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With 2 figures

Abstract: Interspecific interactions are major drivers shaping ecological communities. Nevertheless, understanding how 
and to what extent they affect ecosystem functioning remains a key challenge for both fundamental and applied ecology. 
In the context of agricultural biodiversity loss, sustaining populations of organisms that provide essential ecosystem ser-
vices is crucial but remains challenging. Interactions among beneficial organisms may explain such results, as they impact 
organisms’ fitness. These effects could accumulate when scaled up to the population level, modifying community structure 
and functioning. Interactions could also affect organisms’ foraging behaviour and consequently their efficiency. Here, we 
review and synthesize the knowledge of the effect of interactions within and between two groups of ecosystem services 
providers: natural enemies and pollinators, respectively providing biological control of pests and crop pollination services. 
We show that intra-guild predation, competition and resource partitioning are common interactions structuring natural 
enemy communities, and may affect their effectiveness to control pests. Nevertheless, actual evidence in complex systems 
and long-term studies are still missing, and application in agricultural settings is only at its beginning. Similarly, competi-
tion and resource partitioning among pollinators is a recent focus of ecological research. Studying facilitative interactions 
is clearly missing. Finally, while we show that interactions between natural enemies and pollinators can theoretically hap-
pen in natura due to the use of similar resources and habitats, this question remains poorly addressed. We discuss future 
research perspectives to better capture the complexity of biodiversity effects on ecosystem functioning, and propose guide-
lines to the implementation of more efficient multi-service schemes in agroecological landscapes.

Keywords: Biological control; Competition; Interspecific interactions; Intra-guild predation; Facilitation; Pollination; 
Resource partitioning

1 Introduction

In a world facing global warming, unprecedented biodiver-
sity loss, water and air pollution and land-use fragmentation, 
achieving agricultural needs while conserving biodiversity is 
one of the greatest and most urgent challenges. Maximizing 
ecological interactions that enhance ecosystem functions 
that can benefit crop yield (i.e. ecosystem services) is cen-
tral to complete this goal (Garibaldi et al. 2018). Biological 
control of herbivores and crop pollination are two major 
regulating ecosystem services in agriculture and are mostly 
provided by arthropods (hereafter called “beneficial arthro-
pods”). The first service is the resultant of a trophic interac-
tion between a predator or a parasitoid (“natural enemy”) and 
a crop herbivore (“pest”). The second results from a trophic 
and mutualistic interaction between a nectar/pollen feeder 

(“pollinator”) and an entomophilous crop. Several habitat 
management strategies have been proposed to support the 
richness and abundance of natural enemies and pollinators in 
agricultural landscapes and promote their respective ecosys-
tem services. They involve increasing plant diversity within-
field (e.g. intercropping, weed conservation), around-field 
(e.g. flowering strips, hedgerows, field border conservation) 
or at the landscape scale (e.g. increasing the amount of semi-
natural patches of habitats such as woodlands, grasslands, 
hedgerows; crop diversity and rotations; and the connectiv-
ity among habitats) (Altieri & Letourneau 1982; Gurr et al. 
2017; Martin et al. 2019). Both natural enemies and pollina-
tors benefit from the diversification of plants which provide 
food resources (pollen and nectar resources, preys/hosts), 
overwintering sites, oviposition sites and shelters (Gurr et al. 
2017). Nevertheless, plant diversification strategies seem to 
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have variable results, with either limited increase in benefi-
cial insects’ populations, or no effect on their associated eco-
system services (Albrecht et al. 2020; Letourneau et al. 2011; 
Tscharntke et al. 2016).

Emphasis on managing both pest control and pollina-
tion services conjointly has increased recently (Albrecht 
et al. 2020; Bartual et al. 2019; Grass et al. 2016; Martin 
et al. 2019; Merle et al. 2022; Rosas-Ramos et al. 2019, 
2020; Sutter et al. 2017). Because natural enemy and pol-
linator diversity are partly promoted by similar resources, 
some studies have suggested that increased availability of 
flowering plants should synergistically enhance pollination 
and biological control (Balzan et al. 2014; Grass et al. 2016; 
Wratten et al. 2012). Nevertheless, investigating how bio-
logical control and pollination ecosystem services interact is 
an emerging research field with mixed results (Bennett et al. 
2009; Gagic et al. 2019; Garibaldi et al. 2018). Garibaldi et al. 
(2018) identified only seven studies looking at how pollina-
tion and biological control interact; three resulted in positive 
interactions (i.e. synergism, the increase of one ecosystem 
service increases the other), one in negative (i.e. antagonism, 
the increase of one ecosystem service decreases the other), 
and three with no interactions (i.e. additive results, both eco-
system services are independent). Thus, managing multiple 
ecosystem services conjointly requires understanding the 
mechanisms underlying the interactions between ecosystem 
services (Bennett et al. 2009).

Ecological interactions between beneficial arthropods 
could explain the success or failure of diversification strate-
gies (Straub et al. 2008; Tylianakis et al. 2008). First, they 
can impact individuals’ fitness, with possible consequences 
on the population and community, thus affecting ecosystem 
services. Second, interactions can induce changes in the for-
aging behaviour of a species, such as a resource shift, which 
can impact its effectiveness to provide the ecosystem service 
(Kéfi et al. 2012).

