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Streaming Regular Expression Membership and Pattern Matching

Bart lomiej Dudek∗ Pawe l Gawrychowski† Garance Gourdel‡ Tatiana Starikovskaya§

Abstract
Regular expression search is a key primitive in myriads of applications, from web scrapping to bioinfor-

matics. A regular expression is a formalism for compactly describing a set of strings, built recursively from
single characters using three operators: concatenation, union, and Kleene star. Two basic algorithmic prob-
lems concerning such expressions are membership and pattern matching. In the regular expression membership
problem, we are given a regular expression R and a string T of length n, and must decide whether T matches R.
In the regular expression pattern matching problem, the task to find the substrings of T that match R.

By now we have a good understanding of the complexity of regular expression membership and pattern
matching in the classical setting. However, only some special cases have been considered in the practically
relevant streaming setting: dictionary matching and wildcard pattern matching. In the dictionary matching
problem, we are given a dictionary of d strings of length at most m and a string T , and must find substrings
of T that match one of the dictionary strings. In the wildcard pattern matching problem, we are given a string
P of length m that contains d wildcards, where a wildcard is a special symbol that matches any character of
the alphabet, and a string T , and must find all substrings of T that match P . Both problems can be solved
in the streaming model by a randomised Monte Carlo algorithm that uses O(d logm) space [Golan and Porat
(ESA 2017), Golan, Kopelowitz and Porat (Algorithmica 2019)].

In the general case, we cannot hope for a streaming algorithm with space complexity smaller than the
length of R for either variant of regular expression search. The main contribution of this paper is that we
identify the number of unions and Kleene stars, denoted by d, as the parameter that allows for an efficient
streaming algorithm. This parameter has been previously considered in the classical setting, and it has been
observed that in practice it is significantly smaller than the length of R. We design general randomised Monte
Carlo algorithms for both problems that use O(d3 polylogn) space in the streaming setting.

A crucial technical ingredient of our algorithms is an adaptation of the general framework for evaluating
a circuit with addition and convolution gates in a space-efficient manner [Lokshtanov and Nederlof (STOC
2010), Bringmann (SODA 2017)], initially designed as a key component of a pseudopolynomial time algorithm
for the subset sum problem. We show how to replace the Extended Generalised Riemann Hypothesis in
[Bringmann (SODA 2017)] by an application of the Bombieri–Vinogradov theorem to achieve the same bounds
(but unconditionally), which might be of independent interest.

1 Introduction

The fundamental notion of regular expressions was introduced back in the 1951 by Kleene [45]. Regular expression
search is one of the key primitives in diverse areas of large scale data analysis: computer networks [47], databases
and data mining [32,49,54], human-computer interaction [44], internet traffic analysis [42,64], protein search [56],
and many others. As such, this primitive is often the main computational bottleneck in these areas and in the
pursuit for efficiency has been implemented in many programming languages: Perl, Python, JavaScript, Ruby,
AWK, Tcl and Google RE2, to name just a few.

A regular expression R is a sequence containing characters of a specified alphabet Σ and three special symbols
(operators): concatenation (·), union (|), and Kleene star (∗), and it describes a set of strings L(R) on Σ. For
example, a regular expression R = (a|b)∗c specifies a set of strings L(R) on the alphabet Σ = {a, b, c} such that
their last character equals c, and all other characters are equal to a or b. (See formal definition in Section 2). In
this work, we consider two classical formalisations of regular expressions search, regular expression membership
and pattern matching. In the regular expression membership problem, we are given a string T of length n, and

∗Institute of Computer Science, University of Wroc law, Poland. Partially supported by the National Science Centre, Poland, under

grant number 2017/27/N/ST6/02719 and by the Foundation for Polish Science (FNP).
†Institute of Computer Science, University of Wroc law, Poland. Partially supported by the Bekker programme of the Polish

National Agency for Academic Exchange (PPN/BEK/2020/1/00444) and the grant ANR-20-CE48-0001 from the French National

Research Agency (ANR).
‡DI/ENS, PSL Research University, IRISA Inria Rennes, France. Partially supported by the grant ANR-20-CE48-0001 from the

French National Research Agency (ANR).
§DI/ENS, PSL Research University, France. Partially supported by the grant ANR-20-CE48-0001 from the French National

Research Agency (ANR).

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited670

D
ow

nl
oa

de
d 

12
/0

6/
22

 to
 1

31
.2

54
.2

52
.9

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



must decide whether T ∈ L(R) for a given regular expression R. In the regular expression pattern matching
problem, we must find all positions 1 ≤ r ≤ n such that for some 1 ≤ ` ≤ r, the substring T [` . . r] ∈ L(R).

Assume that T is read-only, and let m be the length of the regular expression. The classical algorithm by
Thompson [62] allows to solve both problems in O(nm) time and O(m) space by constructing a non-deterministic
finite automaton accepting L(R). Galil [25] noted that while the space bound of Thompson’s algorithm is
optimal in the deterministic setting, the time bound could probably be improved. Since then, the effort has
been mainly focused on improving the time complexity of regular expression search. The first breakthrough
was achieved by Myers [55], who showed that both problems can be solved in O(mn/ log n + (n + m) log n)
time and O(mn/ log n) space. Bille and Farach-Colton [7] reduced the space complexity down to O(nε + m),
for an arbitrary constant ε > 0. This result was further improved by Bille and Thorup [8] who showed an

algorithm with running time O(nm(log log n)/ log3/2 n + n + m) time that uses O(nε + m) space. The idea of
the algorithms by Myers [55], Bille and Farach-Colton [7], and Bille and Thorup [8] is to decompose Thompson’s
automaton into small non-deterministic finite automata and tabulate information to speed up simulating the
behaviour of the original automaton when reading T . A slightly different approach was taken by Bille [6]
who showed that the small non-deterministic finite automata can be simulated directly using the parallelism
built-in in the Word RAM model. For w being the size of the machine word, Bille showed O(m)-space
algorithms with running times O(nm logw

w + m logw) for m > w, O(n logm + m logm) for
√
w < m ≤ w,

and O(min{n + m2, n logm + m logm}) for m ≤
√
w. Finally, Bille and Thorup [9] identified a new parameter

affecting the complexity of regular expression search, which is particularly relevant to this paper. Namely, they
noticed that in practice a regular expression contains d � m occurrences of the union symbol and Kleene
stars, and showed that regular expression membership and pattern matching can be solved in O(m) space
and O(n · (d logw

w + log d)) time1.
It is easy to see, however, that in the general case the time complexity of all the algorithms above

