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Among hematological malignancies, T-cell acute lymphoblastic leukemia (T-ALL)
represents a class of aggressive tumors with dismal clinical outcome in case of relapse or
refractory diseases. While the intensification of multi-agent chemotherapy protocols has
dramatically improved prognosis, refractory and relapsed cases are clinically challenging due
to limited therapeutic options."” p53 is a transcription factor and a master tumor suppressor
gene frequently altered in cancer.’ In contrast to carcinomas and other hematological
malignancies, TP53 alterations (TP53""), encompassing mutations (TP53""") and/or pan-exon
deletions (TP53De|), are remarkably rare at diagnosis in T-ALL, and their clinical implication
remains elusive.*® Critically, TP53*" have been reported to be acquired in up to 20% of the
relapsed T-ALL cases, where they convey a deleterious prognosis.”’ Here, we produce the
first comprehensive analysis of TP53*" and the associated oncogenetic landscape in an

extensive cohort of 476 patients newly diagnosed with T-ALL.

We investigated the clinical characteristics linked to TP53*" in 476 patients, including 215
adults, and 261 children. Adult patients were enrolled in the GRAALL-2003-2005 trials
(GRAALL-2003, NCT00222027; GRAALL-2005, NCT00327678) and pediatric patients
were enrolled in the FRALLE 2000 trial (Supplemental Figure 1). Based on DNA availability
for molecular analysis, 215 adult patients out of 337 and 261 pediatric patients out of 427
were included in this study. No difference in clinical outcomes was observed between the
included patients and the entire cohort (Supplemental Figure 2-3, Supplemental Table 1).
Diagnostic peripheral blood or bone marrow samples were collected after informed consent
was obtained, according to the Declaration of Helsinki. All samples contained >80% blasts,
immunophenotypic of T-ALL samples, minimal residual disease (MRD) assessment and
Multiplex ligation-dependent probe amplification analysis (MLPA) (P383 T-ALL from MRC

Holland) were performed as previously described.'®"?
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Genomic analysis was performed by pan-exon targeted next-generation sequencing (NGS) of
DNA extracted from diagnostic samples; DNA libraries were prepared using Nextera XT kit
(Illumina) and sequenced on an Illumina MiSeq. The NGS panel included 63 genes known to
be mutated in T-ALL (Supplemental Table 2.). Genetic lesion co-occurrences and mutual
exclusions were computed using the DISCOVER R package. We performed a computational
approach previously described for the detection of copy number variants (CNVs) from next-

generation sequence data,*"

including systematic analysis of the depth of TP53 gene
coverage. This is based on variations in depth of coverage of aligned sequence reads, using a
locally developed algorithm. The CNVs detected were confirmed by high-resolution CGH
and/or MLPA analysis (kit P037-CLL-1 and P038-CLL-2 from MRC-Holland). Diagnostic
DNA was hybridized on Affymetrix (Santa Clara, CA) Cytogenetics whole Genome 2.7M
Arrays (CGH-array), according to the manufacturer’s recommendations. Data analysis was
performed with the Chromosome Analysis Suite (ChAS) software (Affymetrix®). Gene copy
number aberrations were compared with the Database of Genomic variants (DGV)
http://projects.tcag.ca/variation to study only non-variant GCV aberrations.

Comparisons for categorical and continuous variables between subgroups were performed
with Fisher's exact test and Mann-Whitney test respectively. Overall survival (OS) was
calculated from the date of diagnosis to the last follow-up date censoring patients alive. The
cumulative incidence of relapse (CIR) was calculated from the complete remission (CR) date
to the date of relapse censoring patients alive without relapse at the last follow-up date.
Relapse and death in CR were considered competitive events. Univariate and multivariate
analyses assessing the impact of categorical and continuous variables were performed with a
Cox model. Proportional-hazards assumption was checked before conducting multivariate

analyses. In univariate and multivariate analyses, age and logl0(WBC) were considered

continuous variables. All analyses were stratified on the trial. Variables with a p-value less
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than 0.1 in univariate analysis were included in the multivariable models. Statistical analyses
were performed with STATA software (STATA 12.0 Corporation, College Station, TX). All
p-values were two-sided, with p<0.05 denoting statistical significance. Additional details are

included in the Supplemental Methods.