Trophic interactions are the consumption of an organ-
ism by another organism. In insect communities, predation 
trophic interactions increase the consumer’s fitness and 
reduce the prey’s fitness. Non-trophic interactions are other 
mechanisms by which organisms influence one another, 
through access to resources (nutrition, reproduction), sur-
vival or behaviour changes (Kéfi et al. 2012). Organisms 
from a same guild will more likely engage in non-trophic 
interactions, as, by definition, they partly occupy the same 
ecological niche (Simberloff & Dayan 1991). Competition 
arises in case of resource overlap between two individu-
als and negatively affects the fitness of the two participants 
(usually one more than the other) through a reduced access 
to the resource to the inferior competitor. Competition 
can either result from resource depletion (i.e. exploitative 
competition), physical prevention of resource access (i.e. 
interference competition) or the enhancement of a common 
enemy (i.e. apparent competition) (Tilman 1982). Reducing 
interspecific competition can be achieved through resource 

partitioning (Levine & HilleRisLambers 2009), where par-
tial specialization of each species reduces their niche over-
lap. Such specialization can occur relative to the type of 
resource, its temporal use or location, or as a response to 
environmental conditions (Walter 1991) and is achieved by 
competitor avoidance and the discrimination of exploited 
resources. Finally, facilitation is a positive interaction 
between two organisms that benefits at least one of the 
protagonist and causes harm to neither (Stachowicz 2001). 
This improvement can be direct, by changing the habitat’s 
abiotic conditions, providing shelter or food resources 
consumed by the other species, or indirect by reducing or 
removing predators or competitors.

Resource diversification strategies aiming at sustaining 
beneficial arthropods could therefore impact interactions 
within but also between guilds through shared resources 
and micro-habitat use. Nevertheless, such interactions 
between different guilds have scarcely been investigated. 
Understanding how these interactions among beneficial 
arthropods influence their fitness, behaviour and the result-
ing ecosystem services should help answer two practical 
questions to optimize diversification strategies for crop pro-
duction: Do interactions among and between guilds impact 
the effectiveness of diversification strategies in promoting 
(1) beneficial arthropod populations, and (2) ecosystem 
services provision in the crop? This article has three main 
objectives. First, we briefly review literature to highlight 
the main interspecific interactions among arthropod natural 
enemies (thus excluding pathogens) and among pollinators 
separately as well as the effects of those interactions on the 
associated ecosystem services. We also highlight the knowl-
edge gaps on the effect of interactions on ecosystem service 
provisioning (Fig. 1). Second, we attempt to translate this 
framework to possible ecological interactions between nat-
ural enemies and pollinators, and understand how it could 
affect ecosystem services (Fig. 1). Finally, we propose path-
ways to guide future research and to optimize ecosystem 
service management in agroecosystems for more sustainable 
crop production, taking into account interactions among ben-
eficial arthropods.

2 Intra-guild ecological interactions

2.1 Interactions among natural enemies

2.1.1 Intraguild predation
The view of linear food chains among distinct trophic lev-
els, such as plant-herbivore-natural enemy systems, is 
generally recognized to be over-simplistic (Polis & Strong 
1996). Many predators being omnivorous, they usually feed 
on species from multiple trophic levels, including on preda-
tor species. This is called intraguild predation (Frago 2016, 
Polis et al. 1989), and makes foodweb structures much more 
complex.
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Fig. 1.  Schematic representation of reviewed interactions between and among guilds of beneficial insects (Predation, Competition, 
Facilitation, Resource partitioning), their effect on ES providers’ fitness, their related ES and crop yield.
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Intraguild interactions are suspected to be widespread in 
multi-natural enemy systems, and concern both predators and 
parasitoids (Arim & Marquet 2004). Intraguild predation is 
frequent among predators, particularly in communities com-
prising high variability of sizes and many omnivorous spe-
cies (Rusch et al. 2015). Moreover, observations (Heimpel 
et al. 1997, Völkl & Kraus 1996, Wheeler 1977) and molecu-
lar analyses (Traugott et al. 2012) suggest that predation on 
adult parasitoids by predators is common. The consumption 
of immature parasitoids developing on a shared prey, called 
coincidental intraguild predation, has also been frequently 
documented (Rosenheim et al. 1995, Snyder & Ives 2001, 
Traugott et al. 2012). Finally, intraguild predation also com-
prises facultative hyperparasitism, i.e. when the parasitoid 
larvae can develop either as a primary or a secondary para-
sitoid (Rosenheim et al. 1995).

Instead of focusing top down forces on herbivores, intra-
guild predation diffuses the forces throughout the web, and 
thus may theoretically reduce biological control strength 
(Polis & Strong 1996). Experimentally, however, the effect 
of intraguild predation on pest control seems inconsistent 
(either neutral or disruptive) and depends on the studied 
system (Rosenheim & Harmon 2006, Straub et al. 2008). 
These effects depend on multiple factors, both intrinsic 
(natural enemy traits, e.g. body size, diet breadth, foraging 
mode) and extrinsic (prey trait, prey density, environmen-
tal variables, e.g. habitat complexity) (Jonsson et al. 2017, 
Tylianakis & Romo 2010). In particular, increased preda-
tor size diversity enhances intraguild predation likelihood 
on smaller species, decreasing the effectiveness of biocon-
trol (Krenek & Rudolf 2014, Rosenheim & Corbett 2003, 
Rusch et al. 2015). Conversely, a diversity in foraging traits 
(such as micro-habitat use or temporal resource exploitation) 
reduces intraguild predation (Jonsson et al. 2017).