remains close to “rectangular”, with some polylogarithmic factors shaved. Recently, fine-grained complexity
provided an explanation for this. Backurs and Indyk [4] followed by Bringmann, Grønlund, and Larsen [13]
considered a subclass of regular expressions which they refer to as “homogeneous”. Intuitively, a regular
expression is homogeneous, if the operators at the same level of the expression are equal. Assume that the
alphabet Σ = {1, 2, . . . , σ}. To give a few examples, the following regular expressions are homogeneous:
R1 = (P1|P2| . . . |Pd), R2 = P1(1|2| . . . |σ)P2(1|2| . . . |σ) . . . (1|2| . . . |σ)Pd, and R3 = (P1|P2| . . . |Pd)∗, where Pi,
1 ≤ i ≤ d, are strings on Σ, i.e. concatenations of characters in Σ. [4,13] considered both the membership and the
pattern matching problems. A careful reader might notice that in the pattern matching setting the expression
R1 corresponds to the famous dictionary matching problem [2] and R2 to pattern matching with wildcards (don’t
cares) [14,18,23,41,43]. In the membership setting, R3 corresponds to the Word Break problem [48,63]. As such,
a seemingly simple class of homogeneous regular expressions covers many classical problems in stringology. The
authors of [4,13] provided a complete dichotomy of the time complexities for homogeneous regular expressions in
both settings. Namely, they showed that in both settings, every regular expression either allows a solution in near-
linear time, or requires Ω((nm)1−α) time, conditioned on the Strong Exponential Time Hypothesis [40]. The only
exception is the Word Break problem in the membership setting, for which [13] showed an O(n(m logm)1/3 +m)-
time algorithm and a matching combinatorial lower bound (up to polylogarithmic factors). Later, Abboud
and Bringmann [1] took an even more fine-grained approach and showed that in general, regular expression
pattern matching and membership cannot be solved in time O(nm/ log7+α n) for any constant α > 0 under
the Formula-SAT Hypothesis. Schepper [60] extended their result by revisiting the dichotomy for homogeneous

regular expressions, and showed an O(nm/2Ω(
√

log min{n,m}) time bound for some regular expressions, and for the
remaining ones an improved lower bound of Ω(nm/ polylog n).

By now we seem to have a rather good understanding of the time complexity of regular expression membership
and pattern matching. However, in multiple practical applications one needs to work with the input arriving as
a stream, one character at a time, without the possibility of going back and retrieving any of the previous
characters on demand. This motivates studying both problems in the streaming model of computation. In this
model, we mostly focus on designing algorithms with small space complexity, and need to account for storing any
information about the input. On the other hand, we allow for randomised algorithms, more specifically Monte
Carlo algorithm returning correct answers with high probability (with respect to the length to the input). The

1Formally, they consider a parameter k equal to the number of strings in R, but it is not hard to see that k = Θ(d).
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field of streaming algorithms for string processing is relatively recent but, because of its practical interest, quickly
developing. It started with a seminal paper of Porat and Porat [57], who showed streaming algorithms for exact
pattern matching and for the k-mismatches problem. This was followed by a series of works on streaming pattern
matching [11, 15–17, 35–37, 39, 46, 58, 61], search of repetitions in streams [19–21, 33, 34, 52, 53], and recognising
formal languages in streams [3, 5, 24,26–31,51].

For a general regular expression membership and pattern matching, it is not hard to see that Ω(m) bits
of space are required by a reduction from Set Intersection. However, there are at least two interesting special
cases of regular expression pattern matching that admit better streaming algorithms. In the dictionary matching,
we are given a dictionary of d strings of length at most m over an alphabet Σ and for each position r in T
must decide whether there is a position ` ≤ r such that T [` . . r] matches a dictionary string. A series of
work [11,15,37,39,57] showed that this problem can be solved by a randomised Monte Carlo algorithm inO(d logm)
space and O(log log |Σ|) time per character of the text. In the (d− 1)-wildcard pattern matching the expression
is R = P1(1|2| . . . |σ)P2(1|2| . . . |σ) . . . (1|2| . . . |σ)Pd, where Pi, 1 ≤ i ≤ d are strings of total length at most m over
an alphabet Σ = {1, 2, . . . , σ}. Golan, Kopelowitz, and Porat [38] showed that this problem can be solved by
a randomised Monte Carlo algorithm in O(d logm) space and O(d + logm) time per character. The d-wildcard
problem is a special case of the k-mismatch problem which asks to compute Hamming distances between a pattern
and all its alignments to a text for which the Hamming distance does not exceed the given threshold k. The most
space efficient algorithm for the d-mismatch problem is by Clifford, Kociumaka and Porat [17] and implies an
algorithm that uses O(d log m

d ) words of space and spends O(log m
d (
√
d log d+ log3m)) time per character which

is also the most efficient for the d-wildcard problem.
In a related work, Ganardi et al. [26–29] considered a variant of the regular expression membership problem,

where the automaton describing the regular expression has constant size, and one must tell, for each position r
of T , whether T [r−`+1 . . r] ∈ L(R), where ` is an integer specified in advance (“window” size). As a culmination
of their work, they showed that any randomised Monte Carlo algorithm for this variant of the regular expression
membership problem takes either constant, or Θ(log log `), or Θ(log `), or Θ(`) bits of space, and provided
descriptions of these complexity classes.

This brings the challenge of identifying a structural parameter of a regular expression that determines whether
it admits better streaming algorithms. As mentioned earlier, Bille and Thorup [9] observed that in practice the
number d of occurrences of the union symbol and Kleene stars is significantly smaller than the size m of the
expression R. Furthermore, both the dictionary matching and the wildcard pattern matching can be casted as
instances of the regular expression pattern matching, and streaming algorithms with space complexity of the
form poly(d, log n) are known. The main goal of this paper is to investigate whether this is also the case for the
general regular expression membership and pattern matching.

1.1 Our results We consider the space complexity of regular expression membership and pattern matching in
the streaming model of computation. As by now traditional in streaming string processing, we assume that we
receive R and n first, preprocess them, and then receive the string T character by character. We do not account
neither for the time nor for the space used during the preprocessing stage. In the membership problem, we must
output the answer after having read T entirely, whereas in the pattern matching problem we must decide whether
there is a substring T [` . . r] ∈ L(R) at the moment when we receive the character T [r].

Our main conceptual contribution is that we identify the small number d of occurrences of the union symbol
and Kleene stars in R as allowing for space-efficient streaming algorithms for regular expression membership and
pattern matching. More specifically, we design randomised Monte Carlo algorithms that solve both problems
using O(d3 polylog n) space and O(nd5 polylog n) time per character of the text (Theorem 4.14). While it was
known that the value of d determines the space complexity in the two special cases of streaming dictionary
matching and wildcard pattern matching, our approach works for any regular expression. We leave it as an open
problem to obtain algorithms with poly(d, log n) space complexity and poly(d, log n) time complexity.

