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Model-based analysis of
myocardial strains in left bundle
branch block

Marion Taconné1†, Kimi P. Owashi1†, Elena Galli1,

Jürgen Duchenne2, Arnaud Hubert1, Erwan Donal1,

Alfredo I. Hernàndez1*‡ and Virginie Le Rolle1‡

1CHU Rennes, INSERM, LTSI–UMR 1099, Univ Rennes, Rennes, France, 2Department of

Cardiovascular Disease, KU Leuven, Leuven, Belgium

Introduction: Although observational studies of patients with left bundle

branch block (LBBB) have shown a relation between strain morphologies

and responses to cardiac resynchronization therapy (CRT), the evaluation of

left ventricle (LV) dyssynchrony from echocardiography remains di�cult. The

objective of this article is to propose a patient-specific model-based approach

to improve the analysis and interpretation of myocardial strain signals.

Methods: A system-level model of the cardiovascular system is proposed,

integrating: (i) the cardiac electrical system, (ii) right and left atria, (iii) a

multi-segment representation of the RVs and LVs, and (iv) the systemic and

pulmonary circulations. After a sensitivity analysis step, model parameters were

identified specifically for each patient. The proposed approach was evaluated

on data obtained from 10 healthy subjects and 20 patients with LBBB with

underlying ischemic (n = 10) and non-ischemic (n = 10) cardiomyopathies.

Results: A close match was observed between estimated and observed strain

signals, withmean RMSE respectively equal to 5.04± 1.02% and 3.90± 1.40% in

healthy and LBBB cases. The analysis of patient-specific identified parameters,

based on bull’s-eye representation, shows that strain morphologies are related

to both electrical conduction delay, and heterogeneity of contractile levels

within the myocardium.

Discussion: The model-based approach improve the interpretability

echocardiography data by bringing additional information on the regional

electrical andmechanical function of the LV. The analysis of model parameters

show that septal motion and global strain morphologies are not only explained

by electrical conduction delay but also by the heterogeneity of contractile

levels within the myocardium. The proposed approach represents a step

forward in the development of personalized LV models for the evaluation of

LV dyssynchrony in the field of CRT.

KEYWORDS

computational model, echocardiography, parameter identification, sensitivity

analysis, left bundle branch block (LBBB)
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1. Introduction

Left bundle branch block (LBBB) is a common

electrocardiographic abnormality that causes intra- and

interventricular conduction delay and leads to uncoordinated

contraction of the ventricle, alterations in LV mechanical

activity, and LV dysfunction [1]. Observational studies of

patients with LBBB have shown a relation between strain curve

morphologies, obtained by speckle-tracking echocardiography

(STE), and responses to cardiac resynchronization therapy

(CRT) [2–4]. However, the regional distribution patterns

of dyssynchrony in LBBB are highly heterogeneous as it

involves different septal and lateral walls [5, 6]. Moreover,

strain morphologies could also be affected by mechanical

dysfunctions, such as those observed in ischemia [7]. Therefore,

the assessment of dyssynchrony patterns in LBBB appears

particularly complex because strain morphologies reflect

dynamics associated with both electrical conduction delays and

mechanical cardiac activities. Previous studies have shown that

only the mechanical dysfunction attributable to an electrical

conduction delay can be corrected by CRT [8]. The possibility

of using strain-derived data to disclose the complex interplay

between electrical conduction delay and the specific mechanical

substrate associated with LV dyssynchrony is particularly

interesting and might have a pivotal role in the selection of

CRT candidates.

In this context, model-based approaches may provide a

better understanding of myocardial deformations observed

in LBBB, since these approaches explicitly represent the

underlying physiological mechanisms. Indeed, computational

modeling appears as an efficient tool to integrate knowledge,

concerning cardiac electrical activation, mechanical properties,

and hemodynamic conditions, in the data processing. A variety

of cardiac electro-mechanical models has been proposed in the

literature, at many different levels of detail [9] and representing

different physiological functions, including the cardiac electrical

activity [10–12], the excitation–contraction coupling [13, 14],

the mechanical activity [15], and the mechano-hydraulic

coupling [16]. Most of the proposed cardiac models are based

on the finite element (FE) method [17–24] for the simulation

of cardiac mechanical activity including a 3D mesh geometry.

Some of them include multimodality imaging [25] or used

atlases [26] to reduce the computational cost. However, these

models require high computational resources, and they are still

difficult to personalize. Moreover, dynamic loading conditions

and interventricular interactions are usually not taken into

account in these models and their integration is possible only

at the expense of an increasing amount of model complexity.

Alternative approaches have been proposed to overcome this

computational cost [27–30], by reducing drastically the patient

anatomy representation with lower dimension models. These

types of models allow for a better clinical translation [31]

and incorporation of components such as heart hemodynamics

within the entire circulation. Although these particular models’

examples have been successfully used to propose keys to

understand the CRT response with virtual or animal cohorts,

efforts still have to be made in order to adapt these studies to

non-invasive, patient-specific data.

In Le Rolle et al. [32], our team has proposed the first model-

based approach for the analysis of tissue Doppler imaging (TDI).

Model parameters for the LV were estimated by minimizing

an error computed between strain signals synthesized by the

computational model and strain signals obtained through TDI

from several myocardial segments in a patient-specific approach.

However, this model represents only the LV and does not

integrate interactions with the right ventricle (RV) or systemic

and pulmonary circulations. Moreover, the approach was not

validated in the case of LV dyssynchrony. The objective of

this article is to propose a model-based approach in order

to reproduce myocardial strain curves specifically for each

patient with LBBB and to analyze patient-specific parameters.

Therefore, a novel method is proposed, based on the patient-

specific identification of a multi-segment model of LVs and RVs

coupled to atria, systemic, and pulmonary circulations [33, 34].

