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Abstract

The use of broken symmetry calculations in Kohn-Sham density functional theory

has offered an affordable route to study magnetic exchange couplings in transition

metal-based compounds. However, computing this property in compounds exhibiting

several couplings is still challenging and especially due to the difficulties to overcome

the well-known problem of spin contamination. Here, we present a new and general

method to compute magnetic exchange couplings in systems featuring several spin sites.

To provide a consistent spin decontamination of J values, our strategy exploits the

decomposition method of the magnetic exchange coupling proposed by Coulaud et al.

and generalises our previous work on diradical compounds where the overall magnetic

exchange coupling is defined as the sum of its three main and properly extracted physical

contributions (the direct exchange, the kinetic exchange and the spin polarisation).

In this aim, the generalised extraction of all contributions is presented to systems

with multiple spin sites bearing one unpaired electron. This is done by proposing
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a new paradigm to treat the kinetic exchange contribution which proceeds through

monorelaxations of the magnetic orbitals. This method, so-called the recomposition

method, is applied to a compound featuring three Cu(II) ions with a linear arrangement

and to a recently synthesised complex containing a Cu4O4 cubane unit presenting an

unusual magnetic behaviour.

1 Introduction

Magnetic exchange coupling J is one of the most fundamental magnetic interactions occur-

ring in materials featuring locally unpaired electrons.1 In the Heisenberg-Dirac-van Vleck

(HDvV) Hamiltonian, JIJ expresses the magnitude of the coupling between two spin sites I

and J , defined by their local spin operators ~̂SI and ~̂SJ , respectively:

ĤHDvV =
∑
I,J

−2JIJ ~̂SI · ~̂SJ (1)

Whilst its origin comes from the quantum nature of electrons, this interaction induces the

macroscopic phenomena called ferromagnetism, by favouring a parallel alignment of the

unpaired electron spin momenta and anti-ferromagnetism, by favouring their anti-parallel

alignment. At the molecular level, using the HDvV Hamiltonian of Eq. (1), ferromagnetism

(respectively anti-ferromagnetism) translates to positive (respectively negative) J . Being

able to control molecular properties for which J is the key interaction is of strong interest,

for instance for designing molecular-based magnets.2 Therefore, its determination is essential

for insights on the behaviour of magnetic compounds, either from the experimental3–5 or

theoretical point of view.6–21 For the latter, the determination of J mainly proceeds through

energy differences between high and low spin states.

Wave-function-based methods are the reference approaches to compute magnetic prop-

erties due to their ability to properly take into account the multi-configurational character

of the wave-function of low-spin states. Even though methods such as Difference Dedi-
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cated Configuration Interaction (DDCI)22 selects only the relevant electronic configurations

to compute vertical energy differences between low and high spin states, in most cases its

computational cost is prohibitive for real life applications. Despite this limitation, such

models provide valuable knowledge in the physics of the magnetic exchange coupling, espe-

cially in the simplest case of two unpaired electrons in two magnetic centers, which has been

deeply investigated either analytically by means of Quasi Degenerate Perturbation Theory

(QDPT)18,23–25 or numerically (see reference 18 for an extensive review). However, the in-

crease in the number of unpaired electrons and/or magnetic centres makes the definition of

the effective Hamiltonian a strenuous task.18,26

Density Functional Theory (DFT) in its Kohn-Sham (KS) formulation offers the pos-

sibility to compute magnetic exchange couplings by means of the Broken-Symmetry (BS)

approach.7,27–35 J is calculated as the energy difference between the high spin state and a

fictitious state in which the spin symmetry of the two unpaired electrons, rooted in their

fermionic nature, is broken. Whilst some alternatives have been proposed such as the

spin-flip time-dependent DFT (SF-TDDFT),36–38 the use of non-collinear formalism,39,40

constrained DFT,41,42 SF-Constricted DFT,43–45 the fractional occupation-based method

restricted-ensemble KS (REKS)46–49 or using multiconfigurational pair-DFT (MC-PDFT),50

the BS approach has been widely used in the last three decades thanks to its ability to

qualitatively or semi-quantitatively determine J at a reasonable computational cost.16,18,51

However, these successful applications shall not hide the potential issues of the BS-DFT J

determination. These include the strong dependence of the J magnitude with the choice

of the DFT exchange-correlation functional and its investigation has been widely reported

in the literature.52–59 Whilst hybrid-generalized gradient approximation (hGGA) appears

as the preferred family of functionals,59 the amount of Hartree-Fock exchange stays a key

quantity.60 Another important question regards the spin decontamination of J , since the BS

determinant is not an eigenfunction of the Ŝ2 operator, i.e. a pure spin state. Accordingly,

the energy difference in the J expression must be spin decontaminated. Several spin decon-

3



tamination schemes have been proposed, the Yamaguchi formula, based on the determination

of Ŝ2 expectation values for both the high-spin (HS) and the broken-symmetry states, being

probably the most common one,

J =
EBS − EHS

〈Ŝ2〉HS − 〈Ŝ2〉BS
(2)

Despite its great interest, the use of the Yamaguchi formula cannot be considered as fully

satisfying since it fails to correctly treat the spin polarisation effects, i.e the different polar-

isation of the core (non-magnetic) orbitals in the HS and BS determinants.61 Indeed, this

formula is based on the idea that the BS solution may be expressed as the linear combi-

nation of the singlet and the triplet states, illustrated by 〈Ŝ2〉 between 0 and 1 depending

on this mixture. However, the polarisation of the core orbitals introduces contaminations

from higher spin states which may considerably increase 〈Ŝ2〉 of the triplet state or on the

BS determinant with for instance values greater than 1. Hence, 〈Ŝ2〉 differences at the de-

nominator can lead to an artificial over- or underestimation, having important consequences

on the determination of J or the singlet-triplet gaps as for instance in diradical organic

molecules presenting strong polarisation of the core orbitals.62,63

Magnetic exchange couplings play a critical role on the magnetic properties of multicentre

compounds such as polymetallic clusters, which are of great interest in molecular magnetism.

However, dealing with more than two magnetic centres through the BS approach, where the

Yamaguchi formula is no longer valid,64 presents a challenging problem due to the difficult

treatment of the spin contamination. The most common strategy resorts to neglecting the

spin contamination and such an approach takes place in the Ising Hamiltonian. In computing

the HS state and a set of properly chosen BS determinants, of which both correspond to

Ising solutions, one may define a set of energy differences to map the different magnetic

interactions of the system. However, in addition to neglecting the spin contamination which

may be critical, it is worth noting that for systems featuring more than three magnetic
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centres, it exists more BS solutions than couplings. Hence, it results in an overestimated set of

equations where the coupling values may depend on the choice of the determinants.42,65 From

our knowledge, the main attempt to spin decontaminate BS calculations has been proposed

by Shoji et al.64 and more recently used in the context of the Extended-BS framework.66 This

strategy may be seen as a direct generalisation of the Yamaguchi formula in approximating

〈Ŝ2〉 through its local operators. One may expect from this strategy to suffer from the same

problem as for 2-centre systems, i.e. when compounds exhibiting strong spin contamination

are considered. Furthermore, experimental determination of couplings in these compounds

proceeds through a fitting over an unique magnetic susceptibility measurement of which

several sets of couplings may be determined, leading to controversial values which often

differ from the theoretical evaluation.67–69 Hence, the possibility of proposing a method more

affordable than WFT-based approaches while overcoming the current limitations of DFT in

the computation of magnetic couplings in multicentre systems is particularly appealing.

Firstly defined in wave-function theory by means of QDPT,23 the magnetic exchange

coupling may be interpreted as the competition between three contributions, i) the ferro-

magnetic J0 contribution, corresponding to the direct exchange between the magnetic centres

I and J , ii) the anti-ferromagnetic kinetic exchange contribution ∆JKE due to the relaxation

of the HS magnetic orbitals in the BS determinant and iii) the previously presented spin

polarisation contribution ∆JSP, caused by the differential response of the non-magnetic or-

bitals to the different fields created by the unpaired electrons in the HS and BS states. The

extraction of these contributions has been made accessible by the work of Coulaud et al.70,71

in the case of systems with two magnetic centres bearing one unpaired electron through

successive relaxations of the orbitals involved in the underlying mechanisms. This method

provides a deep analysis of the magnetic exchange coupling values computed by the BS

approach, being successfully used to rationalise magnetic interactions in dinuclear copper

complexes,72 to parametrise model Hamiltonians of a quantum spin liquid73 or to analyse

the symmetry breaking in disjoint diradical compounds.74 More recently, some of the present
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authors showed how this approach may be beneficial to compute J . Indeed, in evaluating J

as the summation of three properly spin decontaminated contributions, we proposed a more

physical estimation of this quantity, preventing the over- or underestimation of the coupling

due to the incorrect treatment of the spin polarisation through the Yamaguchi formula.63

The present paper proposes a new method for computing magnetic exchange couplings

in multicentre complexes through a proper evaluation of their three main contributions.