The incidence of TP53"" at diagnosis in these cohorts was 4% (21/476). TP53"™" were
detected in 9 patients (6 adults and 3 pediatric cases, Figure 1A, Supplemental Tables 3 and
4) and TP53°® were identified in 15 patients (7 adult and 8 pediatric cases), 3 patients
harbored both TP53""" and TP53¢. Patients with TP53"" did not significantly differ from
TP53 wild-type (TP53™) patients regarding sex, age and central nervous system (CNS)
involvement (Table 1), but were associated with an immature phenotype (combining IMO T-
ALL; TCRd and TCRg germline, IMd T-ALL; TCRd rearranged but not TCRg and IMg T-ALL;
both TCRd and TCRg rearranged)'” (8/20, 40% vs 81/399, 20%, p = 0.048). The oncogenetic
landscape of TP53*" was comparable to TP53™ T-ALLs (Figure 1B and 1C, Supplemental
Figures 4, 5 and 6 and Supplemental Table 5). To investigate the prognostic value of TP53M,
survival analyses were performed on the series of 476 patients. TP53*" did not confer
increased poor prednisone response, defined by a peripheral blood blast count > 1.0 x 10°/L
at the end of the induction phase) (38% vs 45%, p = 0.7) (Table 1). Although TP53* did not
significantly influence the morphological complete response rate at the end of the induction
course (81% vs 93%, p = 0.07), patients harboring TP53"" were associated with delayed early
medullary blast clearance, as confirmed by end of induction MRD1 assessment, with more
positivity (>107*) in TP53"" as compared with TP53" cases (75% vs 35%, p =0.01). Patients
(both adult and pediatric) with TP53"" had an inferior outcome compared to TP53™ (Table 1,
Figures 1D-E, Supplemental Figure 7) with an increased CIR (5y-CIR: 65% vs. 27%; specific

hazard ratio (SHR) 3.1, 95%CI (1.67 - 5.78); p <0.001) and a shorter OS (5y-OS: 48% vs.
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72%; hazard ratio: 2.34, 95%CI (1.30 - 4.24); p = 0.005). In multivariate analysis TP53M!
predicted a statistically lower OS (HR: 2.87, 95%CI (1.56 - 5.26); p = 0.001) and higher CIR
(SHR, 2.90, 95%CI 1.55 - 5.44), p = 0.001) even after adjustment on the 4-genes
NOTCHL/FBXW7/RAS/PTEN (NFRP) classifier, which identified poor prognosis patients in
both GRAALL and FRALLE trials.'*"

The limited number of MRDI1 assessments available among the TP53*" T-ALL patients
(12/21, 57%), did not allow us to include this endpoint in the multivariate analysis, justifying
further studies to establish whether this alteration remains an independent prognostic factor
when combined with MRD1 status in T-ALL.

This study provides the largest comprehensive analysis of TP53"" in T-ALL, describing for
the first time both their clinical profile and, most importantly, the extremely poor prognosis
impact associated with TP53™" at diagnosis in T-ALL, urging the need to develop innovative
targeted therapies for patients harboring TP53",

About 25% pediatric and 50% adult T-ALL patients relapse, with a 5-year survival inferior
to 20% in both age groups.'” The sole therapeutic approaches with a curative potential for T-
ALL relapsed cases are limited to conventional chemotherapy or hematopoietic stem cell
transplantation (HSCT). Molecular genetic analyses and sequencing studies have recently led
to the identification of recurrent T-ALL alterations associated with the prognostic, allowing
to refine the stratification of the relapse risk.'®'*'®!7 Yet, a significant proportion of T-ALL
relapses remain unpredicted, underlining the urge for new predictive markers.

Negative outcomes observed in TP53*" T-ALL are likely to be related to p53-induced
therapeutic resistance previously described for other malignancies combining loss of p53
tumor suppressor activity and acquisition of novel functions that disrupt the DNA-damage
response pathway.'"” APR-246 (Eprenetapopt), a small molecule interacting with mutated

p53 protein to restore its WT conformation®®*', has recently shown promising results in
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myeloid malignancies and in B-ALL *** justifying further studies to explore the potential

efficacy of this new drug in T-ALL TP53""".
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Table Legends

Table 1: Clinico-biological and outcome characteristics of adult and pediatric T-ALL

(GRAALL and FRALLE protocols) according to TP53 status.

Abbreviations: T-ALL: T-cell acute lymphoblastic leukemia; WBC, white blood count; CNS,
central nervous system; ETP, early thymic precursor; High Risk classifier, NOTCH1/FBXW7-
RASPTEN classifier as previously described'®!>; CR, complete remission; MRD, minimal
residual disease; Allo-HSCT, allogenic hematopoietic stem cell transplantation; CIR,
cumulative incidence of relapse; OS, overall survival; HR: hazard ratio, SHR: specific hazard

ratio, CI: confidence interval.

MRD1 correspond to MRD evaluation after induction and was performed by allele-specific
oligonucleotides polymerase chain reaction. T-cell receptor status and oncogenic were
performed as described in supplemental methods.