Recently, our team article has proposed an interpretation of the

different patterns of LV contraction observed in different cases

of LBBB, based on a manual evaluation of the model parameters

of three patients with LBBB [35]. Interestingly, this model took

into account not only the electrical activation delay of each

segment but also the differences in regional contractility, which

are known to largely contribute to strain morphology and global

cardiac mechanics.

The article is organized as follows: Section 2 describes

the clinical data, the computational model, and patient-

specific adaptation; Section 3 includes the results concerning

subjects with and without LBBB; and in Section 4 results

are discussed.

2. Materials and methods

2.1. Experimental data

2.1.1. Study population

We prospectively included 10 healthy adults and 20 patients

with LBBB, including ischemic (n =10) and non-ischemic (n

=10) cardiomyopathies. Table 1 summarizes patients’ clinical

characteristics. The study was carried out in accordance

with the principles outlined in the Declaration of Helsinki

on research in human subjects and received specific ethical

approval from the local Medical Ethical Committee. All patients

signed a written informed consent before participating in the

study protocol.
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TABLE 1 Patients’ clinical characteristics.

Age Male sex BSA NYHA class QRS width

years old n (%) (body surface area) I/II/III (ms)

LBBB ischemia (n = 10) 72.1± 10.34 9 (90%) 1.84± 0.12 2/7/1 160± 25.4

LBBB non-ischemia (n = 10) 68.2± 6.20 8 (80%) 1.83± 0.15 1/6/3 163± 13.04

Healthy (n = 10) 48.8± 14.44 7 (70%) 1.88± 0.12 — 109± 9.91

2.1.2. Echocardiography

All patients underwent a standard trans-thoracic

echocardiography (TTE) using a Vivid S6, E7, or E9 ultrasound

system (General Electric Healthcare, Horten, Norway). Images

were recorded on a remote station for offline analysis by the

dedicated software (EchoPAC PC, version BT 202, General

Electric Healthcare, Horten, Norway). The experimental dataset

includes the measured regional myocardial strain curves

obtained by STE at transthoracic echocardiography in apical

four-chamber, two-chamber, and three-chamber views. Excel

files of these three longitudinal strain view analyses were

exported for a dedicated analysis performed in python language.

Strain curves references were fixed at the onset of the QRS

complex.

2.1.3. Cardiac magnetic resonance image

For 10 patients with LBBB, the location of the scar was

performed by cardiac magnetic resonance imaging (cMRI) and

then confirmed by echocardiography. Before CRT implantation,

cardiac magnetic resonance was performed on a 3-T clinical

magnetic resonance system (Ingenia, Philips Medical Systems,

Best, the Netherlands) with a 32-channel cardiovascular array

coil. LGE images were acquired 10–15 min after intravenous

administration of 0.2 mmol/kg of gadolinium (Gadoterate

meglumine, Dotarem, Guerbet, Aulnay-sous-bois, France),

using 2D breath-hold inversion-recovery and phase-sensitive

inversion-recovery sequences in the short-axis plane (spoiled

gradient-echo, slice thickness 8 mm, repetition time 6.1 ms,

echo time 2.9 ms, flip angle 25◦, inversion time adjusted to

null normal myocardium, and typical breath-hold 11 s). The

localization of the myocardial scar was performed by a trained

radiologist and the regional LGE extent was semiquantitatively

assessed on a per-segment basis [36].

2.2. Computational model

The model of the cardiovascular system (CVS) integrates

fourmain sub-models: (1) cardiac electrical system, (2) right and

left atria, (3) multi-segment representation of the right ventricles

(RVs) and the left ventricles (LVs), and (4) systemic and

pulmonary circulations. The combined model is characterized

by 44 state variables and 551 parameters. It was implemented

using the Multiformalism Modeling and Simulation Library

(M2SL) [37, 38]. Equations and parameters can be found in the

Supplementary material.

2.2.1. Cardiac electrical system

The proposed model of the cardiac electrical activity is

based on a set of coupled automata, adapted from Le Rolle

[32]. In order to perform comparisons between simulations

and clinical data, the LV wall was divided into 16 segments

according to the standardized segmentation of the AHA [39].

The base (Bas) and medium (Mid) layers are separated in six

components as follows: anterior (Ant), anteroseptal (AntSep),

inferoseptal (InfSep), inferior (Inf), inferolateral (InfLat), and

anterolateral (AntLat) walls. The apex (Ap) layer is divided in

to four components as follows: anterior, septal, inferior, and

lateral. The RV wall is divided into three layers (base, medium,

and apex) (Figure 1). The whole model consists of 26 automata

representing the sinoatrial node (NSA), right and left atria (RA

and LA), the atrioventricular node (NAV), an upper bundle of

His (UH), bundle branches (RBB and LBB), three segments of

RV, and 16 segments of the LV.

The distribution of the electrical activation between

automata is represented in Figure 2. Each automaton represents

the electrical activation state of a given myocardial tissue,

covering the main electrophysiological activation periods: slow

diastolic depolarization (SDD) or waiting period (Idle), upstroke

depolarization (UDP), absolute refractory (ARP), and relative

refractory (RRP) (Figure 2A). The transitions between states

happen spontaneously at the end of the phase. After the UDP

period, each automaton transmits a stimulus to its neighboring

segments. Each automaton is fully connected (antegrade and

retrograde connections) to its neighbors. The connections

between automaton are illustrated in Figure 2B, where we can

see that the excitation arrives from the LBB automaton and

is propagated to the apex, through septal automata and the

medium anterolateral automaton (segments numbered 2, 3, 8,

9, 12, 13, 14, and 16), then to the other segments in the function

of each automaton’s parameter values (TUDP, TARP, TRRP, and

TSDD).

