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Background and Objectives: Dopamine responsiveness (dopa-sensitivity) is an important 

parameter in the management of patients with Parkinson’s disease (PD). For quantification of 

this parameter, patients undergo a challenge test with acute Levodopa administration after drug 

withdrawal. This test may lead to patient discomfort and use of significant resources. Our 

objective was to develop a predictive model by combining variables from clinical scores and 

imaging. 

Methods: 350 patients, recruited by 13 specialist French centers and considered for deep brain 

stimulation, underwent an acute L-dopa challenge (dopa-sensitivity>30%), full assessment, and 

MRI investigations, including T1w and R2* images. Data were randomly divided into a 

learning base from 10 centers and data from the remaining centers for testing. A machine 

selection approach was applied to choose the optimal variables and these were then used in 

regression modeling. Complexity of the modelling was incremental, while the first model 

considered only clinical variables, the subsequent included imaging features. The performances 

were evaluated by comparing the estimated values and actual values. 

Results: Whatever the model, the variables age, sex, disease duration and motor scores were 

selected as contributors. The first model used them and the coefficients of determination (R2) 

were 0.69 for the training data and 0.60 for the test set. The models that added imaging features 

enhanced the performances: with T1w (R2=0.76 and 0.65) and with R2* (R2=0.72 and 0.60). 

Discussion: These results suggest that modeling is potentially a simple way to estimate dopa-

sensitivity, but requires confirmation in a larger population, including patients with dopa-

sensitivity<30%. 

 

 

 

 

 

 

 

 

1. INTRODUCTION 
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Dopamine replacement therapy is the first-line pharmacologic treatment for Parkinson’s disease 

(PD) [1]. Levodopa (L-dopa), an oral dopamine precursor combined with a peripheral dopa 

decarboxylase inhibitor, is the most commonly prescribed drug. It predominantly improves 

motor symptoms, particularly akinesia and rigidity by compensation for striatal dopamine 

depletion. The severity of these motor symptoms, related to the level of degeneration and 

dopamine depletion, differs from one patient to another. As a consequence, patients may exhibit 

different responses to L-dopa ([2], [3]). This response is called dopa responsiveness or dopa-

sensitivity.  

Evaluation of dopa-sensitivity, consisting in measuring the contrast between the “ON” and 

“OFF conditions, usually requires an acute administration test in hospital after overnight 

withdrawal of treatment or even longer if the patient is receiving sustained-release dopamine 

agonists. This acute L-dopa challenge, in addition to having a real economic cost, is sometimes 

poorly tolerated by the patient during the “OFF” time, and is a burden for the evaluator. In 

addition, the acute effect may sometime differ from the chronic effect of L-dopa. Predictive 

modeling appears, thus potentially of interest to reduce these burdens. While this modeling was 

widely used in different applications as diagnosis and prognosis and employing several 

analytical methods [4], very few works focused on this issue. Two recent studies reported the 

first results towards this kind of approaches. In 2019, Khodakarami et al. [5] investigated the 

contribution of an ambulatory wearable device, the Parkinson’s Kinetigraph. They combined 

the measured features with the Unified Parkinson’s Disease Rating Scale Part III (UPDRS III) 

score in “ON” and “OFF” conditions to build a model of motor function severity levels, 

subsequently allowing predicting variations of Dopa-sensitivity. In 2021, Aman et al. [6], using 

data from the Levodopa response study of the Mickael J. Fox Foundation for Parkinson’s 

research, compared different demographic and clinical features between good responders and 

bad responders and examined several machine learning algorithms to build models allowing 

the best classification.   

In this study, guided by the aim of building a non-invasive prediction model of patient 

individual dopa-sensitivity, we examined the combination of demographic data and “ON” 

condition clinical scores evaluating disease severity to produce such a model. MRI features 

were also investigated. It is now well established that this imaging modality, able to quantify 

brain degeneration, can be useful in PD. T2* weighted relaxometry and susceptibility-weighted 

mapping analyses derived from gradient multi-echo sequences can be used to quantify the iron 

load and nigral degeneration, characteristic of the disease ([7], [8]). Anatomic imaging, using 
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T1-weighted sequences, can indicate alterations in gray matter volume and cortical changes 

([9], [10]). 

2. METHODS 

2.1 Study population and clinical data 

Patients were enrolled prospectively in 13 specialist centers for movement disorders belonging 

to a national network (NS-PARK-F-CRIN) in France during their selection for sub-thalamic 

nucleus deep brain stimulation (DBS), as an ancillary study to the PREDISTIM study (Study 

of the predictive factors for therapeutic response of subthalamic stimulation on quality of life 

in Parkinson’s disease). The study was funded by the French Ministry of Health (PHRC-N) and 

the French charity, France Parkinson. It was approved by the local institutional review board 

(CPP Nord Ouest IV, Lille, France; study reference: 2013-A00193-42; identified under 

NCT02360683 in ClinicalTrials.gov). All participants provided their written, informed consent 

before taking part. The study complied with the methods, guidelines, and regulations described 

in the approved protocol.  