Whilst the direct exchange contribution does not require a special spin decontamination

treatment, the kinetic exchange contribution is treated by considering the delocalisation

between pairs of magnetic centres only, taking fully advantage of the selective relaxation

of the orbitals. Its evaluation is done by extracting the t and U Hubbard Hamiltonian

parameters, overcoming the problem of spin decontaminating an effective kinetic exchange

contribution. The spin polarisation effects are treated by generalising the recent proposition

of some of the present authors.62 The couplings are defined as the sum of these three properly

extracted contributions and may be used to dressed an effective CI matrix, generalising our

previous works so-called DFT-dressed CI.63,75 This paper is organised as follows. In section

2, we present the extension of the decomposition and the recomposition of magnetic exchange

couplings in multicentre complexes featuring one unpaired electron per magnetic centre. For

the sake of consistency, Appendix 1 recalls the basic features of the physics of the magnetic

exchange coupling in the simplest case of a system with two electrons in two magnetic centres

as well as the decomposition of this coupling in the BS approach. Section 3 presents the

computational details and the systems studied in this work. This work focuses on complexes

with Cu(II) metal ions and then presenting only one unpaired electron per magnetic centre,

due to their d9 configuration. Section 4 illustrates the recomposition method using to a

simple linear 3-centre system. It is followed by the study of a recently synthesised cubane

core tetranuclear Cu(II) complex exhibiting unusual magnetic properties.
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2 Extraction of magnetic exchange couplings in multi-

centre systems

Starting from the HDvV Hamiltonian presented in Equation (1), let us consider a multicen-

tre magnetically coupled system featuring n spin sites, labelled A, B, C, ..., N , all of them

bearing one unpaired electron for a maximum number of n(n−1)/2 couplings JIJ . Through-

out this work, upper-case letters A, B, ... are used to refer to magnetic centres, of which

are associated magnetic orbitals in lower-case letters a, b, ..., respectively. Furthermore, i,

j,... correspond to core (non-magnetic) orbitals while r, s,... to virtual orbitals. Finally, the

determinants are defined using the notation ΦABC..N,RO where the first part of the subscript

before the comma gives the spin distribution over the magnetic centres and the second the

formalism used.

2.1 Direct Exchange

The starting point of the method is the computation of the HS state in the Restricted Open-

shell (RO) formalism with a spin multiplicity equals to (n + 1) (for the n sites with one

unpaired electron). This determinant defines a set of n Singly Occupied Molecular Orbitals

(SOMOs) as well as a set of Nc unpolarised core (non-magnetic) orbitals i. Localising the n

SOMOs, the HS,RO determinant is expressed as,

ΦHS,RO = ΦABC...N ,RO = |
Nc∏
i

īiabc . . . n| (3)

where a, b, c, . . . , n correspond to the localised orbitals on the sitesA,B,C, . . . N , respectively.

In order to determine the direct exchange contribution to the n(n−1)/2 couplings, n(n−1)/2

BS determinants need to be constructed by flipping the spin of some electrons in order to

make the required n(n − 1)/2 energy differences with the HS state. This may be done in

different ways and may be adapted regarding the symmetry and the topology of the system.
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For instance, flipping the electron spin of one site allows one to generate n BS determinants

with a multiplicity of (n− 1), such as,

ΦĀBC...N ,NO = |
Nc∏
i

īiābc . . . n| (4)

ΦAB̄C...N ,NO = |
Nc∏
i

īiab̄c . . . n| (5)

ΦABC̄...N ,NO = |
Nc∏
i

īiabc̄ . . . n| (6)

...

and to generate n energy differences between these determinants and the HS,RO,

E[ΦĀBC...N ,NO]− E[ΦABC...N ,RO] =
n∑

K=1,K 6=A

JAK0 (7)

E[ΦAB̄C...N ,NO]− E[ΦABC...N ,RO] =
n∑

K=1,K 6=B

JBK0 (8)

E[ΦABC̄...N ,NO]− E[ΦABC...N ,RO] =
n∑

K=1,K 6=C

JCK0 (9)

...

There are now n(n−3)/2 BS determinants left to generate and this may be done by flipping

the electron spin of two centres to create the determinants of (n-3) spin multiplicity,

|ΦĀB̄C...N ,NO| = |
Nc∏
i

īiāb̄c . . . n| (10)

|ΦĀBC̄...N ,NO| = |
Nc∏
i

īiābc̄ . . . n| (11)

|ΦAB̄C̄...N ,NO| = |
Nc∏
i

īiab̄c̄ . . . n| (12)

...
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providing the following energy differences,

E[ΦĀB̄C...N ,NO]− E[ΦABC...N ,RO] =
n∑

K=1,K 6=A,B

JAK0 + JBK0 (13)

E[ΦĀBC̄...N ,NO]− E[ΦABC...N ,RO] =
n∑

K=1,K 6=A,C

JAK0 + JCK0 (14)

E[ΦAB̄C̄...N ,NO]− E[ΦABC...N ,RO] =
n∑

K=1,K 6=B,C

JBK0 + JCK0 (15)

...

This strategy provides a system of linear equations to solve for extracting all direct exchange

contributions. It is worth noting that the direct exchange contribution corresponds to the

exchange integral between two magnetic orbitals and then the extraction should not depend

on the determinants chosen to define the system of linear equations.

2.2 Kinetic Exchange

The kinetic exchange contribution is the main challenge when multicentre systems are consid-

ered. Indeed, this contribution may be seen as the entry of ionic forms in the wave-function

and results in complicated spin contamination; the reader may refer to the Appendix for

further discussions. Whilst the Yamaguchi formula is a valuable tool for systems with two

magnetic centres, its use is no longer possible with several sites.64 Indeed, this formula is

based on the fact that with two sites the HDvV Hamiltonian reduces to,

2SJ = E(S − 1)− E(S) (16)

where S is the spin quantum number of the HS state. Except for very highly symmetric

situations, this is no longer valid with more than two sites and the energy difference between

two spin states would correspond to a sum of several couplings. Then, a rigorous extraction of

an effective kinetic exchange contributions appears a tedious task. To overcome this problem,
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one may rely on the use of the t and U Hubbard Hamiltonian parameters, corresponding to

the hopping integral and the on-site repulsion energy, respectively. They provide a thinner

description of the kinetic exchange contribution, of which a discussion may be found in the

Appendix. However, except for highly symmetric situations, two sets of U and t parameters

must be extracted since, even in the case of two electrons in two magnetic centres,

Eaā − Eab̄ 6= Ebb̄ − Eab̄ (17)

and,

〈aā|Ĥ|ab̄〉 6= 〈bb̄|Ĥ|ab̄〉 (18)

and then at least four parameters should be extracted for each pair. In this aim, one may use

the possibility of decomposition offered by the selective relaxation of orbitals a step further

by relaxing a single magnetic orbital a, allowing it to mix with a corresponding virtual

magnetic orbital b such as Eq. 84, whilst the occupied orbital b remains frozen. This allows

one to define a BS determinant as,

|ΦA′B̄C...N ,FC| = |
Nc∏
i

īia′b̄c . . . n| (19)

= |
Nc∏
i

īiab̄c . . . n| cos θ + |
Nc∏
i

īibb̄c . . . n| sin θ (20)

of which the energy may be expressed as,

E[ΦA′B̄C...N ,FC] = E[ΦAB̄C...N ,NO] cos2 θ + E[ΦBB̄C...N ,NO] sin2 θ + 2〈ΦAB̄C...N ,NO|Ĥ|ΦBB̄C...N ,NO〉 cos θ sin θ

(21)

= E[ΦAB̄C...N ,NO] +
(
E[ΦBB̄C...N ,NO]− E[ΦAB̄C...N ,NO]

)
sin2 θ (22)

+ 2〈ΦAB̄C...N ,NO|Ĥ|ΦBB̄C...N ,NO〉 cos θ sin θ
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The second term of Eq. 22 is homogenous to the U Hubbard Hamiltonian parameter whilst

the last term to the t hopping integral. Using the energies and 〈Ŝ2〉 of the FC and NO BS

determinants, both parameters may be extracted as,

E[ΦBB̄C...N ,NO]− E[ΦAB̄C...N ,NO] =
(
E[ΦA′B̄C...N ,FC]− E[ΦAB̄C...N ,NO]

) 2α− 1

α− 1
(23)

〈ΦAB̄C...N ,NO|Ĥ|ΦBB̄C...N ,NO〉 =
(
E[ΦA′B̄C...N ,FC]− E[ΦAB̄C...N ,NO]

)√ α

1− α
(24)

with

α =
〈Ŝ2〉A′B̄C...N ,FC − 〈Ŝ2〉BB̄C...N ,NO

〈Ŝ2〉AB̄C...N ,NO − 〈Ŝ2〉BB̄C...N ,NO
(25)

These extractions are valid as long as only the relaxation of one orbital is considered, and

the three equations may be expressed in a more general form as,

U = (E[ΦFC ]− E[ΦNO])
2α− 1

α− 1
(26)

t = (E[ΦFC ]− E[ΦNO])

√
α

1− α
(27)

with

α =
〈Ŝ2〉FC − 〈Ŝ2〉ion
〈Ŝ2〉NO − 〈Ŝ2〉ion

(28)

Despite their generality, few requirements must be mentioned. Two relaxations of a single

orbital must be performed to collect the two sets of parameters. It raises the question of the

choice of the determinants used since four situations may be imagined; e.g.

i) ΦA′B̄C...N ,FC with a′ = a cos θ + b sin θ,

ii) ΦAB̄′C...N ,FC with b′ = b cos θ + a sin θ,

iii) ΦĀ′BC...N ,FC with a′ = a cos θ + b sin θ and

iv) ΦĀB′C...N ,FC with b′ = b cos θ + a sin θ.
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This question will be more discussed in section 4.1.2. Finally, an overall kinetic exchange

contribution is defined by summing both energetic contribution t2/U and t′2/U ′ associated

to a pair of orbitals,

∆JKE = − t
2

U
− t′2

U ′
(29)

in the same way as for the two electrons in two centres case (see Eq. (90) in Appendix 1).