The electrical activation delay associated with each

ventricular segment could be defined by the time elapsed
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FIGURE 1

Closed-loop model of the cardiovascular system and representation of a myocardial segment. Vascular network: ao: aorta, vc: vena cava, pa:

pulmonary artery, pu: pulmonary veins. Heart valves: mt: mitral, av: aortic, tc: tricuspide, pv: pulmonary. Left ventricle segmentation: 1: BasAnt;

2: BasAntSep; 3: BasInfSep; 4: BasInf; 5: BasInfLat; 6: BasAntLat; 7: MidAnt; 8: MidAntSep; 9: MidInfSep; 10: MidInf; 11: MidInfLat; 12: MidAntLat;

13: ApAnt; 14: ApSep; 15: ApInf; 16: ApLat. Right ventricle segmentation: 17: BasRV; 18: MidRV; 19: ApRV.

between the electrical activation of the UH automaton and the

segmental one. An illustration of this electrical activation delay

is proposed in Figure 2B for the seventh LV segment (s7). These

delays of activation, accessible for each segment, will provide

us with a representation of the dyssynchrony. UH automaton

activation also corresponds to the initialization of the simulated

strain curves.

2.2.2. Right and left atria

To account for the mechanical function of the atria, the

right and left atrial pressures (Pra and Pla) are defined as

linear functions of instantaneous volumes (Vra and Vla). These

pressures are determined by their volumes intercept (Vra,d

and Vla,d) and their elastances (Era and Ela), whose elastances

represent the elastic properties of the atrial wall and are bounded

by Ex,min and Ex,max :

Px(Vx, t) = Ex · (Vx(t)− Vx,d) (1)

Ex(t) = ex(t) ·
(

Ex,max − Ex,min
)

+ Ex,min (2)

where x ∈ {ra,la} and ex(t) is a Gaussian driving function that

cycles between atrial diastole and systole:

ex(t) = Ax · exp
(

−Bx ·
(

ta(t)− Cx
)2

)

(3)
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FIGURE 2

Cardiac electrical system model: (A) State diagram of the generalized automaton that represents nodal cells (yellow, left) and myocardial cells

(orange, right) and diagrams showing the correspondence of the transition parameters with the myocardial action potential dynamics. (B) The

whole heart is represented by 26 cellular automata and their sequence of electrical activation. In blue, a representation of the electrical

activation delay for the seventh LV segment (s7).

where ta is the time elapsed since the atrial activation by

the automata corresponding to the right and left atriums.

Parameters Ax, Bx, and Cx could be used to control the rise and

peak of the atrial systole.

2.2.3. Right and left ventricles

Each LV and RV automaton triggers an electro-mechanical

driving function (EMDF) [40, 41], which represents in a

simplified manner, the complex processes involved in the

electro-mechanical coupling at the tissue level:

fa,s(ts) =







(

ts
α1·T

)n1

1+
(

ts
α1·T

)n1






·







1

1+
(

ts
α2·T

)n2






· Amax. (4)

The onset of the cardiac cycle, denoted ts, is determined

by the activation instant of the corresponding segment in

the cardiac electrical model presented in the previous section.

The first and second terms in Eq. 4 represent ventricle

segment contraction and relaxation presented after an electrical

activation, respectively. T is the heart period, α1, α2 are shape

parameters, and n1, n2 control the steepness of the curve. These

four parameters (α1, α2, n1, n2) are assumed positive. Amax is

the maximum EMDF value, and s ∈ {Slv, Srv} with Slv = {BasAnt,

BasAntSep, BasInfSep, BasInf, BasInfLat, BasAntLat, MidAnt,

MidAntSep, MidInfSep, MidInf, MidInfLat, MidAntLat, ApAnt,

ApSep, ApInf, ApLat} and Srv = {BasRV, MidRV, ApRV}.

Concerning each segment s, cardiac mechanical activity can be

separated into active and passive components:

Ts = Ts,pass + Ts,act (5)

Passive myocardial tension depends on myocardial strain (εs =

(ls−ls,ref )/ls,ref ) according to Lumens et al. [42]:

Ts,pass = Kpass · Tref ,pass · (36 ·max(0, εs − 0.1)2 + 0.1(εs − 0.1)

+ 0.0025e10εs ) (6)

where Kpass is a parameter related to passive stiffness that is

comprised between 0 and 1, Tref ,pass is the reference passive

tension at εs = 1, ls and ls,ref are current and reference fiber

lengths. Activemyocardial tension is represented by a non-linear

law inspired from Hunter et al. [43]:

Ts,act = Kact · Tref ,act · (1+ β(εs − 1)) ·
fa,s

2

f 2a,s + F2a
(7)

where Kact is a parameter related to myofiber contractility,

Tref ,act is the reference active tension at εs = 1, and β , Fa are

constants related to the muscle kinetic. The relation between

pressure Ps and tension Ts in each segment is approximated by

the Laplace law (Equation 8):

Ps = e · Ts

(

cos(θ)

εs · Rm
+

sin(θ)

εs · Rp

)

. (8)

In Equation (8), θ is the mean angle of the muscular fibers. Rm

and Rp are the radii of curvature in the meridian and parallel
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directions, while e is the mean wall thickness. As the ventricle

was assumed to be an ellipsoid of revolution, Rp and Rm could be

calculated analytically. Length variation is obtained by a power

conservation: Ps·Qs = Fs·dls/dt.Where the force is Fs = Ts·Ss, Ss

is the area of each segment. The hydraulic behavior of the blood

volume in contact with the wall segment are represented by its

inertial (Is) and resistive (Rs) effects:

Py − Ps = Is
dQs

dt
(9)