On a very high-level, our approach is based on storing carefully chosen subsets of occurrences of the strings
appearing in R. As usual in the area, this is easier when the strings are not periodic, that is, any two occurrences
of a string S in T must be more than |S|/2 characters apart. Of course, this is not always the case, and the usual
remedy is to treat periodic and aperiodic strings separately (more specifically, in streaming pattern matching
algorithms one applies this reasoning on every prefix of length being a power of 2). The technical novelty of our
algorithms is that we apply this reasoning on O(log n) levels, thus obtaining a hierarchical decomposition of a
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periodic string. Next, because not all occurrences are stored we need to recover the omitted information. Very
informally, we need to decide whether a substring of T sandwiched between two occurrences of strings A1, A2

is a label of some run from A1 to A2 in the compact Thompson automaton for R, where the period of the
substring is equal to the period of some prefix of length 2k of one of the strings. The difficulty is that, while the
substring has a simple structure, it could be very long, and it is not clear how to implement this computation in
a space-efficient manner. We overcome this difficulty by recasting the problem in the language of evaluating a
circuit with addition and convolution gates. This technique was introduced by Lokshtanov and Nederlof [50] for
designing a space-efficient solution for the subset sum problem. Later, Bringmann [12] replaced complex numbers
with computation modulo a prime number p to obtain a tighter bound on the time and space complexity. In
more detail, he designed two solutions, one using the Extended Riemann Hypothesis and the other unconditional
but with polynomially higher time and space. We revisit his approach and show that, in fact, one can replace
the Extended Riemann Hypothesis by an application of the Bombieri–Vinogradov theorem to achieve the same
bounds. We believe that this might be of independent interest. As a consequence of our improvement, we obtain
an efficient randomised Monte Carlo algorithm for the following classical problem: given a directed multigraph G
with non-negative integer weights on edges, its two nodes v1, v2, and a number x, decide whether there is a walk
from v1 to v2 of total weight x. Our algorithm requires x · poly(|G|, log x) time and poly(|G|, log x) space.

The rest of the paper is organised as follows. We first remind the necessary definitions in Section 2, and
in Section 3 we give an overview of the main technical ideas we introduced in this paper. We describe the
new algorithms for regular expression membership and pattern matching in Section 4.2. Finally, in Section 5
we describe how to replace the Extended Riemann Hypothesis with an application of the Bombieri–Vinogradov
theorem in Bringmann’s framework and design a space-efficient algorithm for checking if there is a walk of specified
weight between two nodes of a directed multigraph.

2 Preliminaries

We assume an integer alphabet Σ = {1, 2, . . . , σ} with σ characters. A string Y is a sequence of characters
numbered from 1 to n = |Y |. For 1 ≤ i ≤ n, we denote the i-th character of Y by Y [i]. For 1 ≤ i ≤ j ≤ n, we
define Y [i . . j] to be equal to Y [i] . . . Y [j], called a fragment of Y . We call a fragment Y [1] . . . Y [j] a prefix of Y
and use a simplified notation Y [. . j], and a fragment Y [i] . . . Y [n] a suffix of Y denoted by Y [i . .]. We say that a
fragment Y [i . . j] contains a position k if i ≤ k ≤ j. We denote by ε the empty string.

We say that X is a substring of Y if X = Y [i . . j] for some 1 ≤ i ≤ j ≤ n. The fragment Y [i . . j] is called
an occurrence of X. We say that an integer p is a period of Y if for each 1 ≤ i ≤ |Y | − p, Y [i] = Y [i + p]. The
smallest period of Y is referred to as the period of Y . We say that Y is periodic with period ρ if ρ is the period
of Y and ρ ≤ |Y |/2. For the period ρ of Y , we define the string period of Y to be equal to Y [1 . . ρ].

For an integer k, we denote the concatenation of k copies of Y by Y k. We say that a string X is primitive
if X 6= Y k for any string Y 6= X and any integer k. Note that the string period of a string is always primitive.

Definition 2.1. (Regular expression) We define regular expressions over Σ as well as the languages they
match recursively. Let L(R) be the language matched by a regular expression R.

• Any a ∈ Σ ∪ {ε} is a regular expression and L(a) = {a}.
For two regular expressions A and B, we can form a new expression using one of the three symbols ·
(concatenation), | (union), or ∗ (Kleene star):

• A ·B is a regular expression and L(A ·B) = {XY, for X ∈ L(A)and Y ∈ L(B)};

• A | B is a regular expression and L(A | B) = L(A) ∪ L(B);

• A∗ is a regular expression and L(A∗) =
⋃
k≥0{X1X2 . . . Xk, where Xi ∈ L(A) for 1 ≤ i ≤ k}.

Definition 2.2. (Thompson automaton [62]) For a regular expression R we define the Thompson automaton
of R, T (R), recursively. This non-deterministic finite automaton (NFA) accepts all strings s ∈ L(R).

• If R = a ∈ Σ ∪ {ε}, T (R) is constructed as in Figure 1a;

• If R = A · B, T (R) is constructed as in Figure 1b. Namely, the initial state of T (A) becomes the initial
state of T (R), the final state of T (A) becomes the initial state of T (B), and the final state of T (B) becomes
the final state of T (R);
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• If R = A|B, T (R) is constructed as in Figure 1c. Namely, the initial state of T (R) goes via ε-transitions
both to the initial state of T (A) and to the initial state of T (B), and the final states of T (A) and T (B) go
via ε-transitions to the final state of T (R);

• If R = A∗, T (R) is constructed as in Figure 1d. Namely, the initial state of T (R) and the final state of
T (A) go via ε-transitions both to the initial state of T (A), and to the final state of T (R).

Definition 2.3. (Compact Thompson automaton) Given a Thompson automaton T (R), we define the
compact Thompson automaton TC(R) as the automaton obtained from T (R) by replacing every maximal path
of transitions labelled by a1, a2, . . . , ak ∈ Σ by a single transition labelled by a1a2 . . . ak. The non-empty labels of
TC(R) are called atomic strings, and the size of the (multiset) of the atomic strings is defined to be the size of R.