2.3 Spin polarisation

Corresponding to the different response of the non-magnetic orbitals to the field created by

the unpaired electrons in the different spin states, the core polarisation effects are determined

through the relaxation of the core orbitals keeping frozen the magnetic orbitals. Before

entering in the extraction of this contribution, let us recall some basic features of the spin

polarisation contribution in the present context. Starting from the HS,RO determinant,

|ΦABC...N ,RO| = |
Nc∏
i

īiabc . . . n| (30)

the mean field Fock operator for the core electron is,

F̂ = ĥ+
Nc∑
i

(2Ĵi − K̂i) + Ĵa − K̂a/2 + Ĵb − K̂b/2 + Ĵc − K̂c/2 + · · ·+ Ĵn − K̂n/2 (31)

where ĥ is the mono-electronic operator and Ĵ and K̂ the Coulomb and exchange opera-

tors, respectively. Due to the Brillouin’s theorem, all elements of the Fock matrix between

occupied and virtual orbitals are zero,

〈i|F̂ |r〉 = 0. (32)
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Let us now define a singly excited determinant obtained by promoting an α electron from

the core to the virtual orbital,

â†râi|ΦABC...N ,RO〉 = |
Nc−1∏
j

jj̄rīabc . . . n〉 (33)

or β one,

â†r̄âī|ΦABC...N ,RO〉 = |
Nc−1∏
j

jj̄ir̄abc . . . n〉 (34)

with â†σ and âσ the creation and annihilation operators, respectively. The interaction between

these determinants and the reference wave-function is given by,

〈ΦABC...N ,RO|Ĥâ†râi|ΦABC...N ,RO〉 = 〈i| − K̂a/2− K̂b/2− K̂c/2 + · · · − K̂n/2|r〉 (35)

〈ΦABC...N ,RO|Ĥâ†r̄âī|ΦABC...N ,RO〉 = 〈i|K̂a/2 + K̂b/2 + K̂c/2 + · · ·+ K̂n/2|r〉 (36)

These interactions result from the fact that, for the α excitation, the exchange operator is

K̂a + K̂b + K̂c + · · · + K̂n instead of the average field imposed by the RO Fock operator.

Similarly, the exchange operator for the β excitation becomes zero, making both interactions

of the same magnitude but with opposite signs.

These interactions result in an energy stabilisation contained in the spin polarisation of the

HS such as,

HSESP = 2
∑
i,r

〈i|K̂a/2 + K̂b/2 + K̂c/2 + · · ·+ K̂n/2|r〉2

Fii − Frr
(37)

with the denominator defined by the Moller-Plesset perturbation theory. This spin polari-

sation is introduced by the relaxation of core orbitals through the interaction between the

HS,RO determinant and the singly excited configurations. In the mean-field approximation,

such an effect may be accounted by allowing the relaxation of the core MOs only, i.e. keeping
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the magnetic orbitals frozen. Feeling a different exchange field due to the unpaired electrons,

α and β electrons are described by different spatial parts as allowed by the unrestricted for-

malism,

|ΦABC...N ,FM| = |
Nc∏
i

i′̄i′′abc . . . n| (38)

In the basis of the MOs defined by the HS,RO, the new core orbitals may be approximately

expressed,

i′ = i−
∑
i,r

〈i|K̂a/2 + K̂b/2 + K̂c/2 + · · ·+ K̂n/2|r〉
Fii − Frr

r (39)

i′′ = i+
∑
i,r

〈i|K̂a/2 + K̂b/2 + K̂c/2 + · · ·+ K̂n/2|r〉
Fii − Frr

r (40)

Therefore, the stabilisation energy due to the relaxation of the core orbitals may be inter-

preted such as,

E[ΦABC...N ,FM]− E[ΦABC...N ,RO] = 2
∑
i,r

〈i|K̂a/2 + K̂b/2 + K̂c/2 + · · ·+ K̂n/2|r〉2

Fii − Frr
(41)

Let us now define a BS determinant where the electron spin of one site is flipped,

|ΦĀBC...N ,NO| = |
Nc∏
i

īiābc . . . n| (42)

this determinant being constructed from the orbitals defined by the RO solution, the Fock

operator defined in Eqs (31) and (32) is still satisfied. As in the case of the HS, the α and β

core electrons do not feel the same exchange field due to the unpaired electrons. Therefore,

the relaxation of the core orbitals,

|ΦĀBC...N ,FM| = |
Nc∏
i

i′̄i′′ābc . . . n| (43)

14



leads to a different spatial part for the α and β orbitals, which may be approximated as,

i′ = i−
∑
i,r

〈i| − K̂a/2 + K̂b/2 + K̂c/2 + · · ·+ K̂n/2|r〉
Fii − Frr

r (44)

i′′ = i+
∑
i,r

〈i| − K̂a/2 + K̂b/2 + K̂c/2 + · · ·+ K̂n/2|r〉
Fii − Frr

r (45)

Therefore, the stabilisation energy due to the relaxation of the core orbitals may be expressed

as,

E[ΦĀBC...N ,FM]− E[ΦBS,NO] = 2
∑
i,r

〈i| − K̂a/2 + K̂b/2 + K̂c/2 + · · ·+ K̂n/2|r〉2

Fii − Frr
(46)

Making the difference between the stabilisation energy in the HS and in the BS allows one

to extract the polarisation of all couplings involving A,

E[ΦĀBC...N ,FM]− E[ΦBS,NO]− (E[ΦABC...N ,FM]− E[ΦABC...N ,RO]) (47)

=
∑
i,r

〈i|K̂a|r〉〈r|K̂b + K̂c + · · ·+ K̂n|i〉
Fii − Frr

(48)

=
∑
i,r

〈i|K̂a|r〉〈r|K̂b|i〉
Fii − Frr

+
∑
i,r

〈i|K̂a|r〉〈r|K̂c|i〉
Fii − Frr

+ · · ·+
∑
i,r

〈i|K̂a|r〉〈r|K̂n|i〉
Fii − Frr

(49)

= ∆JABSP + ∆JACSP + · · ·+ ∆JANSP (50)

For finding the n(n+1)/2 core polarisation contributions, a strategy similar to the direct

exchange contribution may be employed. Therefore, in addition of the HS,FM determinant,
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a set of n BS determinants with one spin-flipped magnetic centre may be computed,

|ΦĀBC...N ,FM| = |
Nc∏
i

i′̄i′′ābc . . . n| (51)

|ΦAB̄C...N ,FM| = |
Nc∏
i

i′̄i′′ab̄c . . . n| (52)

|ΦABC̄...N ,FM| = |
Nc∏
i

i′̄i′′abc̄ . . . n| (53)

...

allowing us to generate n energy differences between these determinants and the HS,FM,

(
E[ΦĀBC...N ,FM]− E[ΦĀBC...N ,NO]

)
− (E[ΦABC...N ,FM]− E[ΦABC...N ,RO]) =

n∑
K=1,K 6=A

∆JAKSP

(54)(
E[ΦAB̄C...N ,FM]− E[ΦAB̄C...N ,NO]

)
− (E[ΦABC...N ,FM]− E[ΦABC...N ,RO]) =

n∑
K=1,K 6=B

∆JBKSP

(55)(
E[ΦABC̄...N ,FM]− E[ΦABC̄...N ,NO]

)
− (E[ΦABC...N ,FM]− E[ΦABC...N ,RO]) =

n∑
K=1,K 6=C

∆JCKSP

(56)

...

As for the direct exchange, there are n(n−3)/2 BS determinants left to generate which may
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be done by flipping the electron spin of two centres and relaxing their core orbitals,

|ΦĀB̄C...N ,FM| = |
Nc∏
i

i′̄i′′āb̄c . . . n| (57)

|ΦĀBC̄...N ,FM| = |
Nc∏
i

i′̄i′′ābc̄ . . . n| (58)

|ΦAB̄C̄...N ,FM| = |
Nc∏
i

i′̄i′′ab̄c̄ . . . n| (59)

...

providing the following energy differences,

(
E[ΦĀB̄C...N ,FM]− E[ΦĀB̄C...N ,NO]

)
− (E[ΦABC...N ,FM]− E[ΦABC...N ,RO]) =

n∑
K=1,K 6=A,B

∆JAKSP + ∆JBKSP

(60)(
E[ΦĀBC̄...N ,FM]− E[ΦĀBC̄...N ,NO]

)
− (E[ΦABC...N ,FM]− E[ΦABC...N ,RO]) =

n∑
K=1,K 6=A,C

∆JAKSP + ∆JCKSP

(61)(
E[ΦAB̄C̄...N ,FM]− E[ΦAB̄C̄...N ,NO]

)
− (E[ΦABC...N ,FM]− E[ΦABC...N ,RO]) =

n∑
K=1,K 6=B,C

∆JBKSP + ∆JCKSP

(62)

...