Qs =
Py − Ps

Rs
(10)

with y ∈ {lv,rv} and Rs ∈ {Rmin,Rmax} according to the mitral

valve opening. Ventricular flow is calculated taking into account

the contribution of the flow of each one of the segmentsQs,y and

of the intra-ventricular cavity Qc,y:

Qy(t) = Qc,y(t)+
∑

sy

Qs,y(t) (11)

where Py and Qy are, respectively, cavity center pressure

and flow. Segments, associated with the septum, are treated

separately since their pressure depends on the pressure gradient

across the septal wall:

Psept = Plv − Prv. (12)

2.2.4. Systemic and pulmonary circulations

The arteries, veins, and capillaries of systemic and

pulmonary circulations were included (Figure 1). The volume

change,1V , of each compartment is computed from the integral

of their respective net flow:

1Vz(t) =

∫

(Qin − Qout) dt (13)

with z ∈ {lv, rv, la, ra, pa, pu, ao, vc }, and in and out ∈ { la, ra,

pa, pu, ao, vc, sys, pul, art, veins }, while the flow,Q, is defined by

the pressure gradient, 1P, across chambers and a resistance, R:

Q =
1Pz

R
(14)

R ∈ {Rpul, Rsys, Rart , Rveins, Rla, Rra, Rmt , Rav,Rtcv,Rpv}.

Pressures on venous and arterial vessels are defined as an

elastance dependent relationship:

Pz = Ez · (Vz − Vd) (15)

Vd ∈ {Vd,lv,Vd,rv,Vd,la,Vd,ra,Vd,pa,Vd,pv,Vd,ao,Vd,art ,

Vd,vc,Vd,veins}, where E is the elastance andVd refers to the dead

volume. For example, these equations become as follows:

1Vao(t) =

∫

(Qao − Qsys) dt, (16)

Qsys =
Pao − Pvc

Rsys
, (17)

Pao = Eao · (Vao − Vd,ao) (18)

in the systemic part of the model (Figure 1 bottom). The same

equations are applied all around the myocardial loop. The heart

valves are modeled as perfect diodes.

2.2.5. Simulations of desynchronization strain
patterns

Desynchronization strain patterns were obtained by

modifying electrical activation delays of the LV segments (UDP)

and the tissue contractility Kact . These parameter modifications

could be done independently on each segment at the same

time. As performed in Owashi et al. [35], model parameters

were adjusted manually in order to reproduce characteristic

strain patterns for a healthy subject and three patients with

typical LBBB.

2.3. Patient-specific adaptation

2.3.1. Sensitivity analysis

The first step of patient-specific adaptation corresponds to

the sensitivity analysis of the model in order to provide insight

into the relation between parameters and outputs and to allow

a characterization of the relative significance of each parameter.

Using the Morris elementary effects method [44], the sensitivity

of each parameter is estimated by repeated measurements of

a simulation output Y with parameters X, while changing one

parameter Xj at a time.

The analysis was applied to a total of 288 parameters with 18

parameters for each of the 16 segments: one from the electrical

automaton and the 16 other one from the electro-mechanical

coupling part of the segmental sub-model equivalent. The

circulatory parameters were previously studied in Calvo et al.

[33]. In the proposed article, our analysis is focused on the

LV desynchrony and especially on the influence of electro-

mechanical parameters on strain morphologies. In order to

preserve computational costs, we have decided to include only

parameters associated with the electro-mechanical activity of

ventricles. For each parameter Xj, the range of possible values

was selected from the nominal literature and previous work

values±30% [34, 45, 46], except for the electrical depolarization

time parameter (UDP) that the range was defined between

2 and 150 ms. The resulting change in Y , compared to the

simulation output using the initial values of X, is calculated by

the elementary effect:

EE∗j =

∣

∣

∣

∣

Y(X1, . . . ,Xj, . . . )− Y(X1, . . . ,Xj + 1, . . . )

1

∣

∣

∣

∣

(19)
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FIGURE 3

Parameters identification pipeline.

where 1 is a predefined variation, such as 1 =
p

2(p−1)
.

The parameter p and the number of trajectories r were equal

respectively to 6 and 30 in this study. EEj is calculated r times.

Then, the mean (µ∗) and standard deviation (σ ) of these

effects are computed to derive sensitivity information of each

parameter j. In order to establish a global rank of importance

among parameters, we calculated the Euclidean distance Dj in

the µ∗ − σ plane, from the origin to each (µ∗
j , σj) point:

Dj =

√

(µ∗
j )
2 + σ 2

j . (20)

The analysis was performed with the following:

Y = {mean(εmodel
min,s ), mean(t(εmodel

min,s )), std(ε
model
min,s ), and

std(t(εmodel
min,s ))}, where εmodel

min,s and t(εmodel
min,s ) correspond,

respectively, to the minimum value of strain and the

corresponding time for each segment s. The mean and standard

deviation values were calculated over the 16 strain signals.

2.3.2. Parameter identification

The second step of the patient-specific adaptation is

the identification of a set of parameters selected from

the sensitivity analysis. Figure 3 illustrates the parameters

identification process.