Figure 2 gives an example of the Thompson automata for R = b(ab|b)∗ab. We note that in general the size
of a regular expression is much smaller than the total number of characters in it and is bounded by twice the
number of union and Kleene star symbols plus two. The size of a regular expression measures its “complexity”.

istart f
a

(a) T (A) for a ∈ Σ ∪ {ε}

istart f

T (A) T (B)

(b) T (A ·B)

istart f

ε

ε

ε

ε

T (A)

T (B)

(c) T (A|B)

istart f
ε ε

ε

ε

T (A)

(d) T (A∗)

Figure 1: Thompson automaton. In each automaton, i and f are the initial and final states, respectively.

istart f
ε

ε

ε

ε

ε

εb

a b

b

a b

ε

ε

(a) T (b(ab|b)∗ab)

istart f
ε

ε

ε

ε

ε

εb

ab

b

ab

ε

ε

(b) TC(b(ab|b)∗ab)

Figure 2: The Thompson automatons of the regular expression b(ab|b)∗ab.

Definition 2.4. (Occurrence of a regular expression) We say that a fragment S[i . . j] of a string S,
where 1 ≤ i ≤ j ≤ |S|, is an occurrence of a regular expression R, if S[i . . j] ∈ L(R), or in other words if there is
a walk from the initial state of TC(R) to the final state of TC(R) such that the concatenation of the labels of the
transitions in this walk equals S[i . . j].
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We will also need a notion of a partial occurrence of R. Intuitively, S[i . . j] is a partial occurrence of R if it
is a prefix of a string in L(R), but we will need a more precise definition.

Definition 2.5. (Partial occurrence of a regular expression) We say that a fragment S[i . . j] of a
string S, where 1 ≤ i ≤ j ≤ |S|, is a partial occurrence of a regular expression R ending with a prefix P of an
atomic string A, if there is a walk from the initial state of TC(R) to the endpoint of the transition corresponding
to A such that the concatenation of the labels of the transitions in this walk equals S[i . . j]A[|P |+ 1 . .].

3 Technical Overview

In this section, we give an overview of the main technical ideas we introduced in this paper.

Statement of the problems and the model of computation. Let us start by giving the precise formulation of
the regular expression membership and pattern matching problems and reminding the definition of the streaming
model of computation.

Regular expression membership and pattern matching
Given a string T of length n over an alphabet Σ = {1, 2, . . . , σ}, where σ = nO(1), and a regular expression R
over Σ of size d. In the regular expression membership problem, we must decide whether T ∈ L(R). In the
regular expression pattern matching problem, we must find all positions 1 ≤ r ≤ n, such that there exists a
position 1 ≤ ` ≤ r such that T [` . . r] ∈ L(R).

We work in the streaming model of computation. As it is now standard in the streaming string processing
algorithms, we assume to receive n and R first. We do not account neither for the time nor for the space we need
to preprocess R. After having preprocessed R, we receive T as a stream, character by character. At the moment
we receive the first character of T , the main phase of the algorithm starts. During the main phase, we account
for all the space and time used.

Definitions and tools. Let A1, A2, . . . , Ad be the atomic strings of the regular expression R. We define
Π = {Ai[1 . .min{2j , |Ai|}] : 1 ≤ i ≤ d, 0 ≤ j ≤ dlog |Ai|e}. The prefixes of Ai’s that belong to Π are called
canonical.

We can assume that all atomic strings have length at most n, otherwise they never appear in the text and
we can ignore them. Formally, during the preprocessing phase we delete all transitions (u, v) from TC(R) that
are labelled by atomic strings of lengths larger than n. We also assume that d ≤ n, otherwise we can use the
following solution:

Claim 3.1. Given a streaming text T of length n and a regular expression of size d ≥ n. Assume that all atomic
strings have length at most n each. There is a deterministic algorithm that solves the membership and the pattern
matching problems for T and R in O(d2) space and O(d3) time per character of T .

Proof. First note that we can afford storing T in full. Second, we build a compact trie on the reverses of the
atomic strings of R. The trie occupies O(dn) = O(d2) space. Finally, let F contain all atomic strings A such that
there is an ε-transitions path from the endpoint of the transition labelled by A to the final state of TC(R).

Define an array D of length n + 1 = O(d) such that D[0] contains a singleton set consisting of the starting
state of TC(R) and D[r], 1 ≤ r ≤ n, stores all states u such that u is the end of some transition labelled by an
atomic string and T [1 . . r] equals the concatenation of the labels of the transitions in some walk from the starting
state of TC(R) to u. Assume that we have constructed D[1 . . r]. To compute D[r+ 1], we use the trie to find the
atomic strings A1, A2, . . . , Aq equal to D[1 . . r+ 1], D[2 . . r+ 1], . . . or D[r+ 1] in O(r+ q) time. Note that q ≤ d.
For each atomic string Ai, 1 ≤ i ≤ q, labelling a transition (v, w), we add w to D[r + 1] if there is a state u
in D[r + 1 − |Ai|] such that there is an ε-transition path from u to v, which can be checked in O(d) time and
space. In total, the algorithm spends O(d3) time to process a character of T (q = O(d), and for each 1 ≤ i ≤ q
the set D[r + 1 − |Ai|] contains O(d) states). The algorithm reports that T ∈ L(R) if D[n] contains a state v,
which is an endpoint of a transition labelled by some A ∈ F .

In the regular expression pattern matching problem, we define an array D in the following way. As before, D[0]
contains a singleton set consisting of the starting state of TC(R). For every 1 ≤ r ≤ n, D[r] stores the starting
state of TC(R) and all states u such that u is the end of some transition labelled by an atomic string and T [` . . r],
for some ` ≤ r, equals the concatenation of the labels of the edges in some walk from the starting state of TC(R)
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to u. Assume that we have constructed D[1 . . r]. To compute D[r + 1], we use the trie to find the atomic
strings A1, A2, . . . , Aq equal to D[1 . . r+ 1], D[2 . . r+ 1], . . . or D[r+ 1] in O(r+ q) = O(d) time. For each atomic
string Ai, 1 ≤ i ≤ q, labelling a transition (v, w), we add w to D[r + 1] if there is a state u in D[r + 1 − |Ai|]
such that there is an ε-transition path from u to v, which can be checked in O(d) time and space. In total, the
algorithm spends O(d3) time to process a character of T . We report all positions r such that D[r] contains a
state v, which is an endpoint of a transition labelled by some A ∈ F .

From now on, we assume that all atomic strings have length at most n, and that d ≤ n. For a string P and
a text T , denote by occ(P, T ) the set of the ending positions of the occurrences of P in T . Our solutions for
streaming regular expression membership and pattern matching are very similar, the main difference is how we
define a witness:

Definition 3.2. (Witness (Membership)) Let P be a canonical prefix of an atomic string, and r ∈ occ(P, T ).
We say that r is a witness if T [1 . . r] is a partial occurrence of R ending with P .