2.1.2 Competition
Interference and exploitative competition: Among preda-
tors, competition mainly occurs in the form of interference 
competition: two predators, instead of engaging in a trophic 
interaction, physically dispute a common resource (i.e. the 
prey). This was observed between predatory ants and other 
natural enemies such as carabid beetles or spiders (Hawes 
et al. 2013, Yip 2014). Parasitoids species are expected to 
experience strong interspecific competition (interference or 
exploitative) due to their relatively narrow niche breadth and 
their similar ecological strategies (Boivin & Brodeur 2006, 
Cusumano et al. 2012, 2016). Adult females exploiting the 
same host patch may compete directly for the host (i.e. 
interference) (Boivin & Brodeur 2006, Hardy et al. 2013). 
The outcome of the contest is determined by traits such as 
aggressiveness, size, the prior ownership of the patch, egg 
load or patch time residency (Hardy et al. 2013, Le Lann 
et al. 2011a). Exploitative competition is also very likely, 
as parasitized hosts are not removed from the habitat, lead-

ing to possible multiparasitism (i.e. a host parasitized by 
several parasitoid species), especially in case of host scar-
city (Boivin & Brodeur 2006, Ortiz-Martínez et al. 2019). 
Several studies have suggested that interspecific competi-
tion may play an important role in shaping parasitoid com-
munities and top-down control of herbivores (Bográn et al. 
2002, Brodeur & Rosenheim 2000, Nieminen & Nouhuys 
2017, Teder et al. 2013). Nevertheless, most studies were 
conducted in controlled laboratory conditions, and extrap-
olation to the population level remains difficult (Boivin & 
Brodeur 2006, Cusumano et al. 2016, 2012, Harvey et al. 
2013, Hawkins 2000). Top down control can be reduced if 
the more competitive species are less effective in control-
ling the pest (Ortiz-Martínez et al. 2019). Modifications in 
adult foraging behaviours in response to competition could 
also alter, positively or negatively, the effectiveness of the 
community to control pests. Even though this was proposed 
years ago (Cusumano et al. 2016, 2012), how competition 
between adult parasitoids affect community structure and 
top-down effectiveness has not yet been tested in the field.

Apparent competition: Apparent competition is another 
type of competition that happens when one species enhances 
the predation risk of the other species. Evidence of apparent 
competition between parasitoids mediated through shared 
hyperparasitoid is rare and inconclusive (Morris et al. 2001, 
van Nouhuys & Hanski 2000).

2.1.3 Resource partitioning mediated by  
behavioural shifts

Many laboratory studies have highlighted the ability of 
predators and parasitoids to detect (intraguild) competitors 
and predators and change their foraging behaviour accord-
ingly. These include differential patch foraging time (Le 
Lann et al. 2011a), reduced number of eggs laid (Agarwala 
et al. 2003, Almohamad et al. 2008, Pineda et al. 2007) or 
avoidance of the patch (van Baaren et al. 2009). This dis-
crimination between resource patches of different qualities 
is in part based on olfactory cues indicating the presence of 
other competitors, and can be innate or acquired by learning 
(Almohamad et al. 2008, Le Lann et al. 2011b).Such dis-
crimination abilities suggest a complementary effect of sev-
eral species on the control of the shared prey/host (Straub 
et al. 2008). Nevertheless, community-scale studies are 
needed to understand the impact of competitor discrimina-
tion on pest control.

2.1.4 Facilitation: provision of shared resources
Facilitation occurs when a first species increases predation 
of a second species by making the prey more available, e.g. 
through prey escape (Sih et al. 1998, Losey & Denno 1998a). 
Such as resource partitioning, it may arise from behavioural, 
temporal and microhabitat resource exploitation differences 
between natural enemies. For instance, two natural enemy 
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species sharing the same prey/host but living in different 
microhabitats, can facilitate prey availability for the other 
by making the prey escape from one habitat to the other 
(Losey & Denno 1998a). Such prey escape behaviour can 
lead to synergistic prey suppression: the combination of both 
predators leads to better prey reduction than the sum of each 
predator alone (Losey & Denno 1998a, 1998b). As parasit-
oids have also been shown to induce aphid dropping (Gross 
1993), we suggest that this creates facilitation to ground-
dwelling predators, and that it may synergistically increase 
aphid suppression.

Intraguild interactions and resulting effects on biologi-
cal control may depend on landscape complexity, as species 
respond differently to landscape elements. Nevertheless, 
studies are scarce. Martin et al. (2015) showed that more 
complex landscapes increased intraguild predation of para-
sitoids by ground-dwelling predators, but this did not result 
in reduced pest control. Rusch et al. (2016) found no effect of 
landscape context (here, the proportion of cultivated land), 
on positive or negative interactions between ground- and 
vegetation-dwelling natural enemies.

The effect of intra-guild interactions on biological pest 
control has mostly been studied to understand if conserving 
natural enemy diversity was compatible with biological pest 
control (Straub et al. 2008). Intraguild predation seems to 
have the greater impact on biological control, although the 
role of positive interactions has yet to be more understood.