It results in a similar linear set of equations to solve. Finally, the coupling between two

centres I and J may be evaluated as,

J IJ = J IJ0 + ∆J IJKE + ∆J IJSP (63)

The fictitious system with all magnetic centres interacting with each other is the most com-

plicated situation which may be treated by the present method. Obviously, the number of
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Figure 1: Molecular structure of HAKKEJ (top) and schematic representation of the three
magnetic exchange couplings (bottom). Orange = copper, blue = nitrogen, red = oxygen,
grey = carbon, white = hydrogen.

determinants to compute may be drastically reduced according to the physics of the system.

3 Computational Details

For the sake of simplicity, the present method is firstly described in the simplest multicentre

case of 3-site systems. Previously studied by Reta et al. by means of the BS approach,76,77

the compound, labelled HAKKEJ into the Cambridge Structural Database78 (CSD) appears

as a textbook case for our purpose. Presented in Fig. 4, it consists in a linear arrangement

of three Cu(II) ions bridged by oxomato ligands and the chain ends with an N,N,N ′, N ′-

tetrametyletylenedimine at both ends.79 Experimental magnetic exchange coupling has been

determined from magnetic susceptibility measurements and a fit over the HDvV Hamiltonian,

Ĥ = −2J( ~̂SA · ~̂SB + ~̂SB · ~̂SC), hence neglecting the long-distance JAC coupling, resulting in

a coupling J = −190 cm−1.

In addition to propose an overall estimation of couplings fully spin decontaminated, the

recomposition method stays a powerful tool to get insights into the physics of these cou-

plings, thanks to the straightforward extraction of its different contributions. Cu(II) cubane

18



complexes may exhibit very different magnetic properties due to their dependence on slight

variations in the structure of the Cu4O4 unit. This leads to different classifications depend-

ing to the Cu-O bond lengths from Mergehenn and Haase80 or the Cu-Cu distance from

Ruiz et al..67,81 From the latter, three classes are defined, depending on the number of short

+ long bond lengths: 2+4, 4+2 and 6+0, of which a strength of coupling is associated.

Recently, Mehrani et al. synthesised a new [{Cu(OH)(phen)}4]·(ClO4)4 exhibiting an exotic

1+1+4 magnetic pattern and presented Fig 2.82 Labelled BUJRUW in CSD, magnetic cou-

plings have been fitted over the experimental magnetic susceptibility measurement using the

following model Hamiltonian,

Ĥ = −2J1
~̂SA · ~̂SB − 2J2

~̂SC · ~̂SD − 2J3

(
~̂SA · ~̂SC + ~̂SA · ~̂SD + ~̂SB · ~̂SC + ~̂SB · ~̂SD

)
(64)

The best fit results in two antiferromagnetic couplings J1 = −28 cm−1 and J3 = −15 cm−1,

and a stronger ferromagnetic coupling J2 = 72 cm−1. However, this fit has been obtained

using a Landé g-factor of 1.93, while expected greater than 2 for Cu(II).82 In addition, whilst

the magnetic properties of the compound may be understood through a structural analysis of

the Cu4O4 unit, the crystallographic structure exhibits four counterions near the molecule.

Indeed, an intriguing perchlorate ion exists on top of the magnetically-coupled C and D

centres (J2), with both distances between each copper and two oxygen atoms of the ion are

at about 2.6 Å. In addition, three other ClO−4 stand at 2.1 Å of some of the hydroxo group

of the Cu4O4 unit, of which the influence may be questioned too. These make BUJRUW an

excellent candidate for a theoretical investigation requiring both, an accurate evaluation of

the couplings as well as a deeper understanding of the physics governing them.

All calculations have been performed using the ORCA package.83 The selective relax-

ation of the orbitals is done by means of the Local Self-Consistent Field method84 available

since ORCA version 4.2.0. Experimental crystallographic structures from the Cambridge

Structural Database78 has been used for all studied compounds. Regarding HAKKEJ,
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Figure 2: Molecular structure of BUJRUW (left) with the four perchlorate ions and schematic
representation of the different couplings (right). Orange = copper, blue = nitrogen, red =
oxygen, grey = carbon, white = hydrogen, green = chlorine.

counterions have been removed whilst for all structures, hydrogen atoms optimised at the

B3LYP85–88/def2-SVP89 level of theory using the RIJCOSX approximations.16,90 The de-

composition and computation of magnetic exchange couplings have been carried out using

the B3LYP functional with the def2-SVP basis set for all atoms except the copper ones, of

which the def2-QZVPP89 basis set have been employed. Whilst the amount of HF exchange

is a key quantity when transition metal-based compounds are studied and a balance of 35%

has been several times advised,55,56 such an amount was unable to reproduce the trends of

couplings in BUJRUW. In this regard, the standard B3LYP has been kept throughout this

work, even though an overestimation of the HAKKEJ couplings is expected. All molecu-

lar structures have been visualised using Jmol.91 All structures are given in the Supporting

Information (SI).

4 Results and Discussions

4.1 Proof of concept: 3-centre systems

In order to discuss the methodological aspect in the extraction of the different contributions

and the evaluation of the overall magnetic couplings, we firstly consider the HAKKEJ 3-site
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system. Here, no symmetry is considered, resulting in a general HDvV Hamiltonian defined

as,

Ĥ = −2
(
JAB ~̂SA · ~̂SB + JBC ~̂SB · ~̂SC + JAC ~̂SA · ~̂SC

)
(65)

4.1.1 Direct Exchange

Table 1 presents the direct exchange contribution to the different couplings in HAKKEJ

as well as the energy differences used to determine them, in the fifth and third columns,

respectively. Following the topology and its almost symmetric structure, HAKKEJ presents

two similar direct exchange contributions between the central copper atom and the two

others, with JAB0 = 53 cm−1 and JBC0 = 52 cm−1. Furthermore, due to its linear structure,

the two external copper atoms stand far away at about 10 Å with no direct interaction,

resulting in a direct exchange coupling JAC0 = 0. As mentioned in section 2, the direct

exchange is insensitive to the choice of determinants. In Table S1 of SI we verify this

property using the four-centres compound BUJRUW. It may be worth nothing that in the

three-centres case, there are as many determinants as couplings and HAKKEJ cannot be

used to stress out the consistency in the extraction of J0.

Table 1: Energy differences and extraction of the direct exchange contribution for the three
couplings in HAKKEJ in cm−1.

∆E
∑
J IJ0 J IJ0

EĀBC,NO − EABC,RO JAB0 + JAC0 53 JAB0 53
EAB̄C,NO − EABC,RO JAB0 + JBC0 104 JBC0 52
EABC̄,NO − EABC,RO JAC0 + JBC0 52 JAC0 0

4.1.2 Kinetic Exchange

Extracting the kinetic exchange contribution is the main challenge when multicentre systems

are considered. Indeed, the relaxation of the magnetic orbitals, reflecting the entry of the

ionic forms in the wave-function, brings the major part of the spin contamination. However,

it may be the most important energetic contribution in transition metal-based compounds

21



and then a proper evaluation is a minimal requirement. Proceeding through the extraction of

the t and U parameters offers this possibility, however, as previously mentioned, two different

t and U for each pair must be determined since different relaxations may be considered. In

the following, we illustrate the flexible-yet-consistent evaluation of the Hubbard parameters

by considering all the possible relaxation paths.

Table 2: t and U Hubbard parameters coming from all possible single orbital relaxation and
kinetic exchange contribution in cm−1 in HAKKEJ.

JIJ relaxation t U −t2/U

AB

(ā cos θ + b̄ sin θ)bc -2534 39589 -162
(a cos θ + b sin θ)b̄c -2535 39532 -163
a(b̄ cos θ + ā sin θ)c -2516 32105 -197
ā(b cos θ + a sin θ)c -2518 32156 -197

BC

a(b̄ cos θ + c̄ sin θ)c -2393 30624 -187
a(b cos θ + c sin θ)c̄ -2394 30676 -187
ab(c̄ cos θ + b̄ sin θ) -2425 39947 -147
ab̄(c cos θ + b sin θ) -2427 39906 -148

AC

(ā cos θ + c̄ sin θ)bc -28 19753 0.0
(a cos θ + c sin θ)bc̄ -29 20850 0.0
ab(c̄ cos θ + ā sin θ) -31 21947 0.0
āb(c cos θ + a sin θ) -31 21947 0.0

Table 2 presents the value of the different t (third column) and U (fourth column) param-

eters extracted through all possible relaxations as well as the resulting energetic contributions

(fifth column). As mentioned, for one pair, 4 different relaxations may be considered whilst

at least two sets of t and U parameters could be distinguished. For each pair of HAKKEJ,

the different relaxations provide a consistent evaluation of t with -2393, -2394, -2425 and

-2427 cm−1 for the BC coupling and -2534, -2535, -2516 and -2518 cm−1 for the pair AB.

