kaplan-Meier analyses of duration of response assessed per masked independent central review in the intention-to-treat population. Tick marks indicate censored data.

(B) Final analysis

1 Table S1. Central laboratories used in KEYNOTE-966.

Laboratory Aggagement	Laboratory Name and Lagation	Supported Degions
Laboratory Assessment	Laboratory Name and Location	Supported Regions
PD-L1 CPS	NeoGenomics Laboratories, Inc., Aliso Viejo,	Argentina, Australia, Belgium, Brazil, Canada, Chile,
	CA, USA	France, Germany, Hong Kong, Ireland, Israel, Italy, Japan,
		Malaysia, Netherlands, New Zealand, Republic of Korea,
		Spain, Taiwan, Thailand, Türkiye, United Kingdom, USA
	Labcorp Pharmaceutical Research and	China
	Development (Shanghai) Co., Limited,	
	Shanghai, China	
MSI status	Almac Diagnostics, LLC, Craigavon, United	Argentina, Australia, Belgium, Brazil, Canada, Chile,
	Kingdom	France, Germany, Hong Kong, Ireland, Israel, Italy, Japan,
	C C	Malaysia, Netherlands, New Zealand, Republic of Korea,
		Spain, Taiwan, Thailand, Türkiye, United Kingdom, USA
	Q2 Solutions (Beijing) Co., Ltd., Beijing, China	China
HBV and HCV*	PPD Laboratories, Highland Heights, KY, USA	Argentina, Brazil, Canada, Chile, USA
	PPD Laboratories, Zaventem, Belgium	Belgium, France, Germany, Ireland, Israel, Italy,
		Netherlands, Spain, Türkiye, United Kingdom
	PPD Laboratories, Singapore	Australia, Hong Kong, Japan, Malaysia, New Zealand,
		Republic of Korea, Taiwan, Thailand
	Labcorp Pharmaceutical Research and	China
	Development (Shanghai) Co., Limited,	
	Shanghai, China	

HBV=hepatitis B virus. HCV=hepatitis C virus. MSI=microsatellite. PD-L1 CPS=programmed cell death ligand 1 combined positive score. *HBV and HCV status were tested locally in 13 participants screened for eligibility due to limitations related to the COVID-19 pandemic.

7	Table S2. Censoring rules for overall survival, progression-free survival, and duration of response.
---	--

Overall survival	Censoring rule
No death date	Censored on the date last known to be alive
Progression-free survival	Date of progression or censoring
PD or death documented after ≤ 1 missed disease assessment and before new anticancer therapy, if any	Progressed at date of documented PD or death
Death or progression immediately after ≥2 consecutive missed disease assessments or after new anticancer therapy, if any	Censored at last disease assessment prior to the earlier date of ≥ 2 consecutive missed disease assessments and new anticancer therapy, if any
No PD, no death, and no new anticancer treatment	Censored at last disease assessment
No PD and no death, but new anticancer treatment is initiated	Censored at last disease assessment before new anticancer treatment
Duration of response	Date of progression or censoring
No progression, no death, and no new anticancer therapy is initiated	Censored at last adequate disease assessment
No progression, no death, but new anticancer therapy is initiated	Censored at last adequate disease assessment before new anticancer therapy initiated
Death or progression immediately after ≥2 consecutive missed disease assessments or after new anticancer therapy, if any	Censored at earlier date of last adequate disease assessment prior to ≥2 missed adequate disease assessments and new anticancer therapy, if any
Death or progression after ≤1 missed disease assessment and before new anticancer therapy, if any	Event at date of documented PD or death

8 A missed disease assessment includes any assessment that is not obtained or is considered inadequate for evaluation of response. PD=progressive disease.

