Use of innovative, cross-disciplinary in vitro, in silico and in vivo approaches to characterize the metabolism of chloro-alpha-pyrrolidinovalerophenone (4-Cl-PVP) - Université de Rennes Accéder directement au contenu
Article Dans Une Revue Archives of Toxicology Année : 2023

Use of innovative, cross-disciplinary in vitro, in silico and in vivo approaches to characterize the metabolism of chloro-alpha-pyrrolidinovalerophenone (4-Cl-PVP)

Résumé

Synthetic cathinones constitute a family of new psychoactive substances, the consumption of which is increasingly worldwide. A lack of metabolic knowledge limits the detection of these compounds in cases of intoxication. Here, we used an innovative cross-disciplinary approach to study the metabolism of the newly emerging cathinone chloro-alpha-pyrrolidinovalerophenone (4-Cl-PVP). Three complementary approaches (in silico, in vitro, and in vivo) were used to identify putative 4-Cl-PVP metabolites that could be used as additional consumption markers. The in silico approach used predictive software packages. Molecular networking was used as an innovative bioinformatics approach for re-processing high-resolution tandem mass spectrometry data acquired with both in vitro and in vivo samples. In vitro experiments were performed by incubating 4-Cl-PVP (20 mu M) for four different durations with a metabolically competent human hepatic cell model (differentiated HepaRG cells). In vivo samples (blood and urine) were obtained from a patient known to have consumed 4-Cl-PVP. The in silico software predicted 17 putative metabolites, and molecular networking identified 10 metabolites in vitro. On admission to the intensive care unit, the patient's plasma and urine 4-Cl-PVP concentrations were, respectively, 34.4 and 1018.6 mu g/L. An in vivo analysis identified the presence of five additional glucuronoconjugated 4-Cl-PVP derivatives in the urine. Our combination of a cross-disciplinary approach with molecular networking enabled the detection of 15 4-Cl-PVP metabolites, 10 of them had not previously been reported in the literature. Two metabolites appeared to be particular relevant candidate as 4-Cl-PVP consumption markers in cases of intoxication: hydroxy-4-Cl-PVP (m/z 282.1254) and dihydroxy-4-Cl-PVP (m/z 298.1204).
Fichier principal
Vignette du fichier
Pelletier et al - 2022 - Use of innovative, cross-disciplinary in vitro, in silico-4ClPVP-metabolism_revised-2.pdf (793.84 Ko) Télécharger le fichier
22-08-23-Complements-Clin-chem.pdf (150.79 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03924591 , version 1 (17-01-2023)

Identifiants

Citer

Romain Pelletier, Brendan Le Daré, Pierre-Jean Ferron,, Diane Le Bouedec, Angéline Kernalléguen, et al.. Use of innovative, cross-disciplinary in vitro, in silico and in vivo approaches to characterize the metabolism of chloro-alpha-pyrrolidinovalerophenone (4-Cl-PVP). Archives of Toxicology, 2023, 97 (3), pp.671-683. ⟨10.1007/s00204-022-03427-7⟩. ⟨hal-03924591⟩
41 Consultations
56 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More