Two sets of t parameters may be highlighted, for instance one reflecting the ability of an

electron in A to jump on B at -2534 and -2535 cm−1, and the other for B to A at -2516 and

-2518 cm−1. The extraction of the U parameter provides results in the same vein as for t.

Two distinct U parameters must be extracted as expected for the AB and BC couplings with

39589/39532 and 32105/32156 cm−1 and 30624/30676 and 39947/39906 cm−1, respectively.

Finally, for this contribution again, there is no interaction of this nature between the A and
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C magnetic centres, reflected in very small values of t at -28, -29 and -31 cm−1, even though

U value is not. However, since there is almost no relaxation effects, the extraction of t and

U implies tiny energy differences, at about 2.10−7 Eh, and no conclusions will be drawn with

these values.

Whilst the analogy between the Hubbard parameters extracted through BS-DFT and HF

gets some limits,60 thinking the question of all these different numerical values in the WFT

framework provides a conceptual explanation. Both hopping integrals associated to a pair of

magnetic centres are analytically very slightly different in the WFT framework and they are

numerically expected very close as confirmed in Table 2. For the U parameter, four values

could be defined for one pair of magnetic centres and this explain the four values extracted

for the AB pair, at 39589, 39532, 32105 and 32156 cm−1. In WFT framework, these four U

values are associated to four energy differences between some ionic and neutral forms. In the

present context, they may be highlighted by considering the different possible relaxations

associated to a pair of centres, presented below in the case of the AB coupling,

(ā cos θ + b̄ sin θ)bc→ U = Eb̄bc − Eābc (66)

(a cos θ + b sin θ)b̄c→ U = Ebb̄c − Eab̄c (67)

a(b̄ cos θ + ā sin θ)c→ U = Eaāc − Eab̄c (68)

ā(b cos θ + a sin θ)c→ U = Eāac − Eābc (69)

Except for systems featuring a centre of inversion, both ābc and ab̄c neutral forms would

have different energies as well as for both b̄bc and aāc ionic ones. However, whilst the energy

of both neutral forms should differ only from few 10−6 Eh, i.e. the order of magnitude of the

direct exchange, one may expect from the energy of both ionic forms to be more different.

Then, both relaxations of the orbital reflecting the inclusion of the same ionic component

should provide very close U values, e.g. 32105 and 32156 cm−1, and these values would be

significantly different of those from the opposite relaxation, e.g. 32105 and 32156 compared
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to 39589 and 39532 cm−1. Despite these small differences between U values from relaxation of

the same orbitals, in all couplings, two energetic contributions may be clearly distinguished,

presented in the third column of Table 2. Whilst they differ from a few tens of cm−1,

both energetic contributions are of the same magnitude, according to the consistency in the

evaluation of the t and U parameters. As mentioned in the section 2.2, an effective kinetic

exchange contribution is defined by summing both energetic contributions, as presented in

Table 3.

Table 3: Both energetic relaxations and the total kinetic exchange contribution for each
coupling in HAKKEJ in cm−1.

JIJ −t2/U ∆J IJKE
∆JABKE -163 -197 -360
∆JBCKE -187 -148 -335
∆JACKE 0 0 0

4.1.3 Spin polarisation

Table 4: Energy differences and extraction of the spin polarisation contribution for the three
couplings in HAKKEJ in cm−1.

∆E
∑

∆JIJ
SP ∆JIJ

SP
(EĀBC,FM − EĀBC,NO)− (EABC...N ,FM − EABC...N ,RO) ∆JAB

SP + ∆JAC
SP 1 ∆JAB

SP 1
(EAB̄C,FM − EAB̄C,NO)− (EABC...N ,FM − EABC...N ,RO) ∆JAB

SP + ∆JBC
SP 2 ∆JBC

SP 1
(EABC̄,FM − EABC̄,NO)− (EABC...N ,FM − EABC...N ,RO) ∆JAC

SP + ∆JBC
SP 1 ∆JAC

SP 0

Presented in Table 4, the last contribution extracted corresponds to the spin polarisation

of the non-magnetic electrons due to the different field felt in the high and low spin states.

As expected for transition metal-based compounds, this contribution is very small at 1, 1

and 0 cm−1 for the AB, BC and AC couplings, respectively.

4.1.4 Total magnetic exchange couplings

Let us now focus on the impact on the total magnetic exchange couplings presented in Table

5 with the present method (JΣ) in the fourth column, the usual BS approach evaluation
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through a mapping over the Ising model (JIsing) in the fifth column, reference DDCI cal-

culation (JDDCI) from Ref 76 in the sixth column and experimental evaluation (Jexp) by

neglecting the AC and considering the AB and AC couplings equivalent. DDCI calculations

from Ref 76 have been performed in 6-311G for the Cu atom with an additional f function

and the 6-31G(d,p) basis set for the H, C, N and O atoms.

Table 5: Decomposition (left) and magnetic exchange couplings (right) determined as the
sum of the contributions (JΣ), through the usual BS approach with a mapping over the
Ising model (JIsing), DDCI (JDDCI) from Ref 76 and experimentally (Jexp) from Ref 79, for
HAKKEJ in cm−1.

J IJ0 ∆J IJKE ∆J IJSP JΣ JIsing JDDCI Jexp
JAB 53 -360 1 -306 -331 -112 -190
JBC 52 -335 1 -282 -305 -100
JAC 0 0 0 0 -4 -1 /

Evaluating the overall couplings as the sum of the three contributions (JΣ) provides two

strongly antiferromagnetic couplings for AB and BC at -306 and -282 cm−1, respectively,

and no coupling between the two distant copper atoms A and C. These results are consis-

tent with the couplings extracted through the usual BS approach since the AB and BC ones

are at -331 and -305 cm−1, respectively, even though the AC coupling is here very weakly

antiferromagnetic at -4 cm−1. However, these results are slightly larger in magnitude than

the couplings evaluated thanks to the recomposition method for AB and BC. Regarding

the large importance of kinetic exchange contributions in these couplings, the difference be-

tween both approaches may be attributed to the spin contamination which is neglected in

the usual BS approach whilst it is an important concern for this contribution. It results

in an overestimation of the coupling when this contribution is dominant due to the lack of

a proper spin-decontamination. For such a system with a dominant kinetic exchange con-

tribution, this trend may be readily thought by taking the example of two centres system.

Indeed, in this context the 〈Ŝ2〉 of the BS determinant would necessary be lower than 1 and

using a decontamination scheme such as the Yamaguchi formula (Eq. 2) would lead to a

denominator greater than 1. Hence, the spin contamination factor would squinch the energy
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difference, resulting in a smaller value of the coupling compare to the non-spin decontami-

nated evaluation. Whilst this point has been pointed out by Shoji et al.,64 it can only stand

when the kinetic exchange contribution is dominating.

Finally, both DFT evaluations provide semi-quantitative pictures in agreement with the

DDCI results for this compound with large antiferromagnetic AB and BC couplings at

-112 and -100 cm−1, respectively, even though they are overestimated. However, DDCI

calculations seems to underestimate the couplings compare to the experimental value at -

190 cm−1. Finally, it may be worth noting that these reference values are presented here for

a qualitative purpose and no comparison is drawn since DFT evaluations may be tweaked

through the amount of HFX or the functional directly to reach quantitative agreement.

Indeed, this quantity directly impacts the effects of the well-known self-interaction error,

responsible of the overdelocalisation of the DFT orbitals and which plays a key role for an

accurate prediction of magnetic exchange couplings.72

4.2 Applications to the 1+1+4 Cu(II) cubane complex

We now turn to the tetranuclear Cu(II) BUJRUW complex where six couplings may be

considered. In order to fully take advantage of the present method, no assumption is made

about the equivalence of some couplings and the full model Hamiltonian is considered,

Ĥ = −2
(
JAB ~̂SA · ~̂SB + JBC ~̂SB · ~̂SC + JCD ~̂SC · ~̂SD + JAC ~̂SA · ~̂SC + JAD ~̂SA · ~̂SD + JBD ~̂SB · ~̂SD

)
(70)

where JAB and JCD correspond to J1 and J2 in the model Hamiltonian used experimentally

and presented in Eq. 64, respectively, and where JAC , JAD, JBC and JBD are considered

equal and labelled J3. As mentioned, this compound exhibits an unconventional 1+1+4

magnetic pattern, mainly explained through a structural analysis even though a perchlorate

ion is present near the C and D centres implied in the J2 coupling. Hence, in order to

have a better understanding and to distinguish both aspects, the compound without the
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perchlorate ion is firstly studied whilst these ions will be added afterwards. Finally, the

different couplings using the whole crystallographic structure will be investigated to highlight

the possible influence of the perchlorate ions near some of the hydrogen atoms of the Cu4O4

unit.