	Pembrolizumab p	lus gemcitabine and	d cisplatin (n=529)	Placebo plus gemcitabine and cisplatin (n=534)			
	Pembrolizumab	Gemcitabine	Cisplatin	Placebo	Gemcitabine	Cisplatin	
Median (IQR)	9.0 (4.0-15.0)	8.0 (4.0-13.0)	7.0 (4.0-8.0)	8.0 (4.0-14.0)	8.0 (4.0-12.0)	7.0 (4.0-8.0)	
≥1	529 (100%)	529 (100%)	527 (<100%)	534 (100%)	534 (100%)	534 (100%)	
≥2	490 (93%)	492 (93%)	486 (92%)	498 (93%)	499 (93%)	499 (93%)	
≥3	458 (87%)	460 (87%)	450 (85%)	462 (87%)	467 (87%)	464 (87%)	
≥4	422 (80%)	426 (81%)	417 (79%)	419 (78%)	420 (79%)	415 (78%)	
≥5	388 (73%)	392 (74%)	381 (72%)	377 (71%)	377 (71%)	372 (70%)	
≥6	359 (68%)	359 (68%)	346 (65%)	354 (66%)	356 (67%)	347 (65%)	
≥7	319 (60%)	315 (60%)	294 (56%)	319 (60%)	313 (59%)	299 (56%)	
≥ 8	302 (57%)	289 (55%)	257 (49%)	297 (56%)	285 (53%)	257 (48%)	
≥9	273 (52%)	229 (43%)	1 (<1%)	254 (48%)	209 (39%)	4 (1%)	
≥10	248 (47%)	209 (40%)	1 (<1%)	223 (42%)	184 (34%)	2 (<1%)	
≥12	206 (39%)	171 (32%)	0	175 (33%)	143 (27%)	0	
≥14	156 (29%)	128 (24%)	0	135 (25%)	102 (19%)	0	
≥16	129 (24%)	102 (19%)	0	112 (21%)	85 (16%)	0	
≥18	101 (19%)	81 (15%)	0	93 (17%)	74 (14%)	0	
≥20	84 (16%)	61 (12%)	0	82 (15%)	65 (12%)	0	
≥22	69 (13%)	48 (9%)	0	65 (12%)	49 (9%)	0	
≥24	64 (12%)	43 (8%)	0	51 (10%)	39 (7%)	0	
≥26	55 (10%)	35 (7%)	0	45 (8%)	34 (6%)	0	
≥28	41 (8%)	25 (5%)	0	31 (6%)	26 (5%)	0	
≥30	35 (7%)	22 (4%)	0	26 (5%)	22 (4%)	0	
≥32	28 (5%)	17 (3%)	0	21 (4%)	19 (4%)	0	
≥34	24 (5%)	13 (2%)	0	16 (3%)	11 (2%)	0	
≥35	20 (4%)	10 (2%)	0	13 (2%)	9 (2%)	0	

9 <u>Table S3. Number of cycles administered for each component of study treatment in treated participants at the final analysis</u>

	Pembrolizumab plus chemotherapy (n=533)	Placebo plus chemotherapy (n=536)
Any subsequent anticancer therapy*	253 (47%)	261 (49%)
Chemotherapy	230 (43%)	230 (43%)
Immune checkpoint inhibitor	26 (5%)	38 (7%)
Targeted therapy	6 (1%)	18 (3%)
Other	43 (8%)	50 (9%)

11 Table S4. Summary of subsequent anticancer therapy in the intention-to-treat population at the final analysis

12 13 Data are n (%). *Participants may have received ≥ 1 subsequent anticancer therapy.

	Pembrolizumab plus gemcitabine and cisplatin (n=533)	Placebo plus gemcitabine and cisplatin (n=536)
01:	• • •	
Objective response rate	156 (29% [25-33])	152 (28% [25-32])
Disease control rate	399 (75 [71-79])	405 (76% [72-79])
Best overall response		
Complete response	14 (3%)	9 (2%)
Partial response	142 (27%)	143 (27%)
Stable disease*	243 (46%)	253 (47%)
Progressive disease	104 (20%)	97 (18%)
Not evaluable†	8 (2%)	11 (2%)
Not assessed‡	22 (4%)	23 (4%)
Time to response, months	2.8 (1.5-4.2)	2.8 (1.5-4.2)
Duration of response,§ months	8.3 (6.9-10.2)	6.8 (5.7-7.1)
Extended duration of response§		
\geq 3 months	94%	90%
≥6 months	65%	55%
≥9 months	46%	36%
≥ 12 months	38%	27%
≥15 months	28%	18%
≥18 months	24%	14%
≥21 months	21%	8%
≥24 months	18%	6%

14 Table S5. Summary of response in the intention-to-treat population at the final analysis

15 16

Data are n (% [95% CI]), n (%), median (IQR) (for time to response), median (95% CI) (for duration of response), or %. *Stable disease includes participants

with stable disease, non-complete response or non-progressive disease, and no evidence of disease. †Not evaluable includes participants whose post-baseline

17 imaging assessments were not evaluable for best overall response. ‡Not assessed includes participants for whom no post-baseline imaging assessments were

18 available. §Estimated using the Kaplan-Meier method.