2.2 Interactions among pollinators

2.2.1 Competition among pollinators
Exploitative competition for floral resources: Recent evi-
dence is accumulating showing that the mass-introduction of 
honeybee hives (Apis mellifera) can negatively affect wild 
bee communities through exploitative competition, in both 
natural (Henry & Rodet 2018, Ropars et al. 2022, Thomson 
2016, Torné-Noguera et al. 2016) and agricultural ecosys-
tems (Angelella et al. 2021, Magrach et al. 2017, Steffan-
Dewenter & Tscharntke 2000). Honeybees can decrease the 
abundance and diversity of wild bees through decreased 
resource availability (Torné-Noguera et al. 2016) and modi-
fication of their foraging behaviour (e.g. resource shift) 
(Walther-Hellwig et al. 2006). In numerous studies, reduced 
fecundity was measured (Elbgami et al. 2014, Goulson & 
Sparrow 2009, Paini & Roberts 2005). Exploitative compe-
tition among non-Apis species, including bumblebees and 
stingless bees, can also occur (Thomson et al. 1987, Johnson 
& Hubbell 1974), but are less studied. Several ecological 
traits inherent to A. mellifera can explain its competitive 
superiority over wild species. First, A. mellifera is an euso-
cial species in high numeric superiority compared to wild bee 
species that are often solitary or live in small communities. 
Their ability to communicate about the location of the most 
rewarding patches makes them very efficient in foraging flo-

ral resources (Hung et al. 2019). Being generalists, they for-
age on a wide range of plant species, overlapping with the 
diet range of wild species (which is often narrower), and are 
active throughout most of the year (Geslin et al. 2017). As a 
hive is perennial, honeybees create large resource stores, and 
usually forage for more nectar and pollen than they need. 
According to Cane & Tepedino (2016), a single honeybee 
colony collects enough nectar to feed about 110,000 progeny 
of an average-sized solitary bee. Therefore, in environments 
containing scarce floral resources (which is often the case 
in agroecosystems, especially when mass-flowering crops 
are not in flower), honeybees can massively reduce resource 
availability to wild species.

Wojcik et al. (2018) review two opposite theories regard-
ing which ecological traits of wild bees may be the most 
influenced by the presence of honeybees. First, specialized 
pollen feeders could be more impacted by the presence 
of honeybees because they are less able to shift on other 
plant resources and have narrow spatio-temporal niches. 
Second, generalist feeders would directly compete for the 
same resources as honeybees because their niche overlap 
broadly. Experimental evidences supporting these theories 
are still missing. Nevertheless, Torné-Noguera et al. (2016) 
showed that large bee species were less abundant near api-
aries, suggesting they may be more likely displaced than 
smaller bees due to their larger requirements and foraging 
ranges (Greenleaf et al. 2007). Walther-Hellwig et al. (2006) 
suggested that small foraging range species would be more 
affected by honeybee presence since, even if they need less 
resources, they cannot disperse over large distances.

Interference competition: Although competition through 
the depletion of resources is suggested as the main competi-
tive mechanism among pollinators (Henry & Rodet 2018), 
interference competition might also affect the spatial pat-
tern of occurrence of pollinators (Johnson & Hubbell 1974, 
Nagamitsu & Inoue 1997). Hierarchy among individuals 
seems to depend on size and on species aggressiveness. 
Again, A. mellifera seems to be a superior physical competi-
tor as they were observed disturbing other bees from forag-
ing (Pinkus-Rendon et al. 2005, Rogers et al. 2013).

Apparent competition: Strong evidence suggests an impor-
tant effect of apparent competition among pollinators, with 
the transmission of parasites and pathogens from managed 
bees (honeybees and managed bumblebees) to wild bees 
(Fürst et al. 2014, Graystock et al. 2016). Recently, the spill-
over of honeybee viruses to hoverflies was also highlighted 
(Bailes et al. 2018). Such pathogen spillover is suspected to 
be driven by shared floral heads between pollinating visitors 
(Graystock et al. 2015). Apparent competition between hon-
eybees and wild bees also happens through shared predators, 
in particular the Asian Hornet Vespa velutina. This invasive 
species in Europe mainly preys upon honeybees, although 
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predation on wild bee species has also been detected (Perrard 
et al. 2009). However, the impact of V. velutina on wild bee 
population is unknown (Geslin et al. 2017).

Evidence of competitive interactions among pollinators 
is mainly limited to bee species. Competition among closely 
related species is expected to be greater than among more 
distant species (Pianka 1980). Nevertheless, other impor-
tant pollinator insects use the same flower resources, such 
as hoverflies (Diptera), as well as some Coleoptera and 
Lepidoptera, and could also be affected by competition with 
superior species such as A. mellifera (Lindström et al. 2016). 
Such competitive interactions have been suggested for hov-
erflies, with a spatial or temporal displacement in the pres-
ence of honeybees (Hogg et al. 2011, Jeavons et al. 2020), 
but never demonstrated.

The effect of competition among pollinators on pol-
lination services remains poorly understood. Contribution 
to pollination varies among pollinating species and crops, 
although a diverse community is the most beneficial to stable 
pollination service (Woodcock et al. 2019). The modification 
of the pollinator community structure, with decreased diver-
sity due to competitive exclusion and dominance of one spe-
cies, may diminish its functioning (Blüthgen & Klein 2011, 
Garibaldi et al. 2013, Winfree & Kremen 2009). In this sense, 
the negative effect of honeybee competition has been high-
lighted on wild plant reproduction (Magrach et al. 2017), and 
more recently on crop pollination (Angelella et al. 2021). 
Nevertheless, other studies suggest that the dominance of 
honeybees in the community is the most important driver 
of pollination efficiency (Kleijn et al. 2015, Winfree et al. 
2015). Long-term studies are thus needed to understand how 
and in which conditions (e.g. density, habitat quality) the 
mass-introduction of A. mellifera in agricultural landscapes 
can affect pollinator community and the resultant ecosystem 
service.