Definition 3.3. (Witness (Pattern matching)) Let P be a canonical prefix of an atomic string, and r ∈
occ(P, T ). We say that r is a witness if there exists a position 1 ≤ ` ≤ r such that T [` . . r] is a partial occurrence
of R ending with P .

We exploit the following algorithm, which we refer to as the pattern matching algorithm2:

Theorem 3.4. (cf. [57, Theorem 2]) Given a pattern of length at most n and a text T of length n over an
alphabet of size nO(1). There exists a randomised Monte Carlo streaming algorithm that uses O(log n) space
and O(log n) time per character of the text. When it receives T [i], it says whether i ∈ occ(P, T ). The algorithm
is correct with high probability.3

We also make use of the following well-known fact:

Fact 3.5. (Fine and Wilf’s periodicity lemma [22]) If a string X has two periods of length p and q and
p+ q ≤ |X|, then X also has a period of length gcd(p, q).

Intuition: non-periodic case. To give intuition behind our solutions, consider a very simple case when every
canonical prefix is not periodic. We start with the following simple observation:

Observation 3.6. By Fact 3.5, if P is not periodic, there can be at most two occurrences of P in a string of
length ≤ 2|P |.

Therefore, if none of the strings in Π is periodic, we can use the following approach. For each P ∈ Π
and T , we run the pattern matching algorithm and at any moment store the two most recent witnesses for P
discovered by the algorithm (for membership, witness are defined as in Definition 3.2, and for pattern matching
as in Definition 3.3). When the algorithm discovers a new position r ∈ occ(P, T ), we must decide whether it is a
witness. Let P = A[1 . .min{2k, |A|}], where A is an atomic string.

If k = 0, we consider the starting node u of the transition in the compact Thompson automaton TC(R)
labelled by A. Suppose that there is an ε-transitions path from the endpoints of the transitions labelled by
atomic strings Ai1 , Ai2 , . . . , Aij to u. We then check if (r − 1) is a witness for at least one of Ai1 , Ai2 , . . . , Aij . If
it is, then r is a witness. Importantly, if r − 1 is a witness for Aij′ , 1 ≤ j′ ≤ j, it is the most recent one and is
stored in the memory of the instance of the pattern matching algorithm for Aij′ and T . Suppose now that k ≥ 1.

We then must check whether (r − 2k−1) is a witness for A[1 . . 2k−1]. If it is, then r is a witness for P . Note that
by Observation 3.6, if (r − 2k−1) is a witness for A[1 . . 2k−1], it is one of the two most recent ones and will be
stored by the pattern matching algorithm for A[1 . . 2k−1].

Let F contain all atomic strings A such that there is an ε-transitions path from the endpoint of the transition
labelled by A to the final state of TC(R). In the regular expression pattern matching problem, we report

2One could also use one of the streaming dictionary matching algorithms (see the introduction), but this does not change the final
complexity and makes the description of the algorithm more complex.

3With high probability means with probability at least 1− 1/nc for any predefined constant c > 1.
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all positions r such that r is a witness in occ(A, T ) for some A ∈ F . In the regular expression membership
problem, T ∈ L(R) if n is a witness for occ(A, T ), for some A ∈ F .

We do not provide the formal analysis of the algorithm, as we only give it for intuition, but it is easy to
see that it uses O(d2 log2 n) space and O(d log2 n) time per character of the text (recall that we do not account
for the time spent during the preprocessing phase). As all atomic strings have length at most n and d ≤ n, the
algorithm is correct with high probability by Theorem 3.4.

General case: main technical contributions. In general, unfortunately, some of the canonical prefixes are
periodic we can no longer use Observation 3.6. However, the following generalisation holds:

Observation 3.7. By Fact 3.5, if for a string P and a string X, X ≤ 2|P |, we have |occ(P,X)| > 2, then P is
periodic and the set occ(P,X) can be represented as an arithmetic progression with difference ρ, where ρ is the
period of P . 4

Observation 3.7 gives the idea behind our approach for the general case. By this observation, we obtain that
every r ∈ occ(P, T ), where P is a canonical prefix of some atomic string periodic with period ρ, belongs to a
fragment of form (∆(P ))k, where ∆(P ) = P [|P | − ρ + 1 . .] and k is an integer. Instead of storing the last two
witnesses for each canonical prefix, we would like to store the witnesses in the last two fragments of form (∆(P ))k.
However, the number of such witnesses can be large. Our main technical novelty is a compressed representation
of such witnesses. We give a high-level overview of the approach we use for the membership problem, our solution
to the regular expression pattern matching problem is similar. We show that for each fragment of form (∆(P ))k

it suffices to store a small, carefully selected subset of witnesses that belong to this fragment. The remaining ones
can be restored in small space at request.

Consider a witness r ∈ occ(P, T ), where P ∈ Π. By definition, there is a partition T [1 . . r] =
T [`1 . . r1]T [`2 . . r2] . . . T [`m . . rm] such that each fragment in the partition, except for the last one, is an
atomic string, and the last one equals P . Furthermore, by Observation 3.7, r must belong to some fragment
F = T [i . . i + kρ − 1] = (∆(P ))k. Let m′ be the index of the first fragment such that rm′ ≥ i. Consider the
fragment W = T [`m′′ . . rm′′ ], m

′ ≤ m′′ ≤ m, containing a position i+ 2ρ− 1 (we call this position an “anchor”).
Note that W is a canonical prefix of some atomic string and rm′′ ∈ occ(W,T ) is a witness. If there are a few
witnesses t ∈ occ(W,T ) such that T [t − |W | + 1, t] contains the anchor i + 2ρ − 1, we can store them explicitly.
Otherwise, there is a periodic fragment containing i+ 2ρ− 1, and we can recurse for it by choosing a new anchor
close to its starting point. We choose the definition of anchors (see Section 4.1) so that the recursion stops in a
logarithmic number of steps and for some of the anchors there is a witness that we store explicitly for this anchor.

To summarize, the idea of the compact representation of witnesses that belong to a fragment of form (∆(P ))k

is to choose a logarithmic set of anchors close to the starting point of the fragment, and for each of these anchors
to store a constant number of witnesses for each canonical prefix in Π. Suppose now that r ∈ occ(P, T ), where P
is a canonical prefix of an atomic string A, r belongs to a fragment F = T [i . . i+ kρ− 1] = (∆(P ))k. To decide
whether it is a witness we use the following approach. From above we know that r is a witness iff there is a
witness r′ ∈ occ(A′, T ), where A′ is an atomic string, that we store in the compact representation of witness in F ,
and there is a path in TC(R) from the ending node of the transition labelled by A′ and to the starting node of the
transition labelled by A such that the concatenation of the strings on the edges of the path equals T [r′+1 . . r−|A|]
(which is a substring of (∆(P ))k). Unfortunately, it is not clear how to verify this condition in a straightforward
way as we do not have random access neither to ∆(P ), nor to the strings on the edges of TC(R). Instead, using
anchors again, we show that verifying this condition can be reduced to the following question, where G is a graph
of size poly(d, log n) (see Lemma 4.12 for details):

Walks in a weighted graph
Given a directed multigraph G with non-negative integer weights on edges, two nodes and a number x, decide
if there is a walk from the first node to the second one of total weight x.