All patients met the Movement Disorders Society (MDS) clinical criteria for the diagnosis of 

PD [11] and selection criteria for DBS: age <75 years; disease duration >5 years; no severe 

cognitive impairment or dementia with a Montreal Cognitive Assessment (MoCA) score <24 

and DSM-IV criteria; no parkinsonian psychosis or other severe psychiatric disorder (bipolar 

disorder, severe depression, etc. according to the DSM-IV), as assessed in a semi-structured 

interview; no surgical contraindication; no severe cerebral atrophy or MRI abnormality; and no 

serious pathology in the terminal phase affecting the short-term vital prognosis. Finally, for the 

inclusion criterion of dopa-sensitivity >30%, an acute L-dopa challenge was performed under 

standardized conditions by a trained, expert neurologist to assess dopa-sensitivity. In the fasting 

state, the “worst OFF” condition was evaluated with the MDS Unified Parkinson's Disease 

Rating Scale motor score (MDS-UPDRS-III) early in the morning (i.e., at about 08:30 am), 

after overnight withdrawal of L-dopa, and after a period of withdrawal of at least 5 half-lives 

for dopaminergic agonists. L-dopa was then administered (at about 09:00 am), the dose 

corresponding to 150% of the usual morning L-dopa equivalent dose used by patients to relieve 

their symptoms. This dose is standard and avoids missing the “best ON” because after a long 

period of “OFF”, the dose required is higher than during chronic administration. The assessment 

of the “best ON” condition was checked with the same scale every 15 min until the best 

improvement was obtained and a loss of effect commenced (i.e., from 15 min to 4 h after the 

L-dopa dose). We also systematically checked that the “best ON” was confirmed by the patient. 
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All measures were reported on a case report form in each center and double-checked. The 

participants also underwent a detailed clinical assessment, including Hoehn and Yahr stage, 

Schwab and England Activities of Daily Living Scale, and the MDS Unified PD Rating Scale 

(UPDRS). 

A total of 350 patients were enrolled and their demographic and clinical characteristics are 

summarized in Table 1. Figure 1 shows the frequency distribution of L-dopa responses in the 

study population. 

Table 1. Demographic and clinical data for the study population. 

 Parkinson’s disease patients 
(PREDISTIM Study)  

No. of patients 350 
No. of centers 13 
Sex (M/F) 235/115 
Age (years) 59.7 ± 7.55 
Disease duration (years)  9.65 ± 3.9 
MDS-UPDRS_1 11.50 ± 5.37 
MDS-UPDRS_2 ON 5.58 ± 4.82 
MDS-UPDRS_2 OFF 18.71 ± 8.17 
MDS-UPDRS_ 3 best ON 10.93 ± 8.00 
MDS-UPDRS_ 3 worst OFF 42.00 ± 16.82 
MDS-UPDRS_4 8.47 ± 3.51 
MDS-UPDRS_total ON 36.50 ± 14.42 
MDS-UPDRS_total OFF 80.69 ± 26.03 
Hoehn_Yahr score (ON) 1.34 ± 0.85 
Hoehn_Yahr score (OFF) 2.60 ± 0.88 
Schwab & England (%) (ON) 93.1 ± 10.5 
Schwab & England (%) (OFF) 68.7 ± 18.5 
LEDD (mg/day) 1666.18 ± 397.177 
Dopa-sensitivity (%) 
   Range (min-max) 

73.98 ± 11.05 
(30.92 - 95.11) 

 
Values shown are mean ± standard deviation unless stated otherwise. 
M: male; F: female; MDS-UPRDS: Movement Disorders Society unified Parkinson's disease rating scale motor 
score; LEDD: L-dopa equivalent dose. 
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Figure 1. Frequency distribution of L-dopa response in the study population. 

2.2 Imaging and features 

All patients were scanned on 3T MRI systems. Two sequences were obtained: (i) high-

resolution 3-dimensional T1w; and (ii) multi-gradient echo (Multi-GRE) T2*w sequences. 

Both sagittal sequences had 1 mm3 isotropic voxels; for the T1w sequence, parameters were: 

repetition time = 7.2 ms, echo time = 3.3 ms, flip angle = 9°, acquisition matrix = 256 x 256, 

and 176 contiguous slices, while for the multi-GRE T2*w sequence, they were TR = 54 ms, TE 

= {4.2, 9.5, 14.7, 20, 25.3, 30.5} ms, flip angle = 15°, acquisition matrix = 256 x 256, and 160 

contiguous slices. 

Imaging features were extracted from the key cerebral structures affected in PD. In addition to 

the substantia nigra, the caudate nucleus and the putamen the primary sites of the disease, the 

sub-thalamic nucleus, the target of DBS and the thalamus were also considered as regions of 

interest (ROI) because they are impacted by cell loss ([12], [13], [14], [15]). 

Structural T1 images were processed using the HCP pipeline (workbench 1.4.2 [16]). This 

optimized pre-processing pipeline includes steps for non-uniform signal correction, signal and 
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spatial normalizations, skull stripping, and brain tissue segmentation based on Freesurfer 

software [17]. The caudate, putamen, and thalamus were segmented using the Volbrain pipeline 

[18]. The substantia nigra and sub-thalamic nucleus were segmented using the atlas described 

by Keuken et al. [19] 

R2* mapping was performed with niftyfit [20]. A mono-exponential isotropic decay with echo 

time was obtained by voxel-by-voxel nonlinear least-squares fitting of the multi-echo T2*-

weighted data.  

For features computing, we considered texture analysis to measure different statistics 

quantifying signal variation in the defined brain regions. This technique has been proven to be 

effective at detecting changes related to the disease on different MRI sequences: T1 ([21], [22]), 

R2*, and QSM maps [23]. According to our experience with these features, 10 texture features 

were chosen and computed: four from first-order statistics and six from second-order statistics. 

The first-order parameters included: mean gray level, standard deviation (SD) of gray levels, 

kurtosis, and skewness. These two last features allow quantification of the asymmetry of signal 

values in relation to a normal distribution.  