4.2.1 Reduced model compound

Table 6 presents the different contributions (third, fourth and fifth columns), the JΣ coupling

from their recomposition (sixth column), the JIsing from the usual BS approach through a

mapping over the Ising model, all considering the structure without the perchlorate counte-

rions, and the experimental evaluation Jexp (last column).

Table 6: Decomposition (J0, ∆JKE and ∆JSP) and magnetic exchange couplings determined
as the sum of the three contributions (JΣ), through the BS approach with a mapping over
the Ising model (JIsing) and experimentally (JExp), in BUJRUW in cm−1.

J0 ∆JKE ∆JSP JΣ JIsing Jexp
J1 JAB 102 -138 28 -8 -17 -28
J2 JCD 96 -90 28 34 28 72

J3

JAC 5 0 0 5 4

-15JAD 4 0 -1 3 2
JBC 4 0 -1 3 2
JBD 5 0 0 5 4

Both DFT evaluations provide very close results for all couplings with a relatively weak

antiferromagnetic J1 (or JAB) coupling at -8 and -17 cm−1 for JΣ and JIsing, respectively.

In the same vein, both approaches evaluate J2 as a stronger ferromagnetic coupling at 34

and 28 cm−1 for JΣ and JIsing, respectively. Interestingly, JΣ provides a weaker J1, which

is antiferromagnetic, and a larger J2, which is ferromagnetic. Looking at the decomposition

presented in the first columns, both couplings exhibit very large ∆JKE contribution at -138

and -90 cm−1 for J1 and J2, respectively. This remark is consistent with the previously

mentioned effect of the spin decontamination, whose neglect tends to overestimate the an-

tiferromagnetic kinetic exchange, resulting in the aforementioned differences. Finally, both

methods evaluate JAC , JAD, JBC and JBD with homogeneous values at about 3 cm−1. This
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quantitatively confirms then the fair assumption of the experimental model Hamiltonian

with a global J3 coupling for these four pairs of magnetic centres. The decomposition comes

to qualitatively support this trend since the four couplings are governed by the same physics,

mainly the direct exchange contribution.

The DFT evaluations come to confirm the 1+1+4 pattern of the magnetic properties in

BUJRUW. Indeed, theoretical and experimental determinations of J1 and J2 are in good

qualitative agreements with a weak antiferromagnetic and larger ferromagnetic couplings,

respectively. However, whilst J1 exhibits a consistent value in each case with -8, -17 and -28

cm−1 for JΣ, JIsing and Jexp, respectively, the quantitative agreement is a bit worse for J2.

Indeed, the experimental value at 72 cm−1 is about two times larger than the DFT ones.

Despite this, the overall picture is quite well represented and the DFT calculations presented

here tends to validate the structural rationalisation done by Mehrani et al.. The ferro- and

antiferromagnetic characters of both J1 and J2 couplings have been justified regarding the

Cu-O-Cu angles of both pairs of magnetic centres and the empirical relationship of Hat-

field.92–94 Indeed, it has been observed a dependence of the exchange coupling in binuclear

Cu(II) complexes bridged by hydroxo groups on the Cu-O-Cu angles, which tends to be

antiferromagnetic for an angle greater than 97.5° and ferromagnetic otherwise. Regarding

the antiferromagnetic J1 coupling, both concerned Cu-O-Cu angles are at about 99° whilst

for the ferromagnetic J2 couplings they are at about 97° (see Ref. 82 for further discussions).

The present theoretical calculations numerically confirm the relevance of the structural anal-

ysis and specially since they have been performed on the compound only, no effect of the

aforementioned perchlorate ion may occur. Furthermore, thanks to the decomposition, one

may interpret this change in the sign of the coupling from a drastic change of ∆JKE with

the angle, with -138 and -90 cm−1 for J1 and J2, respectively, whilst the other contributions

are very slightly affected.

Despite this good qualitative and semi-quantitative agreements for the two first cou-

plings, J3 presents severe differences between the theoretical and experimental determina-
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Figure 3: Isosurface of the four localised magnetic orbitals obtained from the HS,RO deter-
minant and schematic representation of the different couplings (bottom right). Isovalue =
1.0 a.u..

tions. Indeed, the latter provides an antiferromagnetic coupling at -15 cm−1 whilst both

DFT evaluations agree on a very weak ferromagnetic value at about 3 cm−1. In addition

to this important qualitative discrepancy, the decomposition does not hint for any impor-

tant antiferromagnetic contribution since there is a negligible spin polarisation and more

importantly, no kinetic exchange contribution. This may be readily explained by looking at

the magnetic orbitals obtained from the localisation of the HS,RO SOMOs and presented in

Fig. 3. These four orbitals get a strong dx2−y2 character spanning the plan implying J1 and

J2. In such a spatial arrangement of the orbital lobes, a strong kinetic exchange mechanism

may be expected for the latter couplings whilst it completely prevents such a contribution

for the J3 couplings, in agreement with Table 6. Finally, the literature tends to confirm a

weak ferromagnetic coupling associated to the longest bond length in 2+4 cubanes and the

present DFT results are perfectly consistent with the observations from Tercero et al..67
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4.2.2 Influence of the perchlorate ion on top of the CD pair

Table 7 presents the different contributions (third, fourth and fifth columns), the JΣ coupling

from their recomposition (sixth column), the JIsing from the usual BS approach through a

mapping over the Ising model, all considering the molecular structure with the perchlorate

counterion close to the CD pair, and the experimental evaluation Jexp (last column).

Table 7: Decomposition (J0, ∆JKE and ∆JSP) and magnetic exchange couplings determined
as the sum of the three contributions (JΣ), through the BS approach with a mapping over
the Ising model (JIsing) and experimentally (JExp) in BUJRUW with the perchlorate ion near
the CD pair and in parenthesis without (table 6) in cm−1.

J0 ∆JKE ∆JSP JΣ JIsing Jexp
J1 JAB 105 (102) -135 (-138) 29 (28) -1 (-8) -9 (-17) -28
J2 JCD 94 (96) -53 (-90) 29 (28) 70 (34) 67 (28) 72

J3

JAC 4 (5) 0 (0) 0 (0) 4 (5) 4 (4)

-15JAD 4 (4) 0 (0) -1 (-1) 3 (3) 3 (2)
JBC 4 (4) 0 (0) -1 (-1) 3 (3) 3 (2)
JBD 5 (5) 0 (0) -1 (0) 4 (5) 5 (4)

With the presence of the perchlorate ion, both theoretical evaluations provide an overall

picture of the magnetic properties of the system relatively different. Indeed, J1 is still

determined antiferromagnetic but with a weaker magnitude, with -1 instead of -8 cm−1

without the perchlorate ion for JΣ, and -9 instead of -17 cm−1 for JIsing. In the same vein,

J2 is evaluated as a stronger ferromagnetic coupling, at 70 instead of 34 cm−1 without the

perchlorate ion for JΣ, and 67 instead of 28 cm−1 for JIsing. Finally, the values determined

for the J3 coupling at about 3 cm−1 are consistent with the previous evaluation.

Let us now focus on the coupling that is the most concerned by the introduction of

the perchlorate ion, J2. This introduction strongly impacts the coupling and results in a

more ferromagnetic value, going from 34 to 70 and from 28 to 67 cm−1 for JΣ and JIsing,

respectively. Looking at the decomposition, J0 and ∆JSP are very slightly affected by the

perchlorate ion, with contributions going from 96 to 94 and from 28 to 29 cm−1, respectively.

Hence, the strong difference of the J2 coupling without and with the perchlorate ion comes

from an import squinching of the antiferromagnetic ∆JKE contribution, from -90 to -53
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cm−1. Being evaluated by means of the Hubbard Hamiltonian, the access to the t and

U parameters, presented Table S2 of the SI, provides a thinner description of the kinetic

exchange contribution. Hence, with the introduction of the perchlorate ion, U appears

slightly affected with a value going from 34202 and 34657 to 35109 and 3461 cm−1 whilst the

difference is proportionally more important for t with an hopping integral going from about

-1246 to about -966 cm−1. U , J0 and ∆JSP are intrinsic properties of the magnetic orbitals

and since these quantities are almost unchanged, one may argue that the introduction of

the perchlorate ion does not affect the definition of these orbitals. Hence, this ion mainly

has the effect of preventing the relaxation of the magnetic orbitals towards the other sites,

reflected by a quenched t parameter, without intrinsically changing the magnetic orbitals.

Finally, it is interesting to focus on the J1 coupling which, since associated to the AB

pair, should not be strongly affected by the introduction of the perchlorate ion near the CD

pair. Indeed, the overall couplings evaluated through JΣ and JIsing are impacted, going from

-8 to -1 cm−1 and from -17 to -9 cm−1, respectively, with the introduction of the counterion.

Regarding its position, these changes seem difficult to rationalise. This is confirmed with the

decomposition which does not hint for any significant change in the different contributions,

going from 102 to 105 cm−1, -138 to -135 cm−1 and 28 to 29 cm−1, for J0, ∆JKE and ∆JSP,

respectively. Despite small differences in each contribution, the overall coupling may appear

as strongly impacted, specially regarding the small magnitude of the coupling. This shows

how subtle magnetic exchange couplings are to evaluate, even theoretically due to the tiny

energy differences implied.