	Pembrolizumab plus gemcitabine and cisplatin group (n=529)			Placebo plus gemcitabine and cisplatin group (n=534)				
	Grade 1-2	Grade 3	Grade 4	Grade 5	Grade 1-2	Grade 3	Grade 4	Grade 5
Any event	116 (22%)	248 (47%)	121 (23%)	8 (2%)	130 (24%)	255 (48%)	112 (21%)	3 (1%)
Decreased neutrophil count	74 (14%)	158 (30%)	89 (17%)	0	74 (14%)	167 (31%)	79 (15%)	0
Anaemia	155 (29%)	122 (23%)	1 (<1%)	0	138 (26%)	127 (24%)	4 (1%)	0
Decreased platelet count	114 (22%)	55 (10%)	30 (6%)	0	98 (18%)	66 (12%)	33 (6%)	0
Nausea	188 (36%)	7 (1%)	0	0	210 (39%)	9 (2%)	0	0
Fatigue	133 (25%)	20 (4%)	1 (<1%)	0	129 (24%)	18 (3%)	0	0
Decreased white blood cell count	78 (15%)	57 (11%)	4 (1%)	0	78 (15%)	43 (8%)	3 (1%)	0
Decreased appetite	96 (18%)	6 (1%)	1 (<1%)	0	98 (18%)	6 (1%)	0	0
Vomiting	79 (15%)	7 (1%)	0	0	97 (18%)	4 (1%)	0	0
Constipation	84 (16%)	1 (<1%)	0	0	73 (14%)	1 (<1%)	0	0
Rash	70 (13%)	3 (1%)	0	0	35 (7%)	2 (<1%)	0	0
Increased alanine aminotransferase	50 (9%)	6 (1%)	0	0	68 (13%)	3 (1%)	0	0
Pyrexia	53 (10%)	2 (<1%)	0	0	35 (7%)	0	0	0
Alopecia	53 (10%)	0	0	0	65 (12%)	0	0	0
Diarrhoea	48 (9%)	5 (1%)	0	0	52 (10%)	3 (1%)	0	0
Pruritus	52 (10%)	0	0	0	31 (6%)	0	0	0
Asthenia	44 (8%)	7 (1%)	0	0	66 (12%)	15 (3%)	0	0
Hypomagnesaemia	45 (9%)	4 (1%)	0	0	56 (10%)	5 (1%)	0	0
Increased aspartate aminotransferase	41 (8%)	4 (1%)	0	0	51 (10%)	8 (1%)	1 (<1%)	0
Hypothyroidism	40 (8%)	1 (<1%)	0	0	11 (2%)	0	0	0
Increased blood creatinine	38 (7%)	1 (<1%)	0	0	39 (7%)	0	0	0
Peripheral oedema	31 (6%)	0	0	0	28 (5%)	4 (<1%)	0	0
Malaise	29 (5%)	1 (<1%)	0	0	27 (5%)	0	0	0
Dysgeusia	29 (5%)	0	0	0	26 (5%)	1 (<1%)	0	0
Leukopenia	14 (3%)	9 (2%)	2 (<1%)	0	6 (1%)	5 (1%)	1 (<1%)	0
Mucosal inflammation	22 (4%)	2 (<1%)	0	0	22 (4%)	1 (<1%)	0	0
Peripheral sensory neuropathy	22 (4%)	2 (<1%)	0	0	21 (4%)	0	0	0
Decreased lymphocyte count	14 (3%)	5 (1%)	1 (<1%)	0	17 (3%)	9 (2%)	1 (<1%)	0
Stomatitis	16 (3%)	3 (1%)	0	0	25 (5%)	2 (<1%)	0	0

19 <u>Table S6. Treatment-related adverse events that occurred in ≥5% of participants either treatment group in the safety population at the final analysis</u>