* CNS involvement; CNS3 in FRALLE2000 trial, CNS2 and/or CNS3 in GRAALL2003 and
GRAALL2005 trial

** T-ALL are divided into three subclasses as following (i) immature (no detectable TCRb
VDJ): IMO (TCRd and TCRg germline), IMd (TCRd rearranged but not TCRg) and IMg
(both TCRd and TCRg rearranged); (ii) T-ALL with TCRab lineage (including both early-
cortical IMb/Pre-ab and mature sSTCRab+) and (iii) mature sTCRgd."

*** Low Risk Classifier: NOTCH1 and/or FBXW7 (N/F) mutation without N/K-RAS and
PTEN (R/P) alteration. High-Risk Classifier: N/F mutation with R/P alteration, N/F Wild-

type with or without R/P alteration.'®"

'Statistics presented: Median (Minimum-Maximum)
*Statistical tests performed: Fisher's exact test; Wilcoxon rank-sum test.
*Univariate and multivariate Cox analyses stratified on protocol

p-values < 0.05 are indicated in bold

10
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Figure Legends

Figure 1: TP53 Alterations in the GRAALLO03/05 and FRALLE2000 studies

A. Lollipop plots indicating the observed TP53 mutations in 476 T-ALL patients. More
details reporting the pathogenicity of the TP53 mutations are provided in Supplemental Table
4.

B. Circos plots illustrating pairwise relationships across the relatively common mutated
genes in TP53™" T-ALL. The width of the ribbon corresponds to the number of cases who
have simultaneous presence of a first and a second gene mutation.

C. Frequency of alterations per gene among the TP53% vs TP53"T T-ALL. The width of the
circles is proportional to the frequency of alterations observed in the two T-ALL subgroups
(TP53" in red, vs TP53"T T-ALL in blue).

D, E Clinical impact of TP53 Alterations in the GRAALL0305 and FRALLE2000 studies.
Overall survival (D) and cumulative incidence of relapse (E). The red curve represents the

TP53*" T-ALL, and the black curve the TP53™" patients

11



288

Table

12

12



Table 1.

TP53A!

TP53"T

Variable

Male

Age (y)'

WBC (G/l)'

CNS Involvement*
Immunophenotype

ETP phenotype
Immature (IMO/d/g)**
ab lineage

Mature TCRgd
Oncogenetic classification
TLX1

TLX3

SIL-TAL1
CALM-AF10
High-Risk Classifier **
Treatment Response
Prednisone response
Chemosensitivity
MRD1 > 10"
Complete Remission
Allo-HSCT

Outcome

5-year CIR [95% CI]
5-year OS [95% CI]

n =21 (4%)

14121 (67%)
23.4 (4.0-51.8)
25 (5-674)
37121 (14%)

6 /16 (38%)
8 /20 (40%)
6 /20 (30%)
3720 (15%)
1/18 (6%)
2/18 (11%)
1/18 (6%)
0/18 (0%)
13721 (62%)

13721 (62%)
12121 (57%)
9/12 (75%)
17121 (81%)
4/20 (20%)

65% [11;43]
48% [26:67]

n = 455 (96%)

343/ 455 (75%)
15.3 (1.1-59.1)
66 (0-980)
481453 (11%)

50 /291 (17%)
81/399 (20%)
205 /399 (51%)
63 /399 (16%)

53 /397 (13%)
70/ 397 (18%)
56 / 397 (14%)
13/ 397 (3%)
196 / 455 (43%)

246 | 446 (55%)
325/ 446 (73%)
114 / 328 (35%)
423 | 455 (93%)
97 / 436 (22%)

27% [23;32]
72% [68;76]

357 1 476 (75%)
15.3 (1.1-59.1)
64 (0-980)
51/ 474 (11%)

56 / 307 (18%)
89 /419 (21%)
2111419 (50%)
66 /419 (16%)

54 / 415 (13%)
721415 (17%)
57 1 415 (14%)
13/ 415 (3%)
209 / 476 (44%)

259 / 467 (55%)
337 1 467 (72%)
123 / 340 (36%)
440 / 476 (92%)
101 / 456 (22%)

29% [25;33]
71% [67;75]