4.2.3 Influence of the other pechlorate ions

Table 8 presents the different contributions (third, fourth and fifth columns), the JΣ coupling

from their recomposition (sixth column), the JIsing from the usual BS approach through a

mapping over the Ising model, all considering the whole crystallographic structure, and the

experimental evaluation Jexp (last column).
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Table 8: Decomposition (J0, ∆JKE and ∆JSP) and magnetic exchange couplings determined
as the sum of the three contributions (JΣ), through the BS approach with a mapping over
the Ising model (JIsing) and experimentally (JExp) in the complete crystallographic structure
of BUJRUW in cm−1 and in parenthesis for BUJRUW with the perchlorate ion near the CD
pair (table 7).

J0 ∆JKE ∆JSP JΣ JIsing Jexp
J1 JAB 117 (105) -154 (-135) 35 (29) -2 (-1) -13 (-9) -28
J2 JCD 109 (94) -86 (-53) 35 (29) 58 (70) 51 (67) 72

J3

JAC 7 (4) 0 (0) -1 (0) 6 (4) 5 (4)

-15JAD 5 (4) 0 (0) -2 (-1) 3 (3) 4 (3)
JBC 5 (4) 0 (0) -2 (-1) 3 (3) 4 (3)
JBD 6 (5) 0 (0) -1 (-1) 5 (4) 5 (5)

Considering now all the counterions of the crystallographic structure, the J1 coupling

is mainly expected to be influenced by the presence of a perchlorate ion near one of the

hydroxo group between the AB pair, at a distance of 2 Å between the hydrogen atom and

the closest oxygen atom of the perchlorate ion (Fig 2). Both DFT calculations indicate very

slight variations of the total magnetic coupling since JΣ and JIsing go from -1 to -2 and from

-9 to -13 cm−1, respectively, by considering this new system from the latter. Interestingly,

the decomposition hints at more important effects since all contributions are larger, at 117

instead of 105 cm−1 for J0, -154 instead of -135 cm−1 for ∆JKE and 35 instead of 29 cm−1 for

∆JSP. However, these changes in magnitude have no consequences on the overall coupling

since the ratio between the different contributions is roughly equivalent.

The situation is different when considering the CD pair where the J2 coupling would

be affected by two perchlorate ions, of which the closest oxygen stands at 2.1Å from the

hydrogen atom of each hydroxo groups (Fig 2). Whilst J0 and ∆JSP are impacted similarly

as J2, with the former going from 94 to 109 cm−1 and the latter from 29 to 35 cm−1,

the kinetic exchange presents here a different behaviour. Indeed, ∆JKE goes from -53 to

-86 cm−1, indicating an enhanced contribution by both perchlorate ions. This results in a

smaller ferromagnetic J2 couplings, which goes from 70 to 58 and from 67 to 51 cm−1 for JΣ

and JIsing, respectively.

Finally, J3 appears also slightly impacted by the introduction of the three left perchlo-
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rate ions. Indeed, as for J1 and J2, J0 and ∆JSP are slightly larger but this as a relative

impact on the overall picture regarding the already small magnitude of this coupling and its

contributions.

Tables 6, 7 and 8 highlighted the role of the perchlorate ions on the different couplings in

BUJRUW. Whilst these couplings are relatively fairly estimated with the molecular structure

only, the account of the counterions may be important for a thinner description, where they

played a role not only qualitatively. However, even though both theoretical and experimental

evaluations agree on a weak antiferromagnetic J1 and a stronger ferromagnetic J2, the DFT

results are not in line with a significant antiferromagnetic J3 coupling. Indeed, both JΣ and

JIsing plead for a very weak ferromagnetic coupling, whatever the system considered, and the

decomposition presents no hints of a dominant antiferromagnetic contribution. In addition,

either the orbitals analysis or the previous work from Tercero et al.,67 they tend to agree

on a very weak ferromagnetic coupling. The difficulty of fitting several parameters over one

magnetic susceptibility curve may result in discrepancy with theoretical evaluations, which

have been several times discussed.68,69

4.2.4 Remarks on the spin decontamination in BUJRUW

With three couplings exhibiting very different physics, BUJRUW appears as a perfect ex-

ample to discuss the role that the spin contamination may play in multicentre compounds.

On the one hand, in J1 the three contributions are important and the overall coupling

results from the competition between the two ferromagnetic J0 and ∆JSP and the dominating

antiferromagnetic ∆JKE. On the other hand, whilst in J2 the three contributions are of

similar signs and magnitudes as in J1, ∆JKE is not the dominating contribution, resulting in a

ferromagnetic coupling. As mentioned, ∆JKE is the main contribution to spin decontaminate

and when such a treatment is absent, the contribution is overestimated. Let us take the

example of J1 and J2 from Table 7. Since in J2 the kinetic exchange is relatively weak at

-53 cm−1, the overestimation should consequently be moderate in JIsing, resulting in a small
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difference between the recomposition method and the BS approach of 3 cm−1 (70 and 67

cm−1, respectively). On the contrary, the more important ∆JKE at -153 cm−1 in J1 would

lead to a more overestimated contribution in JIsing. It results in a larger difference of 8

cm−1 since JΣ and JIsing are determined at -1 and -9 cm−1, respectively. More than the

numerical difference of the couplings from both approaches, these differences may provide

large discrepancies in the ratio between couplings. This ratio is an important point in DFT

evaluations since, whilst the amount of HFX or the functional may be changed to tune and

reach a numerical agreement, it should be constant as long as the electronic structure is

properly represented.76

Finally, it may be interesting to end this discussion by focusing on the J3 coupling. In-

deed, in a sense it may be seen as an extreme case of the aforementioned situation since

no kinetic exchange mechanism occurs. Then, since there is no contribution to spin decon-

taminate, JIsing should provide a fair determination, which is confirmed by the consistency

with JΣ differing at the maximum of 1 cm1 throughout this study of BUJRUW. Hence, one

may imagine that the ratio from JIsing between such a coupling and a coupling exhibiting a

strong ∆JKE may be dramatically flawed, due to the inconsistency in both evaluations with

the latter lacking for spin contamination.

5 Conclusion

In this article, we have presented a new and consistent method in KS-DFT to compute

magnetic exchange couplings in multicentre compounds which provides fully spin decontam-

inated values. Based on our recent proposal to evaluate the J coupling as the sum of its

three main contributions,63 this work proposes a completely general extraction of the direct

exchange, the kinetic exchange and the spin polarisation contributions, whatever the number

of magnetic centres considered. In line with our previous works, this extraction proceeds

through the computation of several mean-field HS and BS solutions and exploits the selec-
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tive relaxation of orbitals implied in the different physical mechanisms. However, here the

kinetic exchange contribution is treated through the new idea of relaxing magnetic orbitals

only one at a time, allowing the rigorous extraction of the different Hubbard Hamiltonian

parameters. This has been done by means of the LSCF method84 present in Orca since the

version 4.2.0,83 making this work available to any other users. All contributions being rig-

orously extracted, the so-called recomposition method provides overall couplings fully spin

decontaminated.

Numerical applications on the HAKKUJ trinuclear copper compound have presented

the implementation of the method on a simple and well-known system. In this part, we

have detailed how the extraction of the different contributions is performed, with a special

attention paid to discuss the possible evaluations of the kinetic exchange contribution. We

finally compared the recomposition method with the usual BS evaluation, based on the Ising

and which neglects the spin decontamination treatment.

Taking advantage of the rationalisation tool offered by the extraction of the different con-

tributions, we investigated the more challenging BUJRUW tetranuclear copper compound.

DFT calculations came to confirm the 1+1+4 pattern of this cubane system. However,

whilst a good agreement has been found for two couplings, large discrepancies have been

highlighted for the last one between the theoretical investigation and the experimental fit.

In this work, we have also shown the non-negligible role of the perchlorate ions present in

the cell.

Finally, the impact of the spin contamination has been discussed throughout this article.

This work confirmed the overestimation of the couplings in the non-spin decontaminated

approach already mentioned by Shoji et al..64 However, this work allows us to refine this

statement since only the kinetic exchange contribution would be overestimated. It results in

an overestimation of antiferromagnetic couplings and an underestimation of ferromagnetic

ones compared to the recomposition method, at least when the spin polarisation is relatively

moderate compared to the other contributions. Spin polarisation effects may have important
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consequences on the evaluation when they are strong61–63 and a future work will be dedicated

to this aspect in systems such as organic polyradical compounds. Finally, the study of the

BUJRUW compound highlighted the consequences of the lack of spin decontamination in

systems exhibiting coupling with different physics. We shown how this aspect may lead to a

flawed ratio between couplings.

For the sake of simplicity, this work has been restricted to Cu(II)-based complexes and fu-

ture works will explore the computation of magnetic exchange couplings in systems featuring

more unpaired electrons per centre.
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Appendix: Two unpaired electrons in two magnetic cen-

tres

The method proposed in the present work is deeply rooted in two theoretical frameworks

developed for the simplest magnetic system, i.e. two electrons in two magnetic centres: i)

the wavefunction-based quasi-degenerate perturbation theory and ii) the electron density-

based decomposition of the magnetic exchange interaction. The main ingredients of these

two approaches are recalled below.