For each healthy adult and patient with LBBB, an error

function Jerror between simulation outputs and experimental

strain curves was minimized in order to find patient-specific

parameters:

Jerror =

16
∑

s=1

Js (21)

Js =
1

Tc

Tc−1
∑

te=0

| ε
exp
s (te)−εmodel

s (te) | + | ε
exp
s,min−εmodel

s,min | (22)

where ε
exp
s and εmodel

s are the myocardial strain signals

obtained from available clinical data and simulated outputs,

respectively. te corresponds to the time elapsed since the

onset of the identification period and Tc is the duration of a

cardiac cycle. To build this error function, experimental and

simulated strain curves were synchronized on the onset of

QRS of synthesized and clinical ECG. The error function Jerror

was minimized using evolutionary algorithms (EA). These

stochastic search methods are founded on theories of natural

evolution, such as selection, crossover, and mutation [47]. In

this study, a differential evolution (DE) algorithm [48] was

applied to find the optimal set of parameters. In order to reduce

the search space, values for parameters were bounded to the

physiologically plausible intervals: IKact = [0; 1], IKpass = [0; 1],

In1 = [0.5; 2], In2 = [5; 15], Iα1 = [0.2; 0.6], Iα2 = [0.2; 0.6],

IUDP = [1; 200]. These intervals were defined around parameter

values used for the simulation of baseline conditions and are

based on physiological knowledge of the electromechanical

activities of the heart. DE was implemented with 200 individuals

through 100 generations with crossover and mutation

probabilities equals to 0.9 and 0.02 using the C++ library

PAGMO (parallel global multiobjective framework for

optimization) [49].

2.3.3. Solution unicity

In order to evaluate the robustness of our method, we

repeated 10 times our identification process on five patients.
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Two patients of the healthy and LBBB ischemic population and

one in the LBBB non-invasive population were randomly chosen

for this evaluation. In fact, a different set of parameters could

give similar simulated strain curves. The 10 obtained sets of

parameters were analyzed to justify the solution unicity of the

identification process by comparing the distribution of each

parameter pi in its own value interval Ipi . For each parameter,

the ratio of the standard deviation over its value interval length

was calculated. Then, the average was calculated over the 16 LV

segments and expressed as the percentage:

Rspi =
std(p1i , p

2
i , ..., p

9
i , p

10
i )

max(Ipi )−min(Ipi )
,Rpi =

100

16

∑

s

Rspi (23)

where pi ∈ {Ks
act , K

s
pass, n

s
1, n

s
2, α

s
1,α

s
2, UDP

s} and s ∈ {BasAnt,

BasAntSep, BasInfSep, BasInf, BasInfLat, BasAntLat, MidAnt,

MidAntSep, MidInfSep, MidInf, MidInfLat, MidAntLat, ApAnt,

ApSep, ApInf, ApLat}.

2.3.4. Quantification of error between
simulated and clinical data

In order to compare simulated and clinical strain curves,

the root-mean-square error (RMSE) was calculated for each

segment s :

RMSEs =

√

√

√

√

√

1

Tc

Tc−1
∑

te=0

(ε
exp
s (te)− εmodel

s (te))2 (24)

A mean RMSE value, over the 16 segments, was calculated

for each subject. Moreover, bull’s-eye plot was used to describe

mean RMSE values calculated for each segment over each

population: patients with healthy, ischemic LBBB, and non-

ischemic LBBB.

3. Results

3.1. Baseline simulations

Figure 4 illustrates a simulation results’ example from

the proposed computational model with a set of parameters

determined in previous work and literature (the set of parameter

values are included in Supplementary material). Ventricular,

aortic, and atrial pressures as well as ventricular volume are

presented on the left of the figure. Myocardial strain signals

corresponding to the 16 LV segments are presented on the

right of the figure. The results are presented for a healthy case.

Systolic LV pressure is equal to 120 mmHg and the aortic

pressure varies between 50 and 120 mmHg. The LV volume

varies between 70 and 130 mL. The strain signals present similar

morphologies between all the segments due to the mechanical

synchronicity between them. Generally, simulation results agree

with the physiological values and behaviors of a healthy subject.

3.2. Simulations of desynchronization
strain patterns by parameter variations

Figure 5 illustrates the simulated strain traces obtained in the

septal and lateral walls for a healthy subject, LBBB with only

electrical modification, LBBB with electrical modification and

septal contractility reduction, LBBB with electrical modification

and lateral contractility reduction. First, to induce an electrical

modification, the electrical delay of all the LV segment were

increased as well as the electrical delay of the LBBB. Then, the

septal and lateral hypocontractility was respectively induce by a

reduction of the active components of the LV septal and lateral

segments: Kact .

In the case of LBBB with only electrical modification,

simulations present a typical septo-to-lateral activation pattern.

In this case, the pre-ejection contraction of the septal

wall is followed by an immediate re-lengthening of the

wall, which induces a septal rebound stretch. In the septal

hypocontractility case, the rebound stretch effect increases. The

lateral hypocontractility case is characterized by a modification

of the LV activation pattern and is associated with a significant

reduction in lateral wall strain and a diminution of the septal

rebound stretch. The simulations could be related to Aalen et al.

[6] experimental results, where LBBB was induced in dogs with

or without LV scar and previous results of our team [35].

3.3. Sensitivity analysis

Figure 6 shows a Morris scheme where 100 of the most

influential parameters are plotted in the µ∗ − σ plane based

on the Dj index (full lists of the sensitivity analysis results with

all the parameters are included in Supplementary material). This

representation highlights the parameters with negligible (in the

lower left-hand corner), the linear without interaction (at the

bottom right), and non-linear or interaction (on the top right)

impact on Y . Parameters α2 and n1 present a great recurrence

impact on the sensitivity of the evaluated outputs Y . In fact, as

α1 and n2, they are involved in the electro-mechanical coupling

at the tissue level (Equation 4) which cause modifications in

mechanical contraction and, consequently, in the deformation of

the LV segments. These parameters appear especially important

for lateral and septal segments.

UDP, related to the electrical depolarization time, is also

one of the most influential parameters. UDP is the time of the

upstroke depolarization, it drives the activation of the neighbor’s

automata and affects the ta and ts value of the Equations (3,

4). ta is the time elapsed since the beginning of the activation

and ts is initialized by the activation of the neighbors so directly

impact by the UDP times of the previous automata. If we

look closer at the sensitivity analysis, we can notice that the

UDP related to the apical segments has the highest influence
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FIGURE 4

Model simulation example results in healthy conditions. Wigger diagram: left ventricle (black), aortic (red) and atrial pressure (green), and LV

volume (blue). Strain curves: 16 LV segments strain signals for the three views (2CH, 4CH, and APLAX).