Walks in a weighted graph and circuits. In Section 5, we show the following theorem:

4Note that when |occ(P,X)| ≤ 2, we can represent occ(P,X) as at most two (degenerate) arithmetic progressions of length 1, we
will use this fact to simplify the description of the algorithms.
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Theorem 3.8. There exists an algorithm which, given a directed multigraph G with non-negative integer weights
on edges, its two nodes v1 and v2 and a number x, decides if there is a walk from v1 to v2 of total weight x
in O((|E(G)|+ |V (G)|3)xpolylog x) time and O((|E(G)|+ |V (G)|3) polylog x) space and succeeds with probability
at least 1/2.

Let N = |V (G)|. For the simpler case when the graph is unweighted, we could use a folklore approach
and compute the x-th power of the adjacency matrix in O(N3 log x) time and O(N2) space. In order to handle
arbitrary weights of edges, we compute the arrays Ck of bit-vectors of length x + 1, where Ck[u, v][d] stores a
bit indicator of whether there exists a walk from u to v in G of at most 2k edges of total weight exactly d. The
following formula holds:

Ck[u, v][d] =
∨

w∈V (G)
i∈{0,...,d}

Ck−1[u,w][i] ∧ Ck−1[w, v][d− i]

Using the fast Fourier transform to compute the convolutions, we obtain an algorithm with time O(N3x log2 x)
and space O(N2x).

In our application, x can be equal to n, and the approach above uses Ω(n) space, which is prohibitive. In
order to improve the space complexity, we represent the above computations as a circuit with binary Or and
Convolutionx gates operating on bit-vectors of length x + 1. Every element Ck[u, v] requires a separate gate
and while computing its value we need to perform N convolutions, for every possible intermediate node w, so in
total there are O(N3 log x) gates. The Convolutionx gates store only the first x + 1 bits of the results, as we
never need paths of total weight larger than x. We are interested only in a single bit of output of the circuit,
namely Cdlog xe[v1, v2][x]. If there were only Or gates in the circuit, we could store only the x-th element at each
gate. In order to handle also Convolutionx gates, we use the discrete Fourier transform over a suitably chosen
ring.

We use the technique introduced by Lokshtanov and Nederlof [50] and then modified Bringmann [12] to work
with numbers modulo p instead of complex numbers. Informally, they show that if we operate on Ztp (vectors of
length t with elements in Zp for suitably chosen p and t) instead of the bit-vectors, we can compute out(C)[x],
the x-th element of the output of the circuit C in O(|C|tpolylog p) time and O(|C| log p) space (see details in
Theorem 5.1). However, there are technical difficulties that we need to overcome to apply their technique to
our solution. The approach of Bringmann [12] requires that t > x and Zp contains a t-th root of the unity.
The main difficulty is to choose these numbers as small as possible as they directly affect the complexity of the
algorithm. This question was also faced by Bringmann [12], who showed two variants of the framework, one using
the Extended Riemann Hypothesis and the other unconditional but with polynomially higher time and space,
which is not good enough for our streaming application. By using Bombieri–Vinogradov theorem (see details in
Theorem 5.6) and facts about counting primes in arithmetic progressions, we obtain an unconditional time bound
comparable to that of Bringmann that assumes the Extended Riemann Hypothesis.

4 Regular Expression Membership and Pattern Matching

In this section, we address the problems of regular expression membership and pattern matching in the streaming
model of computation. In Section 4.1, we introduce a notion of anchors that is the key to achieving the desired
space complexity. In Section 4.2, we describe the algorithms.

4.1 Anchors In this section we define the notion of anchors that will allow us to store all occurrences (partial
or not) of regular expressions detected by the algorithm efficiently.

Definition 4.1. (Anchors) Consider a periodic string W with period ρ. Set the anchor a0 = 2ρ and the
period ρ0 = ρ. Suppose that (ar, ρr)

q−1
r=0 are defined. We define (aq, ρq) recursively. Consider the set S of

fragments W [i . . j] of W satisfying the following properties:

1. W [i . . j] contains aq−1 and is periodic with period π < ρq−1;

2. i+ 4π − 1 ≤ aq−1 (there are at least four repetitions of the string period of W [i . . j] before aq−1);

3. aq−1 ≤ j − 4π − r, where r = (j − i+ 1) (mod π) (there are at least four repetitions of the string period of
W [i . . j] after aq−1).
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Let iq = min{i : W [i . . j] ∈ S} and jq = max{j : W [iq . . j] ∈ S}. If W [iq . . jq] is undefined, recursion stops.
Otherwise, ρq is defined to be the period of W [iq . . jq] and aq := iq + 2ρq − 1.

Let A(W ) = {a0, a1, . . . , aQ}, where (aQ, ρQ) is the last defined anchor-period pair. We call A the generator

set of anchors of W . Define A∗(W ) =
[⋃

∆∈Z+
(A(W ) + ∆ · ρ)

]
∩ [1, |W | − 2ρ]. We refer to A∗ simply as the set

of anchors of W . For an illustration, see Fig. 3.

W

ρ0 = ρ

a0

i2
ρ1

ρ2

i1 j1

a1

j2

a2

Figure 3: Anchors of a periodic string W with period ρ.

(In the next section we slightly abuse notation and extend the notion of the set of anchors to infinite strings

in a natural way, i.e. for an infinite string W with period ρ the set A∗(W ) =
[⋃

∆∈Z+
(A(W ) + ∆ · ρ)

]
.) We first

show that the generator set of anchors has logarithmic size:

Lemma 4.2. Let W be a periodic string with period ρ. We have |A(W )| = O(log ρ).

Proof. Let A(W ) = {a0, a1, . . . , aQ}. For each 0 ≤ q ≤ Q, let W [iq . . jq] be the fragment associated with aq,
and ρq be its period. (In particular, for q = 0 we have i0 = 1, j0 = |W |, ρ0 = ρ.) We show that for each 1 ≤ q ≤ Q
we have |W [iq . . jq]| ≤ 2ρq−1. This implies, in particular, that |W [iq . . aq−1]| ≤ 2ρq−1 and therefore ρq ≤ ρq−1/2.
The lemma follows immediately.