0.4
0.5
0.01
0.5

0.09
0.048
0.07
>0.9

0.5

0.8

0.5
>0.9
0.12

0.7

0.1
0.01
0.07
0.7

<0.001
0.005

Univariate and Multivariate Analysis3

Univariate Multivariate
CIR SHR 95%Cl p SHR 95%Cl p
Age 1.01 (0.98; 1.03) 0.57 - - -
CNS 1.57 (0.85; 2.59) 0.08 1.28 (0.77;2.13) 0.34
Log(WBC) 1.62 (1.2;2.18) 0.002 1.62 (1.19; 2.19) 0.002
Prednisone response 0.67 (0.47 ; 0.95) 0.03 0.93 (0.64 ; 1.35) 0.70
High-risk Classifier* 2.78 (1.94 ; 3.99) <0.001 2.58 (1.78; 3.74) <0.001
TP53" 3.11 (1.67 ;5.78) <0.001 2.90 (1.55 ; 5.44) 0.001
os HR 95%Cl p HR 95%Cl p
Age 1.03 (1.01; 1.05) 0.001 1.05 (1.03; 1.07) <0.001
CNS 2.00 (1.28; 3.14) 0.002 1.64 (1.02; 2.64) 0.04
Log(WBC) 1.99 (1.48 ; 2.67) <0.001 2.01 (1.51; 2.86) <0.001
Prednisone response 0.54 (0.38;0.76) <0.001 0.83 (0.57 ;1.20) 0.31
High-risk Classifier 2.93 (2.06 ;4.17) <0.001 2.90 (2.01;4.18) <0.001
TP53"" 2.34 (1.30; 4.24) 0.005 2.87 (1.56 ; 5.26) 0.001
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Table 1.

Variable

TP53%"

TP53"7

Male

Age (y)'

WBC (G/l)’

CNS Involvement*

Immunophenotype

ETP phenotype
Immature (IMO/d/g)**

ab lineage

Mature TCRgd
Oncogenetic classification
TLX1

TLX3

SIL-TAL1

CALM-AF10

High-Risk Classifier<**

Treatment Response
Prednisone response
Chemosensitivity
MRD1 > 10™
Complete Remission
Allo-HSCT

Outcome

5-year CIR [95% CI]
5-year OS [95% CI]

n =21 (4%)

14121 (67%)
23.4 (4.0-51.8)
25 (5-674)
37121 (14%)

6/16
8/20
6/20
3/20

38%)
40%)
30%)
15%)

— o~ o~ —~

1/18 (6%)
2/18 (11%)
1/18 (6%)
0/18 (0%)
13 /21 (62%)

13721 (62%)
12121 (57%)
9/12 (75%)
17121 (81%)
4/20 (20%)

65% [11;43]
48% [26:67]

n = 455 (96%)

343 / 455 (75%)
15.3 (1.1-59.1)
66 (0-980)
481453 (11%)

50 /291 (17%)
81/399 (20%)
205 /399 (51%)
63 /399 (16%)

53 /397 (13%)
70/ 397 (18%)
56 / 397 (14%)
13 /397 (3%)
196 / 455 (43%)

246 | 446 (55%)
325/ 446 (73%)
114 / 328 (35%)
423 | 455 (93%)
97 / 436 (22%)

27% [23;32]
72% [68;76]

357 1 476 (75%)
15.3 (1.1-59.1)
64 (0-980)
51/ 474 (11%)

56 / 307 (18%)
89 /419 (21%)
2111419 (50%)
66 /419 (16%)

54 / 415 (13%)
721415 (17%)
57 / 415 (14%)
13/ 415 (3%)
209 / 476 (44%)

259 / 467 (55%)
337 1 467 (72%)
123 / 340 (36%)
440 / 476 (92%)
101 / 456 (22%)

29% [25;33]
71% [67;75]

0.4
0.5
0.01
0.5

0.09
0.048
0.07
>0.9

0.5

0.8

0.5
>0.9
0.12

0.7

0.1
0.01
0.07

0.7

<0.001
0.005

Univariate and Multivariate Analysis3

Univariate Multivariate
CIR SHR 95%Cl p SHR 95%Cl p
Age 1.01 (0.98; 1.03) 0.57 - - -
CNS 1.57 (0.85; 2.59) 0.08 1.28 (0.77;2.13) 0.34
Log(WBC) 1.62 (1.2;2.18) 0.002 1.62 (1.19; 2.19) 0.002
Prednisone response 0.67 (0.47 ; 0.95) 0.03 0.93 (0.64 ; 1.35) 0.70
High-risk Classifier* 2.78 (1.94 ; 3.99) <0.001 2.58 (1.78 ; 3.74) <0.001
TP53™" 3.1 (1.67 ;5.78) <0.001 2.90 (1.55; 5.44) 0.001
oS HR 95%ClI p HR 95%Cl p
Age 1.03 (1.01; 1.05) 0.001 1.05 (1.03; 1.07) <0.001
CNS 2.00 (1.28 ; 3.14) 0.002 1.64 (1.02; 2.64) 0.04
Log(WBC) 1.99 (1.48 ; 2.67) <0.001 2.01 (1.51; 2.86) <0.001
Prednisone response 0.54 (0.38;0.76) <0.001 0.83 (0.57 ;1.20) 0.31
High-risk Classifier 2.93 (2.06 ; 4.17) <0.001 2.90 (2.01; 4.18) <0.001
TP53™" 2.34 (1.30; 4.24) 0.005 2.87 (1.56 ; 5.26) 0.001
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