FIGURE 5

Simulated septal and lateral strain curves of a: healthy case, LBBB with only electrical modification, LBBB with electrical modification and septal

contractility reduction, and LBBB with electrical modification and global contractility reduction. Gray background indicates the aortic valve

opening to the closure period.

on the mean and standard deviation of the minimum strain

value as well as the corresponding time. This could be explained

by the electrical path. Indeed, the electrical and mechanical

activities are closely related therefore, the deformation of a

segment is highly dependent on the occurrence of electrical

depolarization. Kact and Kpass, respectively related to the active

and passive components of the cardiac muscle, show also

high sensitivity.

Results from the sensitivity analysis were used to select the

seven most significant model parameters to be identified for

each segment: parameters related to the EMDF (n1, n2,α1,α2),

the active (Kact) and passive (Kpass) components of the

cardiac muscle and the electrical depolarization time

(UDP). The electrical depolarization time of the left

bundle branch (UDPLBB) was also added to the parameter

identification list.
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FIGURE 6

Most influential parameters on (i) the average of the minimum peaks over all segments (top, left), (ii) the standard deviation of the minimum

peaks over all segments (top, right), (iii) the average time associated with each minimum peak over all segments (bottom, left), and (iv) the

standard deviation of the time associated with each minimum peak over all segments (bottom, right); according to Morris sensitivity results.

Only the first 100 parameters according to their distance Dj are plotted in the µ∗ − σ plane.

3.4. Patient-specific simulations

3.4.1. Segmental strain curves

Myocardial strain curves of the 16 LV segments acquired by

experimental measurements and patient-specific simulations

are presented in one representative healthy subject (Figure 7),

an anterior ischemic (Figure 8) and a non-ischemic

(Figure 9) patient with LBBB (all results are included in

Supplementary material). For both healthy and LBBB cases, a

good agreement was observed between clinical and simulated

strain signals. The RMSE errors are similar through the 16

strain curves for each patient in both patient with LBBB types.

Concerning healthy cases, the strain curves present similar

morphologies in all the segments due to the synchronization

in all LV regions when the myocardium contracts, but we can

notice some difficulties to well fit the basal anterior and lateral

strain in some healthy patients. The Figure 10 presents this

RMSE average by regions for the three groups (the same RMSE

bull’s-eye representation is included in Supplementary material

for each patient). The mean RMSE between estimated and

observed strain signals in the healthy adults was equal to 5.04 ±

1.02 (Table 2).

In LBBB cases, the mean RMSE was equal to 3.90 ±

1.40% (Table 2). In these cases, the strain curves obtained in

patients with LBBB present dissimilar morphologies between

the different segments. Particularly, the septum and the lateral

wall segments of the ventricle present opposite curves, where the

shortening of septal segments occurs at the same time as in the

lengthening of lateral segments.

3.4.2. Bull’s-eye representations

From patient-specific simulations, segmental electrical

activation delay and the percentage of myofiber contractility

(Kact) were represented on bull’s-eye plots in Figures 7–9, for

three representative cases : (1) Healthy adult, (2) patient with

LBBB with LV anterior ischemia, and (3) patient with non-

ischemic LBBB.
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FIGURE 7

Patient-specific simulation results for a healthy subject. Experimental (black) and simulated (colored) strain curves corresponding to the 16 LV

segments. Bull’s-eye representations of segmental electrical activation delay and segmental myofiber contractility. Color scale at the

contractility bull’s-eye plot is set between 10 and 50% to highlight the segments with low contractility.

In LBBB cases, electrical activation bull’s eye shows a

significant electrical activation delay between the lateral and

the septal wall of the LV; while in the healthy case, all LV

segments are activated almost synchronously. Furthermore, the

LBBB patient with LV anterior ischemia presented reduced

contractility in anterior segments of the bull’s-eye representation

(Figure 8).

3.4.3. Unicity evaluation

The ratio of the mean standard deviation over the interval

length of each type of parameter is presented in Table 3. The

result of the repeated identification shows that the parameter

values are gathered in the same part of the possible values of the

interval. In fact, for all the parameters this means the standard

deviation is between 0.34 and 16.32% of their respective interval.

Especially for the electrical parameter UDPLBB, the ratio is less

than 0.6%.

4. Discussion

This article presents a novel model-based approach that

yields simulations of patient-specific strain curves in several

LV regions for healthy adults and patients diagnosed with

LBBB. The main contributions of this study are as follows: (i)

the proposal of an integrated model of the CVS coupled to

multi-segment representations of ventricles (ii) the sensitivity

analysis of model parameters on myocardial strains, (iii) the

identification of model parameters to reproduce myocardial

strain curves specifically for each patient, and (iv) the analysis

of patient-specific identified parameters.

The proposed CVS model is based on a functional

integration of interacting physiological systems that takes into

account the electro-mechanical coupling, the interventricular

interaction, and a simplified representation of systemic and

pulmonary circulations. The model includes the main cardiac

properties required to tackle the problem under study, like the

Frank–Starling law and the influence of preload and afterload.

Results illustrate the model ability to simulate jointly the

hemodynamic variables and myocardial deformations. Strain

curves notably reflected typical characteristics associated with

each phase of the cardiac cycle. In order to personalize models

to patient-specific data, a large number of simulations should

be performed. In opposition to FEM representations [17], the

proposedmodel requires limited computational resources, as the

simulation of one cardiac cycle (1,000 ms of simulation) takes

approximately 0.5 s (Processor : 2,2 GHz Intel Core i7). The

low computational cost is of primary importance to use cardiac

modeling in clinical practice and to adaptmodels to each patient.