Fix 0 ≤ q ≤ Q. Assume by contradiction that |W [iq . . jq]| > 2ρq−1. We then have that W [iq . . jq] has periods
ρq−1 and ρq and ρq−1 +ρq < |W [iq . . jq]|. Hence, W [iq . . jq] is periodic with period π = gcd(ρq−1, ρq) by Fact 3.5.
The substring W [iq . . jq] contains a full copy of W [iq−1 . . iq−1 + ρq−1 − 1]. Therefore, W [iq−1 . . iq−1 + ρq−1 − 1]
has a period π, which implies that it equals (W [iq−1 . . iq−1 +π−1])ρq−1/π, i.e. the string period of W [iq−1 . . jq−1]
is not primitive, a contradiction.

Definition 4.3. Let W be a periodic string with period ρ. We say that a fragment F = W [i . . j] is anchored by
an anchor a ∈ A∗(W ) if i ≤ a ≤ j and for any strings U ∈ Σ∗, V ∈ Σρ such that V 6= W [1 . . ρ] there are at most
eight occurrences of F in UV (W [1 . . j]) containing the anchor (i.e., containing |U |+ |V |+ a).

Lemma 4.4. Let W be a periodic string with period ρ. Consider a fragment W [` . . r] of length at least 4ρ and a
partitioning W [` . . r] = W [`1 . . r1]W [`2 . . r2] . . .W [`k . . rk].

(a) There exists 1 ≤ k′ ≤ k such that W [`k′ . . rk′ ] is anchored by an anchor a ∈ A∗(W ) ∩ [r − 4ρ+ 1, r].

(b) If, in addition, 1 ≤ ` ≤ 2ρ, there exists 1 ≤ k′ ≤ k such that W [`k′ . . rk′ ] is anchored by an anchor
a ∈ A∗(W ) ∩ [1, 4ρ].

Proof. The high-level idea of the proof of (a) and (b) is as follows. Let A(W ) = {a0, a1, . . . aQ}. For
every 0 ≤ q ≤ Q and an integer ∆ > 0 to be determined later, define a∆

q := aq + ∆ · ρ. Let Fq = W [`kq , rkq ] be

the fragment that contains a∆
q . We show that either Fq is anchored by a∆

q or q < Q, which yields the lemma. We
exploit two auxiliary claims:

Claim 4.5. Let π be the period of Fq, 0 ≤ q ≤ Q. If Fq is not anchored by a∆
q , then there exist U ∈ Σ∗, V ∈ Σρ

with V 6= W [1 . . ρ] such that there is a fragment S[p . . t] of the string S = UV (W [. . rq]) satisfying the following
properties:
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1. p ≤ |U |+ |V |+ a∆
q ≤ t (the fragment contains the anchor);

2. S[p . . t] is periodic with period π;

3. p+ 7 · π ≤ |U |+ |V |+ a∆
q (there are at least seven repetitions of the string period of the fragment before the

anchor);

4. |U | + |V | + a∆
q ≤ t − 6π − r, where r = t − p + 1 (mod π) (there are at least six repetitions of the string

period of the fragment after the anchor).

Proof. Let U ∈ Σ∗, V ∈ Σρ with V 6= W [1 . . ρ] such that there are least eight occurrences of Fq in
S = UV (W [1 . . rq]) containing a := |U |+ |V |+ a∆

q . Let the last eight occurrences be S[pk . . tk], 1 ≤ k ≤ 8. As all
occurrences contain a, the length of S[p1 . . t8] is at most 2|Fq|. By Observation 3.7, we obtain that S[p1 . . t8] is
periodic with period π, pk = p1 + (k− 1)π, and tk = t1 + (k− 1)π. As p8 = p1 + 7π ≤ a, we have S[p1 . . a] ≥ 7π.
On the other hand, t2 − r + 1 ≥ t1 + 1 ≥ a+ 1. Therefore, |S[a+ 1 . . t8 − r]| ≥ |S[t2 − r + 1 . . t8 − r]| ≥ 6π. By
taking p = p1 and t = t8, we obtain the claim. For an illustration, see Fig. 4.

U V W [. . rkq ]

ta

π

Fq

p

Figure 4: Illustration of Claim 4.5.

Claim 4.6. Assume that q ≥ 0 and that the period of Fq is π < ρq. If Fq is not anchored by a∆
q , then q < Q.

Proof. By Claim 4.5, there exist U ∈ Σ∗, V ∈ Σρ with V 6= W [1 . . ρ] such that there is a fragment S[p . . t] of the
string S = UV (W [. . rq]) periodic with period π that contains a := |U |+ |V |+ a∆

q and such that there are at least
six repetitions of the string period before and after a.

Let us show that a − 2ρq + 1 ≤ p < t ≤ a + 2ρq. Suppose by contradiction that p < a − 2ρq + 1.
We have that S[a − 2ρq + 1 . . a] = W [a∆

q − 2ρq + 1 . . a∆
q ] (note that by definition a∆

q ≥ 2ρq for any ∆).

Furthermore, W [a∆
q − 2ρq + 1 . . a∆

q ] has periods ρq (by definition of iq and a∆
q ) and π (by the assumption).

By Fact 3.5, W [a∆
q − 2ρq + 1 . . a∆

q ] has a period gcd(ρq, π) < ρq. As W [a∆
q − 2ρq + 1 . . a∆

q ] contains a full
copy of the string period of W [iq . . jq], we obtain that it is not primitive, a contradiction. (See Fig. 5). To show
that t ≤ a+2ρq, note that S[a+1 . . a+2ρq] = W [a∆

q +1 . . a∆
q +2ρq], a

∆
0 +2ρ ≤ |W | and, for q ≥ 1, a∆

q +2ρq ≤ a∆
q−1

by definition of iq and aq. Therefore, for all q ≥ 0, W [a∆
q + 1 . . a∆

q + 2ρq] is periodic with period ρq. The rest of
the argument is analogous.

From a − 2ρq + 1 ≤ p < t ≤ a + 2ρq and the fact that S[p . . t] contains at least six repetitions of its string
period before and after a, we obtain that iq+1, jq+1 and hence aq+1, ρq+1 are well-defined, which completes the
proof of the claim.

We are now ready to show (a) and (b).