The second-order features (also known as Haralick textural features) quantify the relationships 

between pairs of neighboring voxels in the image. The features were derived from the gray 

level co-occurrence matrix (GLCM); a spatial relationship was defined as the relative direction 

in a given direction d. In this study, the GLCM matrix was estimated by considering four 

directions (q=0°, 45°, 90°, and 135°) and a distance d=1 voxel. Using this matrix, the following 

features were computed: homogeneity, which represents  uniformity of the texture intensity; 

contrast, which represents the degree to which the texture intensity levels differ between voxels 

or local intensity variation; entropy, which represents the degree of uncertainty (measure of 

randomness); correlation, which represents the degree of mutual dependency between voxels; 

variance, which gives high weights for elements different from the average value; sum-average, 

which measures the relationship between occurrences of pairs with lower intensity values and 

occurrences of pairs with higher intensity values; and inverse difference moment (InvDiff), 

which measures the difference between the highest and lowest values of a contiguous set of 

voxels. 

Texture features were measured in the five regions indicated above in T1w images while on the 

R2* maps, they were computed in the substantia nigra and sub-thalamic nucleus (Figure 2). 
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Figure 2. Images and features. (A) MRI T1-weighted image. (B) Definition of the structures of interest, caudate 

nucleus, putamen, and thalamus on T1 images. (C) Definition of the substantia nigra and sub-thalamic nucleus on 

T1 images. (C) Right R2* maps with regions of interest (ROI) on the substantia nigra and sub-thalamic nucleus. 

(D) Texture features computing process. 
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2.3 Modeling 

Accurate model building requires three steps. The first involves the definition of features to be 

considered, the second involves combination of these features to obtain the best estimation of 

the outcome (i.e., here the percentage L-dopa response), and the third is testing and validating 

the model. For the first step, different configurations were considered by enhancing the 

complexity of the features studied. The first model (Demo_Clinic_Model) looked at 

demographic and clinical data measured during “ON” conditions (Table 1). The other models 

incorporated imaging features in the first model. The second focused on features from T1w 

images (Demo_Clinic_T1_Model) and the third focused on features from R2* maps 

(Demo_Clinic_R2*_Model), while the last considered the combination of T1w and R2* 

features (Demo_Clinic_T1_R2*_Model). 

For the second step, given that the variable to be estimated is quantitative and continuous, 

regression-based approaches are the most suitable among the machine learning methods. From 

another side and by considering the incremental complexity that we want to test in the models 

and lastly guided by the aim of obtaining a clinically meaningful models allowing to assess the 

contribution of each contributor variable and its weighted, we have selected the Least Absolute 

Shrinkage and Selection Operator (LASSO) algorithm [24] (In MATLAB, MathWorks Inc., 

Natick, MA, USA). This is a multivariate regression analysis method, based on shrinkage 

estimation. It has different advantages, including overall variable selection, a capacity to handle 

multi-collinearity, and a reduction of the possibility of model over-fitting. Interestingly, the 

LASSO enables the first and second steps to be combined.  

The testing and validation step consisted of an estimation of the performance of the model. It 

included cross-validation, using the data used for learning, and testing using new and unseen 

data. To deal with this step, and given the dataset size, we chose to use a sub-part of the data 

for model building and a second sub-part for testing. In order to make the testing data 

completely unseen for the learning process, data from some centers were not included in the 

learning process and were exclusively used for testing purpose as external data. Thus, the 13 

movement disorder centers involved in the study were randomly divided into learning and 

testing sets with the aim of having 80% of the data for learning and 20% for testing, commonly 

used in machine learning methods. Random selection was therefore applied to select the centers 

to obtain data from 280 patients for learning. These 280 patients were recruited in 10 centers. 

Data from the remaining three centers with 70 patients were used for testing. This process is 
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summarized in Figure 3. The distributions of the main demographic and clinical scores in the 

learning and testing sets are described in table 2. 

Table 2. Data distribution in the learning and testing sets 

 Learning data Testing data 
No. of patients 280 70 
No. of centers 10 3 
Sex (M/F) 190/90 45/25 
Age (years) 60.1 ± 8.2 58.7 ± 7.8 
Disease duration (years)  10.3 ± 4.2 9.2 ± 3.85 
LEDD (mg/day) 1700.32 ± 350.190 1690.75 ± 400.85 
Dopa-sensitivity (%) 72.05 ± 10.5 74.50 ± 9.75 

 
Values shown are mean ± standard deviation unless stated otherwise. 
M: male; F: female; LEDD: L-dopa equivalent dose. 

 

From another side and given that data distribution is unbalanced (figure 1) and most of the 

included patients (260) exhibited a dopa-sensitivity >70% and the remaining (90) were in the 

range 30-70%, which may impact the quality of the modelling, we aimed to test the 

performances of the models separately on the range >70% which appears, in terms of size, the 

most suitable for data analysis and modelling.  



   

13 
 

 

Figure 3. Flowchart of the process for building the dopa-sensitivity prediction model with the two steps: model 

estimation and model testing. 

2.4 Performances evaluation 

Performances in the learning and testing datasets were measured by comparing the actual dopa-

sensitivity values and the estimated values using the coefficient of determination (R2), min, 

max and the mean absolute differences [25].  
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3. RESULTS  

The overall results for the four models built are summarized in Table 3.  

The first model the Demo_Clinic_Model, the simplest since it includes only clinical scores on 

“ON” condition was built using the following features: age, sex, disease duration, 

MDS_UPDRS 2 (ON), MDS_UPDRS 3 (ON), MDS_UPDRS 4, and Schwab_England (ON). 