The first step of patient-specific adaptation is the sensitivity

analysis of model parameters, which highlights (i) the close

relationship between cardiac electrical and mechanical systems

and (ii) the importance of active and passive properties of the

myocardium during cardiac contraction. The analysis results

show that the electric stimulation timing between the different

segment has a great importance in the variability between

the strain curves. The sensitivity analysis also highlights the

importance of parameters related to myocardial mechanical

properties. In fact, a close relationship exists between excitation

and contraction since a synchronous ventricular activation

is a prerequisite for an adequate LV function, whereas the

electrical activation delay between opposite LV walls might

lead to dyssynchronous ventricular contraction and LV failure
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FIGURE 8

Patient-specific simulation results for an patient LBBB with an anterior ischemia. Experimental (black) and simulated (colored) strain curves

corresponding to the 16 LV segments. Bull’s-eye representations of segmental electrical activation delay and segmental myofiber contractility

obtained by patient-specific simulations. The ischemia is localized on the cMRI (blue arrow).
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FIGURE 9

Patient-specific simulation results for a patient with non-ischemic LBBB. Experimental (black) and simulated (colored) strain curves

corresponding to the 16 LV segments. Bull’s-eye representations of segmental electrical activation delay and segmental myofiber contractility.

No ischemia is localized on the cMRI.
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FIGURE 10

Mean RMSE by region for the three groups of patients: healthy and LBBB ischemia, LBBB no ischemia.

TABLE 2 Mean RMSE between the 16 experimental and simulated LV strain curves of the study population.

Healthy Mean RMSE LBBB (Ischemia) Mean RMSE LBBB (Non-ischemia) Mean RMSE

Patient 1 4.91± 2.16 Patient 1 2.71± 1.13 Patient 1 3.47± 1.03

Patient 2 3.89± 1.08 Patient 2 2.88± 1.0 Patient 2 3.63± 0.82

Patient 3 4.77± 1.53 Patient 3 2.50± 0.56 Patient 3 5.03± 1.49

Patient 4 4.19± 1.13 Patient 4 1.96± 0.69 Patient 4 4.38± 2.06

Patient 5 5.41± 1.66 Patient 5 3.51± 1.1 Patient 5 3.73± 1.3

Patient 6 6.23± 12.45 Patient 6 4.50± 2.42 Patient 6 2.99± 1.0

Patient 7 3.43± 0.88 Patient 7 8.23± 3.42 Patient 7 5.71± 2.29

Patient 8 5.45± 1.84 Patient 8 1.99± 0.72 Patient 8 3.15± 1.48

Patient 9 6.72± 2.38 Patient 9 4.60± 2.50 Patient 9 4.36± 1.76

Patient 10 5.4± 2.3 Patient 10 3.72± 1.33 Patient 10 4.86± 2.06

TABLE 3 The mean ratio of the standard deviation over interval length for 10 identification repetitions over five patients (two LBBB with ischemia,

one LBBB without ischemia, and two healthy).

Patients Kact Kpass n2 n1 α2 α1 UDP UDPLBB

2 LBBB ischemia 16.32 2.17 9.39 2.74 1.84 3.45 2.60 0.47

9.07 2.01 14.02 2.82 2.48 3.20 3.24 0.58

1 LBBB no-ischemia 12.96 2.00 10.44 3.18 1.82 3.21 2.85 0.49

2 Healthy 15.51 1.46 10.42 2.32 1.69 2.83 2.61 0.34

12.66 1.47 9.80 2.18 1.42 3.10 2.34 0.44

[50]. Nevertheless, it has been shown that typical myocardial

strain morphologies in LBBB could be modified by the

presence of scar and low regional LV contractility (Figure 5

illustrates this point, by presenting different pattern though

the independent modulation of parameters related to the

electrical behaviors and to the tissues contractility quality).

Moreover, the parameters of the septal and lateral part of

the LV present the highest influence on the strain curves

dyssynchrony. This is particularly interesting knowing the

recent study on the importance of the septal variability in

the contribution of the LV reverse modeling [6]. In this

context, the ability of the model to disclose the relationship

between electrical activation delay and LV contractility has

pivotal importance because it might ease the identification of
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myocardial substrates that more prone to be associated with

CRT response.

In the second step of patient-specific adaptation, EA were

used to identify the most influential parameters in each patient.

The error function was minimized based on experimental

and simulated strain curves previously synchronized on the

onset of QRS of synthesized and experimental ECG. Patient-

specific simulations have shown satisfactory results since we

observed a good agreement between simulated and experimental

myocardial strain curves given the reproducibility of strain

signals [51, 52]. For healthy cases, morphologies of the

myocardial strain curves were similar in all segments due to

the synchronous contraction of the entire LV [36]. Associated

bull’s eyes show normal electrical activation times and elevated

contractile levels.

In most patients with non-ischemic LBBB, the early

activation of the LV septum, followed by the delayed activations

of the LVwall [53, 54], causes a typical myocardial strain pattern.

This pattern is characterized by an early marked shortening

of the septum in the pre-ejection phase, known as “septal

flash” [55] followed by an immediate re-lengthening of the

septum, the “septal rebound stretch.” Both the septal flash and

septal rebound are known to be predictors of CRT response

[4, 56].