2.2.2 Resource partitioning mediated by  
behavioural shifts

Plastic foraging behavioural shift is a common mecha-
nism among flower-visiting species to avoid competition. 
Diet breadth is a flexible trait among bumblebees, expand-
ing in a highly competitive environment (Fontaine et al. 
2008). Displacement on other flowering resources has been 
observed in natural and in mesocosm experiments for some 
bee species (Fründ et al. 2013, Walther-Hellwig et al. 2006) 
and hoverfly species (Ambrosino et al. 2006, Pontin et al. 
2006). Spatial (Thomson et al. 1987) and temporal (Santos & 
Absy 2012, Walther-Hellwig et al. 2006) changes in resource 
exploitation patterns in response to competition are also 
common.

Such foraging flexibility requires the ability to detect 
patches of resources that are less rewarding (Stout et al. 1998, 
Walther-Hellwig et al. 2006). Some eusocial and solitary bee 
species are able to discriminate between flowers recently vis-

ited by a competitor, either a conspecific or a heterospecific 
(Reader et al. 2005, Yokoi & Fujisaki 2009). The discrimina-
tion seems to be based on the recognition of visual (Willmer 
et al. 2009) or olfactory cues (Stout et al. 1998, Wilms & 
Eltz 2008). Other pollinators such as hoverflies could benefit 
from this discrimination ability, but for now this has not been 
measured (Jeavons et al. 2022).

Numerous studies have highlighted the relationship 
between niche partitioning and complementarity in ecosys-
tem service provision by pollinator communities (Albrecht 
et al. 2012, Blüthgen & Klein 2011, Fontaine et al. 2005, 
Fründ et al. 2013, Hoehn et al. 2008). Plastic niche parti-
tioning in response to competitive interactions is known as 
“interactive complementarity” (Fründ et al. 2013). In the 
field, avoidance mechanisms were associated with a higher 
pollination efficiency of A. mellifera in sunflower and almond 
crops: in the presence of wild bees, A. mellifera displayed 
higher rates of movement between rows, which increased 
fruit set in both crops (Brittain et al. 2013, Carvalheiro et al. 
2011, Greenleaf & Kremen 2006). Therefore, negative inter-
actions between pollinators (such as competition) do not 
always translate into a decreased ecosystem service.

2.2.3 Facilitation
Provision of shared resources: By their pollinating capac-
ity, pollinators facilitate one another by increasing shared 
plant availability (Geslin et al. 2017). Pollinator foraging 
behaviour can also directly increase resource availability 
for other flower-visiting insects. For example, some short-
tongued bumblebee species practice primary “nectar rob-
bing” by creating a hole on the base of a flower to access the 
hidden nectar, which is then used by other bee and non-bee 
species (secondary robbers) (Leadbeater & Chittka 2008). 
This facilitative mechanism could be deleterious for crop 
pollination, due to reduced pollination of the flowers, or 
reduce fruit set due to flower damages.

Interspecific transfer of social information: It is well-
known that social pollinators are able to communicate 
information, either visual or olfactory, about the location 
of rewarding resources or the presence of predators (Baude 
et al. 2011, Dawson & Chittka 2014, Leadbeater & Chittka 
2005). These cues can also be gathered and used by hetero-
specific species, a behaviour called eavesdropping (Goodale 
et al. 2010). For example, Bombus terrestris can associate 
the presence of Apis mellifera on flowers as a predictor of a 
rewarding patch, at the same degree that of a member of its 
own species (Dawson & Chittka 2012). Some stingless bee 
species, that are social wild bees, deposit odour trails to guide 
nest-mates to a food source, and these cues can be used by 
other closely-related stingless bee species (Lichtenberg et al. 
2011, Nieh et al. 2004). These flows of information between 
species are a sort of facilitation, as one species can improve 
resource search efficiency of another by inadvertently leav-
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ing cues. Nevertheless, the boundary with competitive inter-
actions is unclear. Indeed, by using heterospecific social 
information to locate profitable resource, competition for 
those resources may be much stronger (Dawson & Chittka 
2012, Goodale et al. 2010). How those positive interactions 
affect crop pollination is indirect and untested. We could 
expect that facilitation would increase bee populations, and 
thus increase pollination.

Landscape context may affect interactions among pol-
linators by modifying resource abundance and disposition. 
For example, simple landscapes (containing scarce semi-
natural habitats) lead to increased foraging distances by 
honeybees (Danner et al. 2016), possibly resulting in higher 
competition for semi-natural resources with wild pollina-
tors. Similarly, (Herbertsson et al. 2016) showed that the 
impact of honeybees on bumblebee density and community 
composition depended on landscape complexity. How land-
scapes mediate other interactions among pollinators remains 
untested.

Studying interactions among pollinating insects is a 
blooming research field, especially in the focus of massively-
introduced pollinators and their effects on wild insect popu-
lations and plant pollination (Geslin et al. 2017). Exploitative 
competition is by far the most studied interaction, and seems 
to scale up to populations and communities. Other interac-
tions such as facilitation remain poorly studied, or only at the 
scale of the individuals.

3  Inter-guild ecological interactions among 
beneficial arthropods

The combined effects of multiple functional animal groups 
on crop production is rarely considered (Saunders et al. 
2016). Nevertheless, they are present in the same micro-hab-
itats, and are thus prone to interact. Resource overlap is not 
limited to species from a same guild as species from different 
guilds can also share similar resources. For instance, floral 
resources such as pollen and nectar are used by pollinators 
but also by some natural enemy species (as a secondary 
resource) (Wäckers & van Rijn 2012). It seems thus legiti-
mate to understand how interactions among these groups 
could impact plant diversification effectiveness to enhance 
them both and crop yield.

