Electronic and Charge Transport Properties in Bridged versus Unbridged Nanohoops: The Role of the Nanohoop Size - Université de Rennes Accéder directement au contenu
Article Dans Une Revue Chemistry - A European Journal Année : 2023

Electronic and Charge Transport Properties in Bridged versus Unbridged Nanohoops: The Role of the Nanohoop Size

Résumé

In the field of p-conjugated nanohoops, the size of the macrocycle has a huge impact on its structural characteristics, which in turn affect its electronic properties. In this work, we report the first experimental investigations linking the size of a nanohoop to its charge transport properties, a key property in organic electronics. We describe the synthesis and the study of the first example of cyclocarbazole possessing five constituting building units, namely [5]-cyclo-N-butyl-2,7-carbazole [5]C-Bu-Cbz. By comparison with a shorter analogue, [4]-cyclo-N-butyl-2,7-carbazole [4]C-Bu-Cbz, we detail the photophysical, electrochemical, morphological and charge transport properties, highlighting the key role played by the hoop size. Particularly, we show that the saturated field effect mobility of [5]C-Bu-Cbz is four times higher than that of its smaller analogue [4]C-Bu-Cbz (4.22 × 10-5vs 1.04 × 10-5 cm².V-1.s-1). However, the study of the other OFET characteristics (threshold voltage VTH and subthreshold slope SS) suggest that a small nanohoop is beneficial for a good organization of the molecules in thin films whereas a large one increases the density of structural defects, and hence of traps for the charge carriers. The present findings are of interest for the further development of nanohoops in electronics.

Domaines

Chimie organique
Fichier principal
Vignette du fichier
ACIE 5 CyclocarbazoleII.pdf (1.86 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04061879 , version 1 (18-09-2023)

Identifiants

Citer

Fabien Lucas, Clement Brouillac, Nemo Mcintosh, Samuele Giannini, Joëlle Rault-Berthelot, et al.. Electronic and Charge Transport Properties in Bridged versus Unbridged Nanohoops: The Role of the Nanohoop Size. Chemistry - A European Journal, 2023, 27 (41), pp.e202300934. ⟨10.1002/chem.202300934⟩. ⟨hal-04061879⟩
30 Consultations
14 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More