20 Data are n (%).

21

	Pembrolizum	ab plus gemcitabin group (n=529)	e and cisplatin	Placebo plus gemcitabine and cisplatin group (n=534)			
	Any cause	Treatment related	Immune mediated	Any cause	Treatment related	Immune mediated	
Any death	31 (6%)	8 (2%)	1 (<1%)	49 (9%)	3 (1%)	0	
Pneumonia	4 (1%)	0	0	0	0	0	
Death	3 (1%)	0	0	5 (1%)	0	0	
Sepsis	3 (1%)	0	0	6 (1%)	1 (<1%)	0	
Biliary tract infection	2 (<1%)	0	0	0	0	0	
Euthanasia	2 (<1%)	0	0	1 (<1%)	0	0	
Abdominal abscess	1 (<1%)	1 (<1%)	0	0	0	0	
Abdominal infection	1 (<1%)	0	0	0	0	0	
COVID-19	1 (<1%)	0	0	4 (1%)	0	0	
Cardiac arrest	1 (<1%)	0	0	0	0	0	
Cholangitis	1 (<1%)	1 (<1%)		0	0	0	
Fungal sepsis	1 (<1%)	0	0	0	0	0	
Gastrointestinal haemorrhage	1 (<1%)	0	0	0	0	0	
Haemorrhagic shock	1 (<1%)	0	0	0	0	0	
Lower respiratory tract infection	1 (<1%)	1 (<1%)	0	0	0	0	
Malignant neoplasm progression	1 (<1%)	1 (<1%)	0	0	0	0	
Myocardial infarction	1 (<1%)	1 (<1%)	0	0	0	0	
Pneumocystis jirovecii pneumonia	1 (<1%)	0	0	0	0	0	
Pneumonia aspiration	1 (<1%)	0	0	0	0	0	
Pneumonia viral	1 (<1%)	1 (<1%)	0	0	0	0	
Pneumonitis	1 (<1%)	1 (<1%)	1 (<1%)	0	0	0	
Pulmonary embolism	1 (<1%)	0	0	3 (1%)	0	0	
Septic shock	1 (<1%)	1 (<1%)	0	1 (<1%)	0	0	
Acute kidney injury	0	0	0	2 (<1%)	0	0	
Acute myocardial infection	0	0	0	1 (<1%)	0	0	
Biliary sepsis	0	0	0	1 (<1%)	0	0	
COVID-19 pneumonia	0	0	0	2 (<1%)	0	0	
Cerebral haemorrhage	0	0	0	1 (<1%)	0	0	
Cerebral infarction	0	0	0	3 (1%)	0	0	
Cerebral venous sinus thrombosis	0	0	0	1 (<1%)	0	0	
Cholangitis infective	0	0	0	1 (<1%)	0	0	
Cholecystitis	0	0	0	1 (<1%)	0	0	
Diarrhoea	0	0	0	1 (<1%)	0	0	
Hepatic infection	0	0	0	1 (<1%)	0	0	
Hepatorenal syndrome	0	0	0	1 (<1%)	1 (<1%)	0	
Ileus	0	0	0	1 (<1%)	0	0	
Liver abscess	0	0	0	2 (<1%)	0	0	

22 Table S7. Adverse events that led to death in the as-treated population at the final analysis

Lung abscess	0	0	0	1 (<1%)	0	0
Oesophageal varices	0	0	0	1 (<1%)	0	0
haemorrhage						
Pneumococcal sepsis	0	0	0	1 (<1%)	0	0
Pneumonia acinebacter	0	0	0	1 (<1%)	0	0
Pneumonia bacterial	0	0	0	1 (<1%)	0	0
Post procedural	0	0	0	1 (<1%)	0	0
complication						
Respiratory failure	0	0	0	1 (<1%)	0	0
Spontaneous bacteria	0	0	0	1 (<1%)	0	0
peritonitis						
Upper gastrointestinal	0	0	0	2 (<1%)	1 (<1%)	0
haemorrhage						

Data are n (%). Treatment relatedness was determined by the investigator. Potentially immune-mediated adverse events and infusion reactions were based on a list of terms prepared by the sponsor and were considered regardless of attribution to trial treatment by the investigator; in addition to the specific preferred terms

listed, related terms were included.