3.1 Predation of pollinators by natural enemies
Several generalist predators such as some predatory bugs 
(Hemiptera) (Greco & Kevan 1995), ants (Rodríguez-
Gironés et al. 2013) and some spiders (Thomisidae, 
Oxyopidae) (Louda 1982, Romero & Vasconcellos-Neto 
2004) are known to prey on pollinating insects. While some 
authors have considered these interactions to be too scarce to 
have an impact on plant-pollinator interactions and plant fit-
ness (Dukas & Morse 2005), others have said otherwise. For 

instance, crab spiders (Thomisidae) were shown to reduce 
pollinator visitation by altering pollinator behaviour (Dukas 
& Morse 2003, Huey & Nieh 2017), which could lead to 
decreased seed production (Suttle 2003). Indeed, several 
bee and hoverfly species were observed avoiding patches 
of flowers with an ambush predator (Brechbühl et al. 2010, 
Huey & Nieh 2017, Llandres et al. 2012, Reader et al. 2006), 
a behaviour that is learnt in the case of social bees (Ings & 
Chittka 2008). Ambush predators may directly impact soli-
tary bee population dynamics and diversity. A modelling 
approach showed that medium-sized bee population growth 
was limited when 1-2% of the flowers were occupied by 
ambush predators (Rodríguez-Gironés 2012). Small-sized 
pollinators had a low probability to encounter a predator due 
to lower resources requirements, while large bee species suf-
fered a lower predation rate due to a better escape response 
(Dukas & Morse 2005, Rodríguez-Gironés 2012).

However, the presence of pollinator predators on flowers 
does not necessarily imply a cost for the plant: most ambush 
predators are generalists, and some species also reduce phy-
tophagy by consuming flower and seed herbivores, which 
in some cases can lead to increased seed production even 
with reduced pollinator visitation (Louda 1982, Romero & 
Vasconcellos-Neto 2004). Therefore, depending on the her-
bivore risk, the predator diet breadth and the plant’s need 
for entomophilous pollination, some plant species may ben-
efit more from herbivore control than loose from a lack of 
pollination (Romero & Vasconcellos-Neto 2004). However, 
studies on predation of pollinators in agricultural crops are 
lacking.

3.2  Competition for floral resources between 
pollinators and natural enemies

Many natural enemies feed, at various degrees, on floral 
resources, either pollen for egg maturation (it is the case for 
many aphidophagous hoverflies and parasitoids for instance) 
and/or nectar for energy intake (Wäckers & van Rijn 2012). 
Therefore, competition for floral resources could theoreti-
cally occur among florivorous natural enemies and polli-
nating insects, either due to the depletion of resources by 
superior competitors or interference on the flowers. Several 
studies have evidenced an interference between ant spe-
cies, that are often aggressive, and bee pollinators visiting 
the same plant (e.g. Cembrowski et al. 2014, Santos & Leal 
2019, Sinu et al. 2017, Unni et al. 2021). In all studies, bee 
flower visitation was reduced in the presence of ants, in 
response to either visual (Santos & Leal 2019) or scent cues 
(Cembrowski et al. 2014). Depending on the species studied, 
this interference competition either led to decreased pollina-
tion (Sinu et al. 2017), or no effect (Santos & Leal 2019).

In cases of less aggressive natural enemies, we could 
expect bees to be the superior competitors, as they are more 
intensive flower foragers: adults require floral resources 
for the larvae and for themselves, contrary to many flo-
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rivorous natural enemies for which larvae and/or adults are 
mainly carnivorous. Bees present behaviours that optimize 
resource intake (Goulson 1999) and can therefore have a 
non-negligible impact on the availability of floral resources 
in an environment. Moreover, as they are usually common 
on flowers, bigger and aggressive (Gross & Mackay 1998, 
Pinkus-Rendon et al. 2005), physical interference on flowers 
with other flower foraging insects has a high probability to 
occur. On the other hand, natural enemies are expected to 
be opportunistic in their floral resource choice. For instance, 
adult aphidophagous hoverflies are known to accept low 
rewarding resources (Gilbert 1983). Nevertheless, although 
studies on the effects of floral resources on natural enemy 
fitness have flourished in controlled experiments and show 
that floral resources increase greatly natural enemy longevity 
and fecundity (e.g. Damien et al. 2020, Géneau et al. 2012, 
Pinheiro et al. 2013), little is known about nectar and pollen 
consumption of natural enemies in natura. Aphidophagous 
hoverfly (Syrphinae) foraging behaviour on flowers may be 
the most studied among natural enemies, probably as they 
are also pollinators, although substantially less than bees, 
and many gaps on the subject remain (Dunn et al. 2020). We 
argue that the impact on natural enemies of exploitative and 
interference competition with larger flower-visiting insects 
such as bees is overlooked (but see Jeavons et al. 2022).