The full regression equation was: 

𝐃𝐨𝐩𝐚𝐬𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲_𝐃𝐞𝐦𝐨_𝐂𝐥𝐢𝐧𝐢𝐜_𝐌𝐨𝐝𝐞𝐥

= −0.035 ∗ 𝐚𝐠𝐞 + 0.191 ∗ 𝐝𝐢𝐬𝐞𝐚𝐬𝐞_𝐝𝐮𝐫𝐚𝐭𝐢𝐨𝐧 + 0.041 ∗ 𝐠𝐞𝐧𝐝𝐞𝐫 + 0.341 ∗ 𝐌𝐃𝐒_𝐔𝐏𝐃𝐑𝐒𝟐 

−1.594 ∗ 𝐌𝐃𝐒_𝐔𝐏𝐃𝐑𝐒𝟑 + 0.494 ∗ 𝐌𝐃𝐒_𝐔𝐏𝐃𝐑𝐒𝟒 + 0.11 ∗ 𝐒𝐡𝐰𝐚𝐛_𝐄𝐧𝐠𝐥𝐚𝐧𝐝 + 76.310	 

This model showed a coefficient of determination of R2=0.69 (Pearson correlation coefficient 

r=0.83, p<0.001) and R2=0.60 (Pearson correlation coefficient r=0.77, p<0.001) in the learning 

and testing datasets respectively. When the performances were assessed using data from the 

range (dopa-sensitivity>70%), the performances grew to R2=0.85 in the learning set and 

R2=0.80 in the testing set. The deviation between the actual values and the estimated one were 

in the range [min=-10, max=+5].  Figure 4.A depicts the behavior of this model on the learning 

and testing datasets. 

The Demo_Clinic_T1_Model enhanced the performances of the first model (R2=0.76, Pearson 

correlation coefficient r=0.87, p<0.001) and R2=0.65 (Pearson correlation coefficient r=0.80, 

p<0.001) in the learning and testing datasets respectively. A slight enhancement was also 

observed for the data in the range (dopa-sensitivity>70%): R2=0.88 in the learning set and 

R2=0.82 in the testing set respectively. Deviation between the actual and estimated values was 

in the range [min=-7, max=+5]. (Figure 4.B). For this model, the selection step retained the 

same clinical and demographic features as previously in addition to the following T1 w imaging 

features: entropy from the substantia nigra (SN), energy and entropy from the thalamus, InvDiff 

from the putamen, and skewness from the caudate. The full regression equation was as: 

𝐃𝐨𝐩𝐚𝐬𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲_𝐃𝐞𝐦𝐨_𝐂𝐥𝐢𝐧𝐢𝐜_𝐓𝟏_𝐌𝐨𝐝𝐞𝐥

= −0.04 ∗ 𝐚𝐠𝐞 + 0.22 ∗ 𝐝𝐢𝐬𝐞𝐚𝐬𝐞_𝐝𝐮𝐫𝐚𝐭𝐢𝐨𝐧 + 0.05 ∗ 𝐠𝐞𝐧𝐝𝐞𝐫 + 0.25 ∗ 𝐌𝐃𝐒_𝐔𝐏𝐃𝐑𝐒𝟐 

−1.60 ∗ 𝐌𝐃𝐒𝐔𝐏𝐃𝐑𝐒𝟑 + 0.55 ∗ 𝐌𝐃𝐒𝐔𝐏𝐃𝐑𝐒𝟒 + 0.15 ∗ 𝐒𝐡𝐰𝐚𝐛_𝐄𝐧𝐠𝐥𝐚𝐧𝐝 − 0.4 ∗ 𝐄𝐧𝐭𝐫𝐨𝐩𝐲𝐒𝐍 + 0.66

∗ 𝐄𝐧𝐞𝐫𝐠𝐲𝐓𝐡𝐚𝐥𝐚𝐦𝐮𝐬 − 0.57 ∗ 𝐄𝐧𝐭𝐫𝐨𝐩𝐲𝐓𝐡𝐚𝐥𝐚𝐦𝐮𝐬 + 0.03 ∗ 𝐈𝐧𝐯𝐃𝐢𝐟𝐟𝐏𝐮𝐭𝐚𝐦𝐞𝐧 + 0,05

∗ 𝐒𝐤𝐞𝐰𝐧𝐞𝐬𝐬𝐂𝐚𝐮𝐝𝐚𝐭𝐞 + 72.05 

 

The Demo_Clinic_R2*_Model that considered the features from the R2* maps was built using 

the regression equation: 
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𝐃𝐨𝐩𝐚𝐬𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲_𝐃𝐞𝐦𝐨_𝐂𝐥𝐢𝐧𝐢𝐜_𝐑𝟐_𝐌𝐨𝐝𝐞𝐥

= −0.08 ∗ 𝐚𝐠𝐞 + 0.35 ∗ 𝐝𝐢𝐬𝐞𝐚𝐬𝐞_𝐝𝐮𝐫𝐚𝐭𝐢𝐨𝐧 + 0.1 ∗ 𝐠𝐞𝐧𝐝𝐞𝐫 + 0.30 ∗ 𝐌𝐃𝐒_𝐔𝐏𝐃𝐑𝐒𝟐 

−1.85 ∗ 𝐌𝐃𝐒𝐔𝐏𝐃𝐑𝐒𝟑 + 0.88 ∗ 𝐌𝐃𝐒𝐔𝐏𝐃𝐑𝐒𝟒 + 0.15 ∗ 𝐒𝐡𝐰𝐚𝐛_𝐄𝐧𝐠𝐥𝐚𝐧𝐝 − 0.7 ∗ 𝐄𝐧𝐭𝐫𝐨𝐩𝐲𝐒𝐍 + 0.08

∗ 𝐊𝐮𝐫𝐭𝐨𝐬𝐢𝐬𝐒𝐍 − 0.3 ∗ 𝐄𝐧𝐭𝐫𝐨𝐩𝐲𝐒𝐓𝐍 + 74.65 

It can be observed that this model included the same clinical and demographical features as 

those used in the first model and added entropy and kurtosis from the substantia-nigra as well 

as the entropy from the sub-thalamic nucleus (STN). The model showed very close 

performances as the Demo_Clinic_Model (R2=0.72 and 0.60 in the learning and testing datasets 

respectively). But when considering only the range (dopa-sensitivity>70%), it outperforms this 

first model R2=0.90 in the learning set and R2=0.85 in the testing set respectively with a 

deviation between the actual and estimated values < ±5 units (Figure 4.C).   