	Pembroliz	Pembrolizumab plus gemcitabine and cisplatin group (n=529)				Placebo plus gemcitabine and cisplatin group (n=534)			
	Grade 1-2	Grade 3	Grade 4	Grade 5	Grade 1-2	Grade 3	Grade 4	Grade 5	
Any event	79 (15%)	35 (7%)	2 (<1%)	1 (<1%)	48 (9%)	18 (3%)	3 (1%)	0	
Hypothyroidism	45 (9%)	1 (<1%)	0	0	14 (3%)	0	0	0	
Pneumonitis	20 (4%)	5 (1%)	0	1 (<1%)	9 (2%)	0	1 (<1%)	0	
Hyperthyroidism	18 (3%)	1 (<1%)	0	0	10 (2%)	0	0	0	
Colitis	4 (1%)	4 (1%)	1 (<1%)	0	4 (1%)	2 (<1%)	0	0	
Severe skin reactions	0	10 (2%)	0	0	0	3 (1%)	0	0	
Hepatitis	4 (1%)	5 (1%)	0	0	0	6 (1%)	1 (<1%)	0	
Infusion reactions	6 (1%)	2 (<1%)	0	0	6 (1%)	0	0	0	
Pancreatitis	1 (<1%)	3 (1%)	0	0	2 (<1%)	3 (1%)	1 (<1%)	0	
Adrenal insufficiency	2 (<1%)	1 (<1%)	0	0	1 (<1%)	1 (<1%)	0	0	
Thyroiditis	3 (1%)	0	0	0	0	0	0	0	
Encephalitis	0	2 (<1%)	0	0	0	0	0	0	
Hypophysitis	1 (<1%)	1 (<1%)	0	0	1 (<1%)	1 (<1%)	0	0	
Nephritis	2 (<1%)	0	0	0	1 (<1%)	0	0	0	
Vasculitis	2 (<1%)	0	0	0	1 (<1%)	0	0	0	
Myasthenic syndrome	0	0	1 (<1%)	0	0	1 (<1%)	0	0	
Myocarditis	0	0	1 (<1%)	0	0	1 (<1%)	0	0	
Myositis	1 (<1%)	0	0	0	0	0	0	0	
Hypoparathyroidism	0	0	0	0	1 (<1%)	0	0	0	
Uveitis	0	0	0	0	2 (<1%)	0	0	0	

27 Table S8. Potentially immune-mediated adverse events and infusion reactions in the as-treated population at the final analysis

Data are n (%). Potentially immune-mediated adverse events and infusion reactions were based on a list of terms prepared by the sponsor and were considered

regardless of attribution to trial treatment by the investigator; in addition to the specific preferred terms listed, related terms were included.

Table S9. Use of corticosteroids for the treatment of potentially immune-mediated adverse events and infusion reactions in participants in the safety nonulation who experienced an event at the final analysis

	Pembrolizuma	ab plus gemcitabin group	e and cisplatin	Placebo plus gemcitabine and cisplatin group			
	High starting dose*	Low starting dose†	Not treated	High starting dose*	Low starting dose†	Not treated	
Adrenal insufficiency	1/3 (33%)	1/3 (33%)	1/3 (33%)	0	1/2 (50%)	1/2 (50%)	
Colitis	5/9 (56%)	1/9 (11%)	3/9 (33%)	4/6 (67%)	0	2/6 (33%)	
Encephalitis	2/2 (100%)	0	0	0	0	0	
Hepatitis	5/9 (57%)	2/9 (22%)	2/9 (22%)	7/7 (100%)	0	0	
Hyperthyroidism	1/19 (5%)	0	18/19 (95%)	0	0	10/10 (100%)	
Hypoparathyroidism	0	0	0	0	0	1/1 (100%)	
Hypophysitis	0	1/2 (50%)	1/2 (50%)	1/2 (50%)	1/2 (50%)	0	
Hypothyroidism	1/46 (2%)	0	45/46 (98%)	0	0	14/14 (100%)	
Infusion reactions	4/8 (50%)	1/8 (13%)	3/8 (38%)	2/6 (33%)	1/6 (17%)	3/6 (50%)	
Myasthenic syndrome	1/1 (100%)	0	0	1/1 (100%)	0	0	
Myocarditis	1/1 (100%)	0	0	0	1/1 (100%)	0	
Myositis	0	0	1/1 (100%)	0	0	0	
Nephritis	1/2 (50%)	1/2 (50%)	0	1/1 (100%)	0	0	
Pancreatitis	2/4 (50%)	0	2/4 (50%)	0	0	6/6 (100%)	
Pneumonitis	11/26 (42%)	6/26 (23%)	9/26 (35%)	4/10 (40%)	1/10 (10%)	5/10 (50%)	
Severe skin reactions	4/10 (40%)	2/10 (20%)	4/10 (40%)	1/3 (33%)	1/3 (33%)	1/3 (33%)	
Thyroiditis	0	0	3/3 (100%)	0	0	0	
Uveitis	0	0	0	0	0	2/2 (100%)	
Vasculitis	0	0	2/2 (100%)	0	0	1/1 (100%)	

Data are no. of participants treated with corticosteroids/no. of participants with the event (%). *A high starting dose of corticosteroids was defined as ≥40 mg/day

prednisone or equivalent. †A low starting dose of corticosteroids was defined as <40 mg/day prednisone or equivalent.