Quasi-degenerate perturbation theory analysis of J

Following the pioneering works of de Loth et al.95 and Calzado et al.,23–25 QDPT appears as a

powerful conceptual tool to get insights into the physics of the magnetic exchange coupling.

This section is strongly based on Ref. 23, of which the reader should refer for a deeper

analysis. Let us consider a simple centro-symmetrical system featuring two magnetic centres

A and B, of which both bear one unpaired electron. Computing the triplet state in the

Restricted Open-shell (RO) formalism generates a set of doubly occupied orbitals, referred

as core orbitals, and two symmetry-adapted Singly Occupied Molecular Orbitals (SOMOs),

g and u. Both SOMOs may be readily localised through a unitary transformation, leading

to two localised MOs a and b on each magnetic centre A and B, respectively,

a =
g + u√

2
and b =

g − u√
2

(71)

This set of MOs allows us to define twoms = 0 determinants |ab̄〉 and |bā〉, referred as neutral

forms in the (orthogonal) valence bond language since both unpaired electrons are located

on different spatial regions. These two determinants may be considered as a physically

meaningful first order description of our situation and are used as a model space, being the
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basis of the HDvV model Hamiltonian. It allows us to build a first CI matrix given by,

 0 Kab

Kab 0

 (72)

where the diagonal terms have been shifted by the energy of the neutral form and with

Kab the direct exchange integral equal to 〈ab̄|1/r12|bā〉. To this CI matrix correspond two

spin states, a triplet state and a singlet state, of which the former is the ground state with

an energy splitting of 2Kab. It results in a magnetic coupling J = Kab and J is always

ferromagnetic in this primary description since Kab is positive.

We now can build an effective Hamiltonian Ĥeff upon this model space using the QDPT

where the off-diagonal terms are defined as,

〈ΦM |Ĥeff|ΦN〉 = 〈ΦM |Ĥ|ΦN〉+
∑
α

〈ΦM |Ĥ|α〉〈α|Ĥ|ΦN〉
EΦM

− Eα
(73)

with ΦM and ΦN some configurations of the model space and α some single and double

excited-configurations out of the model space, so-called outerspace.

The first important contribution to the magnetic exchange coupling coming from the

outerspace is provided by the ionic forms |aā〉 and |bb̄〉,

〈ab̄|Ĥeff|bā〉 = Kab +
〈ab̄|Ĥ|aā〉〈aā|Ĥ|bā〉

Eaā − Eab̄
+
〈ab̄|Ĥ|bb̄〉〈bb̄|Ĥ|bā〉

Ebb̄ − Eab̄
(74)

= Kab − 2
tab

2

U
(75)

with tab the hopping integral and U the on-site repulsion energy from the Hubbard model

Hamiltonian. The second term of Eq. (75) is the antiferromagnetic "kinetic exchange"

contribution. It may be worth noting that Eq. (75) stands for centro-symmetrical systems

where the hopping integral and the on-site repulsion energy resulting from the second and

third terms of Eq. (74) are equal.
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Finally the last important contribution corresponds to the differential response of the

closed-shell electrons to the exchange field of the unpaired electrons in the triplet and the

singlet states. This contribution comes from the interaction with the excited configurations

of which an electron is promoted from the core (i) to the virtual (r) orbitals with a possible

spin flip of the unpaired electrons and often labelled 1h1p (one hole-one particle). These

interactions result in an energy stabilisation at second order expansion of,

3E
(2)
SP =

∑
i,r

1/2〈i|K̂a − K̂b|r〉2 + 〈i|K̂a + K̂b|r〉2

∆Ei→r
(76)

in the triplet state and,

1E
(2)
SP =

3

2

∑
i,r

〈i|K̂a − K̂b|r〉2

∆Ei→r
(77)

in the singlet state, with K̂a and K̂b the exchange operator of the a and b orbitals, respec-

tively, and ∆Ei→r a positive quantity representing the excitation energy of promoting an

electron from an i occupied orbital to a r virtual one. The differential effect expresses the

spin polarisation contribution and its pertubative expansion provides the following ferro- or

antiferromagnetic contribution to the magnetic exchange coupling,

1

2

(
1E

(2)
SP −

3E
(2)
SP

)
= 2

∑
i,r

〈i|K̂a|r〉〈r|K̂b|i〉
∆Ei→r

(78)

Whilst others may be distinguished, these three contributions are the most important for

the magnetic exchange coupling, which may be fairly estimated as,

J = Kab − 2
tab

2

U
+ 2

∑
i,r

〈i|K̂a|r〉〈r|K̂b|i〉
∆Ei→r

(79)

Decomposition in the BS approach

The first step of the procedure proceeds through the computation of the triplet state in the

restricted open-shell (RO) formalism (T,RO). This calculation defines a set of NC core (i.e.
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not magnetic) orbitals i and two magnetic orbitals a and b located on the magnetic centres

A and B, respectively, obtained by the localisation of the singly occupied molecular orbitals

(SOMOs),

ΦT,RO = ΦAB,RO = |
Nc∏
i

īiab| (80)

It may be worth noting that, in practice, this first HS solution may also be computed

using the quasi-RO (QRO) formalism96 since the RO formalism may be difficult to converge.

Then, one of the unpaired electrons is flipped to produce a first BS determinant, without

optimising any orbital,

ΦAB̄,NO = |
Nc∏
i

īiab̄| (81)

where NO means non-optimised and AB̄ the flip of the electron of the B magnetic centre

generating the BS determinant. The energy difference between both determinants provides

the first direct exchange contribution,

JAB0 = E[ΦAB̄,NO]− E[ΦAB,RO] (82)

The second contribution is obtained by relaxing the HS magnetic orbitals to adapt them to

the BS determinant, in the field of the frozen core orbitals, leading to a new BS determinant,

ΦA′B̄′,FC = |
Nc∏
i

īia′b̄′| (83)

where FC means frozen core orbitals and the prime symbolises the relaxation of the orbitals

such as,8

a′ = a cos θ + b sin θ (84)

b′ = b cos θ + a sin θ (85)

This delocalisation of the magnetic orbitals from one centre to another may be interpreted
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similarly as the entry of the ionic forms in the wave function and it results in the kinetic

exchange contribution, calculated with the Yamaguchi formula,

∆JABKE =
E[ΦA′B̄′,FC]− E[ΦAB,RO]

〈Ŝ2〉AB,RO − 〈Ŝ2〉A′B̄′,FC

− JAB0 (86)

and where the relaxation of a′ and b̄′ necessarily lowers the expectation value of Ŝ2 of ΦA′B̄′,FC,

〈Ŝ2〉A′B̄′,FC < 1 (87)

From this determinant, the effective tab and U Hubbard Hamiltonian parameters may also

be extracted,

U = 2
E[ΦAB,RO]− E[ΦA′B̄′,FC] + JAB0

1− 〈Ŝ2〉A′B̄′,FC

− 2JAB0 (88)

|tab| =
E[ΦAB,RO]− E[ΦA′B̄′,FC] + JAB0√

1− 〈Ŝ2〉A′B̄′,FC

(89)

These parameters are considered as effective since their physical meaning differs between

DFT and WFT as previously discussed by some of the authors.60 However, they lead to a

thinner description of the kinetic exchange contribution which may be computed through

the effective Hamiltonian defined previously,

∆JKE = −2
tab

2

U
(90)

or in a CASCI way,23

∆JKE =
U −

√
U2 + 16tab

2

4
(91)

It may be noted that both formula are equivalent when |tab| << U , as expected for Heisenberg

systems.
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At last, keeping the magnetic orbitals frozen, the core orbitals are relaxed in the HS,RO,

|ΦAB,FM| = |
Nc∏
i

i′̄i′′ab| (92)

and AB̄,NO determinant,

|ΦAB̄,FM| = |
Nc∏
i

i′̄i′′ab̄| (93)

where FM means frozen magnetic orbitals. As shown by some of the authors,62,63 these two

determinants allow one to properly evaluate the contribution of the spin polarisation to the

coupling,

∆JABSP = (E[ΦAB̄,FM]− E[ΦAB̄,NO])− (E[ΦAB,FM]− E[ΦAB,RO]) (94)

The total magnetic coupling may now be calculated as,

JAB = JAB0 + ∆JABKE + ∆JABSP (95)

In addition to the decomposition allowing a deep analysis of the magnetic exchange coupling,

this approach provides a consistent evaluation of J since all the contributions are correctly

extracted and prevents the potential issue of the use of the Yamaguchi formula when strong

polarisation effects are present.63 It is worth noting that the last term of Eq. (95) should

formally be weighted by the importance of the delocalisation of the magnetic orbitals. How-

ever, in most cases for transition metal complexes, this weight is close to 1 and Eq. (95)

remains valid.63 Otherwise and as recently proposed,75 this parameter may be used to dress

an effective CI matrix.
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