For the last model all the features were considered for the selection, the LASSO algorithm 

selected the same clinical and demographical features as in the first model and completed by 

MR imaging features: entropy from the substantia nigra, InvDiff from the putamen and 

skewness from the caudate from the T1w images and kurtosis from the SN from the R2* maps. 

The equation of the model was: 

𝐃𝐨𝐩𝐚𝐬𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲_𝐃𝐞𝐦𝐨_𝐂𝐥𝐢𝐧𝐢𝐜_𝐓𝟏_𝐑𝟐_𝐌𝐨𝐝𝐞𝐥

= −0.05 ∗ 𝐚𝐠𝐞 + 0.41 ∗ 𝐝𝐢𝐬𝐞𝐚𝐬𝐞_𝐝𝐮𝐫𝐚𝐭𝐢𝐨𝐧 + 0.01 ∗ 𝐠𝐞𝐧𝐝𝐞𝐫 + 0.30 ∗ 𝐌𝐃𝐒_𝐔𝐏𝐃𝐑𝐒𝟐 

−1.82 ∗ 𝐌𝐃𝐒𝐔𝐏𝐃𝐑𝐒𝟑 + 0.80 ∗ 𝐌𝐃𝐒𝐔𝐏𝐃𝐑𝐒𝟒 + 0.23 ∗ 𝐒𝐡𝐰𝐚𝐛_𝐄𝐧𝐠𝐥𝐚𝐧𝐝 − 0.52 ∗ 	𝐄𝐧𝐭𝐫𝐨𝐩𝐲𝐒𝐍_𝐓𝟏 − 0.07 ∗

𝐈𝐧𝐯𝐃𝐢𝐟𝐟𝐏𝐮𝐭𝐚𝐦𝐞𝐧_𝐓𝟏 + 0.23 ∗ 𝐒𝐤𝐞𝐰𝐧𝐞𝐬𝐬𝐂𝐚𝐮𝐝𝐚𝐭𝐞_𝐓𝟏+0.1*𝐊𝐮𝐫𝐭𝐨𝐬𝐢𝐬𝐒𝐍_𝐑𝟐 + 72.05 

 

This model exhibited close performances to those that had incorporated features only from T1 

or R2* images, in the learning set (R2=0.76) while the performances in the testing dataset felt 

down (R2=0.55, Pearson correlation coefficient r=0.74, p<0.001) and also in the range (dopa-

sensitivity>70%), R2=0.83 in the learning set and R2=0.78 in the test set.      
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Table 3. Performances of the four prediction models built to estimate dopa-sensitivity using the learning and 

testing datasets. 

Model Learning Testing 

Mean Min Max R2* Mean Min Max R2* 

Demo_Clinic_Model 5.9 -20 22 0.69 6.25 -25 18 0.60 

Demo_Clinic _T1_Model 5.1 -20 20 0.76 6 -20 18 0.65 

Demo_Clinic_R2_Model 5.7 -23 20 0.72 7 -20 15 0.60 

Demo_Clinic_T1_R2_Model 5 -20 19 0.76 8 -23 19 0.55 

*: p<0.0001.  
R2: Coefficient of determination. 
Min: Minimum difference between actual and estimated dopa-sensitivity values. 
Max: Maximum difference between actual and estimated dopa-sensitivity values. 
Mean: Mean absolute difference between actual and estimated dopa-sensitivity values. 
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Figure 4. Actual and estimated dopa-sensitivity values in the prediction models on the cross-validation and testing 

sets, and their respective 95% confidence intervals. (A) Model with demographic and clinical data. (B) Model with 

demographic and clinical data, and texture features from T1w images. (C) Model with demographic and clinical 

data, and texture features from R2* maps. (D) Model with demographic and clinical data, and texture features 

from T1w images and R2* maps. 

 

 

 

 

 

 

 

 

 

 



   

18 
 

4. DISCUSSION 

Prediction of clinical scores for patients with PD is clinically relevant but remains challenging, 

requires the use of massive amounts of data [26] and accurate learning methods to link the 

observations to the inputs [27]. This study focused on the estimation of patient individual dopa-

sensitivity. The phenotypic heterogeneity of PD includes variability in L-dopa responsiveness 

([1], [2], [28], [29], [30]). The underlying mechanisms as well as the clinical correlates and 

significance of this heterogeneity are not clearly defined. The study exploits data from a large 

clinical trial to evaluate different configurations of prediction models. Patients were recruited 

for DBS and underwent L-dopa challenge to estimate their dopa-sensitivity. The modelling 

strategy was based on two factors: (i) the use of a small set of variables, clinically meaningful; 

and (ii) maximization of accuracy. Hence, to define the optimal variables to be incorporated, 

they were winnowed down through machine learning in different conditions. The first model 

considered only of demographic and clinical scores measured in “ON” conditions, once the 

patients received their daily L-dopa dose. The other models incorporated variables from MRI 

with sequences that demonstrated their usefulness in PD. Consequently, the second model 

included features from T1w images, the third from R2* maps, and the fourth from both 

sequences. The global performances of the four models are summarized in table 3.  