Lee & Heimpel (2003) were the first to suggest that com-
petition could occur in the fields between parasitoids and 
pollinators. In buckwheat (Fagopyrum esculentum) strips, 
they showed that nectar availability was drastically reduced 
in the presence of pollinators. Nevertheless, the impact of 
nectar depletion on natural enemy feeding (here parasitic 
wasps) and on biological control in the adjacent field were 
not measured. In two field experiments, Campbell et al. 
(2012a, 2012b) showed that in multi-functional flower plots 
aiming at enhancing both pollinators (with long-corolla 
flowers) and natural enemies (with short-corolla flowers), 
bee abundance remained equal to that in plots specifically 
engineered for bees. However, parasitoid abundance was 
reduced by 50% compared to plots specifically engineered 
for natural enemies, suggesting that natural enemies may be 
disturbed by bees when visiting flower mixes. Other stud-
ies have also noticed predatory hoverfly displacements when 
flower mixes attracted many bees (Ambrosino et al. 2006, 
Campbell et al. 2017, Jeavons et al. 2020, Pontin et al. 2006). 
Such results suggest the existence of negative interactions 
between natural enemies and pollinators that could lead to 
trade-offs between biological control and pollination pro-
cesses. On the other hand, disturbance of natural enemies 
by pollinators in flower plantings may also promote natural 
enemy displacement onto the focal field.

To conclude, competitive interactions among flower 
visiting insects from different guilds may be very common 
as they partly share the same habitat and food resources, 
although their impact on insect and plant fitness and on 

interactions between ecosystem services remains totally 
unknown. The selective pressure for finding floral resources 
should vary greatly depending on the natural enemy species, 
its needs and foraging behaviour.

3.3 Facilitative interactions

3.3.1 Protection of floral resources by natural enemies of 
florivorous pests

Floral damages caused by florivorous pests were shown to 
negatively interfere with the attraction of pollinators (Cardel 
& Koptur 2010). In this context, natural enemies can facili-
tate resources for pollinators by consuming florivorous pests 
(Lundin et al. 2012, Sutter & Albrecht 2016). In those two 
studies, seed set of red clover and rapeseed was greater when 
pollination and pest control occurred simultaneously than 
the sum of separate services, indicating a synergistic effect 
between biological control and pollination. Nevertheless, 
pest control was only simulated by decreasing the level of 
florivorous pests, without the effective presence of natural 
enemies in the experimental design. These studies high-
light the indirect interaction between pollinators and natural 
enemies, but other interactions, such as interference, could 
occur with the actual presence of natural enemies on flowers 
due to spatial overlap.

3.3.2 Provision of shared floral resources
Pollinator diversity, by functional complementarity, can con-
tribute to increase plant abundance and diversity (Albrecht 
et al. 2012, Fründ et al. 2013). More diverse plant patches 
may harbour a higher diversity of herbivores, thus enhanc-
ing the diversity of natural enemies and increasing pest 
control (Haddad et al. 2009). Moreover, more flowering 
plant species will benefit natural enemies that feed on flo-
ral resources. Similarly as above, pollinators could facilitate 
the access of floral resources to natural enemies, such as by 
nectar-robbing.

4  Research perspectives and implications 
for agroecological management

Conserving biodiversity and multiple ecosystem services in 
agroecological systems is a challenging goal. Understanding 
how diversification strategies drive arthropod communities 
and their interactions may help to predict the effectiveness 
of those practices and improve them, but numerous knowl-
edge gaps remain (highlighted in Fig. 1). Different kinds of 
interactions can affect ecosystem services both positively 
and negatively (Fig. 1). Overall, interactions that are “posi-
tive” in terms of individual fitness (facilitation) appear to 
be “positive” for ecosystem service provision (synergism). 
Interactions that negatively affect at least one of the protago-
nists (predation, competition) seems to have more variable 
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effects on ecosystem service provision. For instance, com-
petitive interactions lead in some cases to decreased ben-
eficial insect populations (and probably decreased related 
ecosystem services). But they can also lead to resource par-
titioning, and to complementation in the provision of the 
services (“additive effect”), or enhanced ecosystem services 
due to foraging behaviour changes (synergism) (Fig. 1).

4.1  Understanding better ecological interactions 
among beneficial insects at different 
temporal and spatial scales

Although there is an increasing amount of literature on eco-
logical interactions among beneficial arthropods, we iden-
tified numerous gaps that hinder our understanding of the 
effects of biodiversity conservation on ecosystem services.

First, many functionally important groups seem to be 
overlooked in many studies on pollination and biological 
control enhancement. For instance, many hoverfly species 
are both pollinators and natural enemies of pests and could 
provide dual ecosystem services. Nevertheless, numerous 
knowledge gaps remain on the ecology of most species of 
this group (e.g. aphid consumption rate for the aphidopha-
gous species, flower preferences, habitat requirement) (Dunn 
et al. 2020). Besides, in-field studies of hoverflies ecology 
and their provisions of ecosystem services to crops is dif-
ficult and rare for hoverflies, most field studies on pollina-
tion focusing on bees (Dunn et al. 2020, Rader et al. 2020, 
Raguso 2020). We note however a recent interest in hover-
flies and their dual ecosystem service provision (Dunn et al. 
2020, Pekas et al. 2020, Rader et al. 2020, Raguso 2020).

Most studies are conducted within very simplified sys-
tems, comprising few species (Frago 2016), and thus poorly 
explaining the effect of multi-species interactions on com-
munity composition and effectiveness in the provision of 
ecosystem services. Fined-tuned protocols are needed to 
successfully dissect the effect of interactions, in comple-
ment to broad correlative studies (Fig. 2). Care has to be 
taken with laboratory studies that sometimes lack of eco-
logical relevance (Nieberding et al. 2018). For instance, 
using wild-caught insects, instead of lab strains that may be 
genetically different, will provide clearer fitness and behav-
ioural responses to experimental settings (Nieberding et al. 
2018) (Fig. 2). Adopting foodweb approaches with network 
analyses and multi-model inference are useful tools to bet-
ter quantify the effect of interactions on community perfor-
mances (Frago 2016, Kotula et al. 2020) (Fig. 2). Similarly, 
the environmental context can clearly modify the effect of 
interactions on arthropod behaviours, and hence on the eco-
system services. For instance, Cervantes-Loreto et al. (2021) 
demonstrated that the interference between bee species was 
strongest when resource availability and pesticide exposure 
were high.