In ischemic patients, the typical activation pattern induced

by LBBB can be disrupted by the association of electrical

delay and inhomogeneous LV contractility. In patients with

LBBB and lateral scar, hypocontractile regions are localized

in the lateral wall. In this case, deformation patterns are

highly modified because the local impairment of contractility

in the lateral wall caused the loss of the rebound stretch

in the septum [6]. On the contrary, the presence of an

anterior scar was associated with a reduced contractility of

the corresponding myocardial segments and had less impact

on septal deformation [6]. The strength of our model was,

therefore, to reproduce the “atypical” strain patterns observed

in patients with LBBB and ischemic cardiomyopathy thought

the correct localization of the hypocontractile segments, which

correspond to areas of myocardial scar identified by a clinician

based on cMRI. Although the scare localizations, observed

with cMRI, are not provided on a per-segment basis, it was

possible to make a correspondence between low contractility

segments and scars regions. Segments associated with low

contractility corresponds to the areas of myocardial scar

observed with cMRI.

There are several important consequences of our findings.

First, the results of our model-based approach underscore

that septal motion and global strain morphologies are not

only explained by electrical conduction delay but also by the

heterogeneity of contractile levels within the myocardium and

suggest that the evaluation of LV dyssynchrony should take into

account both electrical delay and regional mechanical function.

Second, the application of a model-based approach could bring

additional information on the regional electrical andmechanical

function of the LV from the simple analysis of echocardiography

data. This is particularly important because it can help to

disclose the intrinsic complexity of LV mechanics in CRT

candidates, and represents a step forward in the development

of personalized LV modeling in the field of CRT. Third, one of

the main strengths of the approach was to perform a parameter

identification process for the patient-specific estimations of the

segmental strain curves. In order to build the cost function,

experimental and simulated strain curves were synchronized

on QRS peaks of synthesized and experimental ECG. Model

parameters were identified from the myocardial strain curves of

the 16 LV segments acquired by STE. For both healthy and LBBB

cases, a good agreement was observed between measured and

estimated strain signals.

These results bode well in our model capacity to reproduce

clinical measurements and could be promising in the LV

function analysis for an individual patient and eventually in the

prediction of optimal treatments.

Although several studies have successfully used

computational models of the CVS to understand myocardial

deformation patterns [20, 57, 58], or investigate the best CRT

pacing location [20, 21, 59] our approach provides interesting

advantages and originalities. The multi-segment model of the

LV allows not only the analysis of the deformation curves of

the septal and lateral walls but also the strain signals of all the

ventricular regions. Therefore, the proposed model resolution

was adapted to the standardized segmentation of the AHA,

keeping a similar abstraction level as clinicians for the analysis

of strain signals. It also uses data from 2D STE, highly accessible

in clinical routine with well-known strengths and limitations.

Moreover, our approach applies a parameter identification

process, providing customized models specifically for each

patient and allowing the recognition of hypocontractile areas

that could be associated with the presence of fibrosis.

5. Limitations

The proposed model-based approach presents some

limitations that should be mentioned. Several hypotheses

were made in order to propose tissue-level representations of

ventricles: (i) the ventricular torsion was neglected, (ii) the

mechanical continuity between myocardial segments was not

always assured because ventricles are represented by a set of

sub-pumps controlled by a coordinated electrical activity and

coupled in the hydraulic domain, (iii) only mean myocardial

fiber orientation was considered, and (iv) electro-mechanical

coupling was approximated by an analytic expression.

Despite these hypotheses, the model definition is in

accordance with the problem under study and appears to be a

useful tool to assist the in interpretation of strain data. Moreover,

in order to reduce computational costs, only a small sample
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of variables was selected for parameter identification. The

heterogeneity in parameters is mainly explained by pathological

characteristics of LBBB patients (ischemic tissues, alterations

of cardiac electrical pathways,. . . ). Parameter heterogeneities

are also reflected in strain values and morphologies that could

be observed for myocardial segments of the same patient.

These parameters may also have absorbed changes in other

fixed parameters. For instance, septal segment parameters may

have been affected by RV variations. Thus, a wider range of

parameters could be included in the future. Finally, this study

is based on a small population of patients with LBBB, an

extension of our simulation on a larger clinical database and

simulation repetitions should give us a better estimation of the

reproducibility and the robustness of the method.

Moreover, as the results show, the surface of the

hypocontractile regions seems overestimated. That suggests a

diffusion of the tissue quality in the parameters identification

process. In the same way, a mismatch still exists between the

experimental and simulated curves. Some efforts must still be

made to reduce it, but the simplifications chosen in the model

definition, as well as the reduce number of parameters used in

the patient-specific identification, explain it. Future work must

be dedicated on a precise validation of identified parameters

that are not validated yet, due to clinical difficulties to measure

it on such a population.

Nevertheless, this work proposes patient-specific

simulations of strain curves in the case of LBBB in association

with ischemia and the proposed approach is a step forward

toward the integration of computational models in the patient

selection process before CRT procedures. Future work will be

dedicated to evaluate the proposed model-based indices, in

wider multi-parametric approach [60], for the prediction of

CRT response.

6. Conclusion

In this work, we propose a novel model-based approach

for the analysis of myocardial strains in patients with LBBB.

The global method is based on (i) a physiological model

of the CVS that integrates the electrical, mechanical, and

hydraulic processes leading to ventricular contraction and

(ii) a parameter identification procedure for patient-specific

simulations. The proposedmodel-based approach was evaluated

with echocardiography data from 10 healthy individuals

and 20 patients with LBBB. Results show a close match

between experimental and simulated strain curves in all

the cases. Furthermore, the approach is able to reproduce

electrical activation delay and segmental myofiber contractility

properly.

More extensive evaluations including a greater population

of patients, as well as the analysis on a wider multi-

parametric approach, should be performed in the future.

Nevertheless, this article presents a first work toward the

evaluation of myocardial strain signals and the assessment

of certain echo-based parameters by patient-specific

simulations based on computational models. The proposed

personalized approach represents a promising tool for the LV

mechanical dyssynchrony understanding and CRT responders

identification.
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