The modelling process included a discovery part involving 80% of the population from 10 

randomly selected centers and a validation step involving the remaining 20% of patients from 

three centers. Ideally, the validation cohort would be external to the study; however, even 

though dopa-sensitivity was always measured as the difference between “ON” and “OFF” 

scores, and according to a defined protocol (see section 2.1), the methods used to evaluate 

sensitivity to an acute L-dopa challenge could have varied slightly between centers and 

evaluators and the data used can therefore be considered as representative of the procedure.  

Additionally, and by considering the unbalanced distribution of the data, it seemed appropriate 

to assess the models in a specific configuration where data size was more suitable for data 

modelling. This was the case for the range (dopa-sensitivity>70%). The global performances 

were better than when using all the available data, in both learning and testing sets. 

Interestingly, for these data, a decrease was observed in the margin errors between the actual 

dopa-sensitivity values and the estimated ones. 
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The first model Demo_Clinic_Model, the simplest one, was built by combing in the regression 

model, the patient’s age, sex, and disease duration, as well as scores measuring motor 

complications: MDS_UPDRS 2 score, which quantifies motor experiences of daily living, 

MDS_UPDRS 3 score for motor examination, MDS_UPDRS 4 for motor complications, and 

the Schwab & England score for activities of daily living. For this model, the coefficient of 

determination R2 was 0.69 and 0.60 for the learning and test sets, respectively (Figure 3A). For 

the range (dopa-sensitivity>70%), the R2 grows in the testing set to 0.80 and a range error of [-

10, +5]. Malek et al. [28] in the Tracking Parkinson’s study, which investigated L-dopa 

responsiveness in early PD, examined demographic and disease-related features and found that 

older patients had a less robust response to L-dopa, and identified a relationship between dopa-

sensitivity and motor scores. In the study by Hauser et al. [2], sex influence was highlighted 

with female gender showing lower responses. In the same way, it was reported that L-dopa 

responsiveness could be influenced by a patient’s pharmacokinetics. Warren et al. [31] 

described the potential contribution of body weight while Mukherjee et al.  [32] reported the 

impact of gut absorption. The features selected to build the Demo_Clinic model seem to reflect 

all these variability sources and consequently their combination allowed us to obtain an accurate 

estimation of dopa-sensitivity. 

In subsequent models, we aimed to take advantage of neuroimaging, mainly MRI, to enhance 

the modeling accuracy. In addition to the fact that MRI in PD was reported to be of interest for 

disease diagnosis and staging, with correlation between some imaging features and some 

clinical scores, L-dopa is associated with changes in the images ([8], [38]). L-dopa 

administration induces intensity variations. Probably, influenced by the presence of iron, T2 

relaxation time was reported to be shorter ([33], [34]). On T1w sequences, voxel-based 

morphometry demonstrated an increase in gray matter voxel number in the substantia nigra, 

tegmental ventral area, and sub-thalamic nucleus [35]. For these models, it can be observed that 

the clinical and demographical features used for the first model were also selected as predictors. 

Only their weighting differed between the models. As discussed above, this may be explained 

by the fact that these features are the main contributors for the dopa-sensitivity variations 

explanation. 

In that way, the second model (Demo_Clinic_T1_Model) investigated the contribution of the 

imaging features measured on T1w images. Among the potential features that can be used, we 

chose to use texture features measured in ROI from the nigrostriatal pathway. These features 

have been demonstrated to have greater sensitivity to detect intensity changes than volumetry 
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and morphometry analysis methods [22]. Consequently, the model adding these features to the 

demographic and clinical features enhanced the performance to R2 of 0.76 in the learning set 

and 0.65 in the validation set, respectively (Figure 3B). In the range (dopa-sensitivity>70%), 

the R2 grows in the testing set to 0.82 and a range error of [-7, +5]. 

The contribution of features extracted from the R2* maps was examined in the model 

Demo_Clinic_R2_Model which additionally to the clinical and demographic predictors, 

selected imaging features from the substantia nigra and the sub-thalamic nucleus. One of the 

aspects of PD is abnormal iron accumulation in different regions of the brain, mainly the 

substantia nigra and sub-thalamic nucleus. This model, when considering all the data, did not 

outperform the two previous, however, when assessed using data in the range (dopa-

sensitivity>70%), enhanced the coefficient of determination to 0.85 in the testing set with a 

estimation error <± 5 units (Figure 4.C).  

The last model combined the demographical and clinical data with images features from both 

modalities but as it can observed in figure 4.D this combination did not allow to the 

enhancement of the prediction performances. 

Based on the outcomes of this study, it appears feasible to have an estimation of a patient’s 

individual dopa-sensitivity without an acute dopa challenge to put the patients in “OFF” 

conditions. Without claiming to completely replace the L-dopa challenge, which remains the 

standard, and beyond the quantitative aspect of dopa-sensitivity measurement, it allows the 

clinician to appreciate the qualitative aspects of L-dopa effects, the proposed approach 

described here may have a clinical impact on the selection of patients for DBS by allowing a 

preliminary overall estimation of the responsiveness. To the best of our knowledge, this is the 

first study to deal with this issue in this manner: using only “ON” scores and by considering 

the output variable as it is, i.e. a continuous variable. In the two first attempts, patients were 

stratified. In Aman et al. [6], the 28 patients included in the study were organized into two 

groups: good responders and bad responders and the problem was solved as a binary 

classification problem. In the study by Khodakarami et al. [5], in addition to the fact that the 

method is based on the use of a medical device, the 199 patients of the study were stratified 

into 5 classes according to the score on the UPDRS 3. 
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The outcome of the study should be considered carefully and seen as a first step towards the 

use of analytical modelling for dopa-sensitivity estimation. Indeed, it tells that mathematical 

modelling and machine learning can help in building clinically applicable solutions. The 

following steps could be at two levels. The first, the use of larger datasets from general PD 

patients, not only those recruited for DBS. Indeed, as showed when the models were assessed 

using data in the range (dopa-sensitivity>70%) the performances were higher and become 

potentially clinically applicable with estimation errors <±5 units. Furthermore, the availability 

of more massive and representative data of the PD patients will allow the use of additional 

modelling algorithms. Deep learning methods as conventional neural network would likely 

being suitable to extract potential features from the T1 and R2* maps [37]. The second is the 

definition of acceptable margins errors for the estimated values according to the considered 

clinical application.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

22 
 

References 
 

 [1] Fahn S and Poewe W. 
Levodopa: 50 years of a revolutionary drug for Parkinson disease. Mov Disord. 30 (1):1-3 2015  