Moreover, facilitative interactions are still poorly studied 
compared to “negative” interactions, although their impor-

tance in the functioning of communities was raised several 
years ago in various ecological communities (Bruno et al. 
2003). Mentions of facilitative interactions among benefi-
cial insects are only sporadic, mostly involving behavioural 
changes that increase resources for other insects. Such inter-
actions may need to be generalized to other systems, for 
example by understanding which species traits are involved, 
and how much they impact the provision of the ecosystem 
services.

The scales at which interactions are measured is another 
point of improvement (Garibaldi et al. 2018). Although eco-
logical interactions occur at the local scale, their effects can 
be mediated by landscape context (Herbertsson et al. 2016, 
Martin et al. 2016) (Fig. 2). Nevertheless, the understand-
ing of the effects of scales on interactions remains low and 
shows no clear pattern. Various scales may highlight differ-
ent effects on interactions, and will depend on the functional 
groups studied, as effective scale will vary from species to 
species. Moreover, long-term studies are very scarce (Frago 
2016, Wojcik et al. 2018), although essential to understand 
how interactions can modify community structure and its 
functioning in the long-term (Fig. 2).

4.2  Considering interactions among beneficial 
arthropods from different guilds

While a few studies focused on how pollination and pest 
control interfere (Garibaldi et al. 2018), studying how eco-
system service providers interact is clearly missing, although 
this is a key mechanism to understand ecosystem service 
interactions. Some interactions between natural enemies and 
pollinators have been studied under an evolutionary dimen-
sion, such as bee predation by sit-and-wait predators (see 
ref. in 2.1), but not in an agricultural context where domestic 
pollinators are massively introduced and floral resources are 
scarce.

Studying interactions among species from different 
functional groups presents several technical difficulties. 
Laboratory studies require the use of many biological mod-
els with different requirements, which makes it long and dif-
ficult to rear multiple species. Besides, assessing the impact 
of interactions on the fitness of the protagonists may be dif-
ficult due to non-natural conditions. In the field, confound-
ing effects may be difficult to differentiate. For example, 
following conjointly the populations of both groups may 
provide evidence on how each group vary according to the 
other (interactions), but could also be due to their respec-
tive response to environmental drivers (Bennett et al. 2009, 
Jeavons 2020). Similarly, the intensity of use of floral 
resource by many natural enemies, such as parasitoids, is 
often difficult to follow in the field, due to the scarcity of 
feeding events and the size of individuals. Until now, prox-
ies have mainly been used to simulate pest control (e.g. plots 
with less pests (Lundin et al. 2012)), and direct interactions 
among insects are not measured.
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Fig. 2.  Toolboxes presenting methods to study the effects of intra- and inter-guild interactions on ecosystem service providers and 
their related ecosystem services.
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4.3  Managing agricultural ecosystems for  
multi-service provisioning

While several reviews and meta-analyses have tried to iden-
tify mutual habitats/practices enhancing both pollinators and 
natural enemies (Martin et al. 2019, Shackelford et al. 2013), 
none have considered their interactions to understand how to 
optimize the associated ecosystem services.

Studying the direction and the magnitude of the effects of 
trophic and non-trophic interactions on ecosystem function-
ing is even more topical in the current context of anthropic 
alterations of ecosystems. Landscape fragmentation, species 
introduction/augmentation, climate change, diversification 
schemes, are many examples of human actions that mod-
ify ecological communities and interactions among organ-
isms. By modifying community composition, diversification 
strategies may greatly impact interactions among beneficial 
insects. Nevertheless, interactions between guilds are very 
scarcely studied in the context of plant resource diversifi-
cation. Adopting a functional approach would facilitate the 
study of multiple groups simultaneously in a wider and trans-
posable framework (Blaum et al. 2011). Identifying which 
plant traits favour which insect species or group should be 
explored to avoid negative interactions and favour positive 
interactions. Limiting competition, for instance by increas-
ing resource partitioning at the local and landscape scales 
based on the preferences of each group could be a promising 
management scheme. For instance, increased mass-flower-
ing crops would favour preferentially generalist pollinator 
species (Rollin et al. 2013), but could also retain them from 
other spontaneous resources, and thus decrease competition 
on those resources (Magrach et al. 2017). This implies the 
management of both cultivated and spontaneous flowers 
simultaneously at several scales, with a continuity of mass-
flowering crops to avoid periods when generalist pollinators 
will spillover on spontaneous resources and compete with 
more specialist species (Schellhorn et al. 2015). At the local 
scale, multi-functional mixes could be used in flower strips, 
with a mixture of plant traits favouring different groups, but 
spatially separated to favour all groups at different places 
and limit exploitative and interference competition (Jeavons 
2020). These management strategies should be scattered in 
the landscapes near the focal crop fields, considering arthro-
pod dispersal ranges, to favour spillover into the crops and 
ecosystem service provision (Blitzer et al. 2012).

While there is a lot of interest in how to promote natural 
enemies and pollinators simultaneously in agricultural land-
scapes, this review urges to address how interactions among 
those arthropods affect the ecosystem services they provide. 
The management of multi-service provisioning agroecologi-
cal systems should be more integrated, considering several 
functional groups and their interactions, and their responses 
at several spatial and temporal scales.
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