 [2] Hauser RA, Auinger P Oakes D. 
Levodopa response in early Parkinson's disease. Mov Disord 24 (16):2328-2336 2009  

 [3] S.Fahn, D. Oakes I. Shoulson K. Kieburtz A. Rudolph A. Lang C. W. Olanow C. Tanner K. 
Marek 

Levodopa and the progression of Parkinson's disease. N.Engl.J.Med 351 (24):2498-2508 2004  

 [4] Nilashi M, Abumalloh RA Minaei-Bidgoli B Samad S Yousoof Ismail M Alhargan A Abdu 
Zogaan W. 

Predicting Parkinson's Disease Progression: Evaluation of Ensemble Methods in Machine Learning. J 
Healthc Eng. 2793361 2022  

 [5] Khodakarami H, Ricciardi L Contarino MF Pahwa R Lyons KE Geraedts VJ Morgante F Leake 
A Paviour D De Angelis A Horne M. 

Prediction of the Levodopa Challenge Test in Parkinson's Disease Using Data from a Wrist-Worn 
Sensor. Sensors (Basel). 19 (23):5153-2019  

 [6] Aman J, Bhaskar Bajaj S Agarwal R Rahat Bullah H 
Classification Based Levodopamine Response Prediction in Parkinson's Disorder. Applied Artificial 

Intelligence 35 (15):1287-1303 2021  

 [7] Hopes L, Grolez G Moreau C Lopes R Ryckewaert G Carrière N Auger F Laloux C Petrault M 
Devedjian JC Bordet R Defebvre L Jissendi P Delmaire C Devos D. 

Magnetic Resonance Imaging Features of the Nigrostriatal System: Biomarkers of Parkinson's Disease 
Stages? PLoS One. 11 (4):e0147947-2016  

 [8] Pyatigorskaya N, Gallea C Garcia-Lorenzo D Vidailhet M Lehericy S 
A review of the use of magnetic resonance imaging in Parkinson's disease. Ther Adv Neurol Disord. 7 

(4):206-220 2014  

 [9] Gonzalez-Redondo R, Garcia-Garcia D Clavero P Gasca-Salas C Garcia-Eulate R Zubieta JL 
Arbizu J Obeso JA Rodriguez-Oroz MC 

Grey matter hypometabolism and atrophy in Parkinson's disease with cognitive impairment: a two-
step process. Brain 137 :2356-2367 2014  

[10] Feldmann A., Illes Z Kosztolanyi P Illes E Mike A Kover F Balas I Kovacs N Nagy F 
 Morphometric changes of gray matter in Parkinson's disease with depression: a voxelbased 

morphometry study. Mov Disord 23 :42-46 2008  

[11] Emre M, Aarsland D Brown R Burn DJ Duyckaerts C Mizuno Y Broe GA Cummings J Dickson 
DW Gauthier S Goldman J Goetz C Korczyn A Lees A Levy R Litvan I McKeith I Olanow W 
Poewe W Quinn N Sampaio C Tolosa E Dubois B. 

Clinical diagnostic criteria for dementia associated with Parkinson's disease. Mov Disord. 22 :1689-
1707 2007  

[12] Guiney SJ, Adlard PA Bush AI Finkelstein DI Ayton S 
Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochemistry International 104 :34-

48 2017  



   

23 
 

[13] Pitcher TL, Melzer TR Macaskill MR Graham CF Livingston L Keenan RJ Watts R Dalrymple-
Alford JC Anderson TJ. 

Reduced striatal volumes in Parkinson's disease: a magnetic resonance imaging study. Transl 
Neurodegener. 21 (1):1-17 2012  

[14] Tessa C, Lucetti C Giannelli M Diciotti S Poletti M Danti S Baldacci F Vignali C Bonuccelli U 
Mascalchi M Toschi N 

Progression of Brain Atrophy in the Early Stages of Parkinson's Disease: A Longitudinal Tensor-
Based Morphometry Study in De Novo Patients Without Cognitive Impairment. Human Brain 
Mapping 35 :3932-3944 2014  

[15] Nemmi F, Sabatini U Rascol O Péran P 
Parkinson's disease and local atrophy in subcortical nuclei: insight from shape analysis. Neurobiology 

of Aging 36 :424-433 2015  

[16] Glasser, M. F. Sotiropoulos S. N. Wilson J. A. Coalson T. S. Fischl B. Andersson J. L. & Wu-
Minn HCP Consortium. 

 The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80 :105-124 
2013  

[17] Fischl B, Salat DH Busa E Albert M Dieterich M Haselgrove C van der Kouwe A Killiany R 
Kennedy D Klaveness S et al. 

Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. 
Neuron 33 :341-355 2002  

[18] Manjón, J. V. & Coupé P. 
(2016). volBrain: an online MRI brain volumetry system. Frontiers in neuroinformatics,10, 30. 10 

(30)2016  

[19] Keuken, M. C. & Forstmann B. U. 
A probabilistic atlas of the basal ganglia using 7 T MRI. Data in brief 4 :577-582 2015  

[20] Melbourne, A. Toussaint N. Owen D. Simpson I. Anthopoulos T. De Vita E. & Ourselin S. 
NiftyFit: a software package for multi-parametric model-fitting of 4D magnetic resonance imaging 

data. Neuroinformatics,14(3), 319-337. 14 (3):319-337 2016  

[21] Sikiö M, Holli-Helenius KK Harrison LC Ryymin P Ruottinen H Saunamäki T Eskola HJ 
Elovaara I Dastidar P 

MR image texture in Parkinson's disease: a longitudinal study. Acta Radiol. 56 (1):97-104 2015  

[22] Betrouni N, Moreau C Rolland AS Carrière N Chupin M Kuchcinski G LopesR Viard R 
Defebvre L Devos D. 

Texture-based markers from structural imaging correlate with motor handicap in Parkinson's disease. 
Sci Rep.2021 Feb1;11(1):2724.2021  

[23] Gaiying Li, Guoqiang Zhai Xinxin Zhao Hedi An Pascal Spincemaille Kelly M. Gillen Yixuan 
Ku Yi Wang Dongya Huang Jianqi Li. 

3D texture analyses within the substantia nigra of Parkinson's disease patients on quantitative 
susceptibility maps and R2* maps. Neuroimage 188 :465-472 2019  

[24] Tibshirani R 
Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society 58 (1):267-

288 1996  

[25] Poldrack RA, Huckins G Varoquaux G. 



   

24 
 

Establishment of Best Practices for Evidence for Prediction: A Review. JAMA Psychiatry. JAMA 
Psychiatry 77 (5):534-540 2020  

[26] Liu G., Locascio J. Corvol JC Boot B Liao Z Page K et al. 
Prediction of cognition in Parkinson's disease with a clinical genetic score: a longitudinal analysis of 

nine cohorts. Lancet Neurol 16 (8):620-629 2017  

[27] Boutet A, Madhavan R Elias GJB Joel SE Gramer R Ranjan M Paramanandam V Xu D 
Germann J Loh A Kalia SK Hodaie M Li B Prasad S Coblentz A MunhozRP Ashe J 
Kucharczyk W Fasano A Lozano AM. 

Predicting optimal deep brain stimulation parameters for Parkinson's disease using functional MRI and 
machine learning. Nat Commun. 24 (12(1)):3043-2021  

[28] Malek N, Kanavou S Lawton MA Pitz V Grosset KA Bajaj N Barker RA Ben-Shlomo Y Burn 
DJ Foltynie T Hardy J Williams NM Wood N Morris HR GrossetDG and PRoBaND clinical 
consortium. 

L-dopa responsiveness in early Parkinson's disease is associated with the rate of motor progression. 
Parkinsonism Relat Disord. 65 :55-61 2019  

[29] A.J.Hughes, A. J. Lees G. M. Stern 
Challenge tests to predict the dopaminergic response in untreated Parkinson's disease. Neurology 41 

(11):1723-1725 1991  

[30] M.Merello, M. I. Nouzeilles G. P. Arce R. Leiguarda 
Accuracy of acute levodopa challenge for clinical prediction of sustained long-term levodopa response 

as a major criterion for idiopathic Parkinson's disease diagnosis. Mov Disord 17 (4):795-798 
2002  

[31] Warren Olanow C, Kieburtz K Rascol O Poewe W Schapira AH Emre M NissinenH Leinonen 
M Stocchi F and Stalevo Reduction in Dyskinesia Evaluation inParkinson's Disease (STRIDE-
PD) Investigators. 

Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson's 
disease. Mov Disord.2013 Jul;28(8):1064-71. 28 (8):1064-101 2013  

[32] Mukherjee A, Biswas A Das SK. 
Gut dysfunction in Parkinson's disease. World J Gastroenterol. 22 (25):5742-5752 2016  

[33] Tosk JM, Holshouser BA Aloia RC Hinshaw DB Jr Hasso AN MacMurray JP WillAD Bozzetti 
LP. 

Effects of the interaction between ferric iron and L-dopa melanin on T1 and T2 relaxation times 
determined by magnetic resonance imaging. Magn Reson Med. 26 (1):40-5 1992  

[34] Finlay CJ, Duty S Vernon AC. 
Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current 

knowledge and future potential for translational pre-clinical neuroimaging studies. Front 
Neurol.2014;5:95. 5 (95)2014  

[35] Salgado-Pineda P, Delaveau P Falcon C Blin O. 
Brain T1 intensity changes after levodopa administration in healthy subjects: a voxel-based 

morphometry study.  Br J Clin Pharmacol. 62 (5):546-551 2006  

[36] Morishita T, Rahman M Foote KD Fargen KM Jacobson CE 4th Fernandez HH et al. 
DBS candidates that fall short on a levodopa challenge test: alternative and important indications. 

Neurologist. 17 (5):263-268 2011  



   

25 
 

[37] Zhang J. 
Mining imaging and clinical data with machine learning approaches for the diagnosis and early 

detection of Parkinson's disease. NPJ Parkinsons Dis. 8 (1):13-2022  

[38] Delgado-Alvarado M., Gago B. Navalporto-Gomez I Jimenez-Urbieta H Rodriguez-Oroz M 
Biomarkers for dementia and mild cognitive impairment in Parkinson's Disease. Mov Disord. 31 

(6):861-881 2016  

 
 
Study funding: 

The study was funded by the France Parkinson charity and the French Ministry of Health (PHRC 

national 2012).  

 