(a) Let ∆ ≤ b|W |/ρc − 2 be the smallest integer such that a0 + ∆ · ρ ≥ r − 4ρ. Note that ∆ is well-
defined. Consider an anchor a∆

0 = a0 + ∆ · ρ ∈ A∗(W ) ∩ [r − 4ρ + 1, r]. Let F0 = W [`k0 . . rk0 ] be the
fragment that contains a∆

0 and π be its period. If F0 is anchored by a∆
0 , we are done. Otherwise, by

Claim 4.5, there exist U ∈ Σ∗, V ∈ Σρ with V 6= W [1 . . ρ] such that there is a fragment S[p . . t] of the
string S = UV (W [. . rk0 ]) periodic with period π that contains a := |U |+ |V |+ a∆

0 and such that there are
at least six repetitions of the string period of F0 before and after a. As we have rk0−a∆

0 +1 ≤ r−a∆
0 +1 ≤ 4ρ,

there is π ≤ 2ρ/3. It follows that i1, j1 and hence a1, ρ1 are well-defined, i.e. 0 < Q.
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U V W [. . rkq ]

ta

π

p

ρq

W [a− 2ρq + 1, a] has period gcd(π, ρq) < ρq

a− 2ρq + 1

Figure 5: Illustration of the proof of Claim 4.6, case p < a− 2ρq + 1.

We now show that for arbitrary q ≥ 1 either a∆
q = aq + ∆ · ρ anchors Fq or the period π of Fq is smaller

than ρq, which by Claim 4.6 implies that q < Q. By our choice of ∆, Fq is well-defined. If Fq is anchored
by a∆

q , we are done. Otherwise, by Claim 4.5, there exist U ∈ Σ∗, V ∈ Σρ with V 6= W [1 . . ρ] such that there

is a fragment S[p . . t] of the string S = UV (W [. . rkq ]) periodic with period π that contains |U |+ |V |+ a∆
q

and such that there are at least six repetitions of the string period of S[p . . t] before and after |U |+ |V |+a∆
q .

Recall that a∆
q = (iq + 2ρq) + ∆ · ρ.

First, we have that π 6= ρq, otherwise we could have extended W [iq . . jq] to the left. Second, let us show that
the case π > ρq is impossible. Suppose otherwise. If t− 4π + 1 ≤ |U |+ |V |+ a∆

q−1, then W [a∆
q + 1 . . a∆

q−1]
contains a copy of S[1 . . 2π], and therefore S[1 . . 2π] has a period ρq. By Fact 3.5, the string period S[1 . . π]
of S is not primitive, a contradiction. (See Fig. 6a.) Otherwise, |U | + |V | + a∆

q−1 is contained in S[p . . t],
which has period π > ρq−1. In addition, there are at least four repetitions of the string period of S[p . . t]
before and after |U |+ |V |+ a∆

q−1, and p < |U |+ |V |+ a∆
q − 2ρq ≤ |U |+ |V |+ iq, a contradiction with the

choice of W [iq . . jq]. (See Fig. 6b.) It finally follows that π < ρq and therefore by Claim 4.6, q < Q.

U V W [. . rkq ]

a∆
q−1

ta∆
q

π

ρq

Contradicts primitivity of S[1 . . π]

Subcase t− 4π + 1 ≤ |U |+ |V |+ a∆
q−1.

U V W [. . rkq ]

a∆
q−1

ta∆
q

π

ρq

p

iq + |U |+ |V |

Contradicts minimality of iq

Subcase t− 4π + 1 ≥ |U |+ |V |+ a∆
q−1.

Figure 6: Illustration of the proof of Lemma 4.4(a), case π > ρq.

(b) Let ∆ be the smallest integer such that a0 + (∆ − 2)ρ ≥ ` (note that ∆ = 1, 2). Consider an
anchor a∆

0 = a0 + ∆ · ρ ∈ A∗(W ) ∩ [1, 4ρ]. We first show that either F0 is caught by a∆
0 , or 0 < Q.
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If F0 is anchored by a∆
0 , we are done. Otherwise, let π be the period of F0. We claim that π < ρ = ρ0.

As F0 is not anchored, by Claim 4.5 there exist U ∈ Σ∗, V ∈ Σρ with V 6= W [1 . . ρ] such that there is a
fragment S[p . . t] of the string S = UV (W [. . rk0 ]) periodic with period π that contains a := |U |+ |V |+ a∆

0

and such that there are at least six repetitions of the string period of S before and after a. We can
immediately rule out the case π = ρ as a ≤ 4ρ and V 6= W [1 . . ρ]. Consider now the case π > ρ0. Consider
the suffix S[a + 1 . .] = W [a∆

0 + 1 . . rk0 ]. It contains an occurrence of S[1 . . 2π]. By Fact 3.5, S[1 . . 2π] has
a period gcd(π, ρ), and therefore the string period of S is not primitive, a contradiction. For q ≥ 1, Fq is
well-defined by our choice of ∆. The rest of the argument repeats the argument in the proof of (a).

This concludes the proof of Lemma 4.4.

4.2 Algorithms In this section, we give a description of our new streaming algorithms for regular expression
membership and pattern matching. The structure of the algorithms is very similar, the main difference is how
we define a witness (see Definitions 3.2 and 3.3). For this reason, we describe the algorithms in parallel. Recall
that T is a string of length n over an alphabet Σ = {1, 2, . . . , σ}, where σ = nO(1), and A1, A2, . . . , Ad are the
atomic strings for the regular expression R. Recall also that Π is the set of canonical prefixes of the atomic strings,
defined as Π = {Ai[1 . .min{2j , |Ai|}] : 1 ≤ i ≤ d, 0 ≤ j ≤ dlog |Ai|e}.

We make use of the following corollary of Fact 3.5:

Corollary 4.7. (Of Fact 3.5) For a primitive string X of length x, a string D = XX can contain only two
occurrences of string X, D[1 . . x] and D[x+ 1 . . 2x].

Preprocessing. We start by deleting all transitions (u, v) from TC(R) that are labelled by atomic strings of
lengths larger than n.

Let F contain all atomic strings A such that there is an ε-transitions path from the endpoint of the transition
labelled by A to the final state of TC(R). In addition, for each atomic string A, compute the subset Ai1 , Ai2 , . . . , Aij
of atomic strings such that there is an ε-transitions path from the endpoint of the transition labelled by Aij′ ,
1 ≤ j′ ≤ j, to the starting point of the transition labelled by A.

For each periodic P ∈ Π, consider a string ∆(P ) = P [|P | − ρ + 1 . .], where ρ is the period of P .
During the preprocessing step, the algorithm computes the generator set of anchors A (Definition 4.1) for the
string W = (∆(P ))∞.

Define the overlap of two strings X and Y as the maximal length of a suffix of X that equals a prefix
of Y , Π(P ) to be the set of all canonical prefixes such that their overlap with W is at least 2ρ, and
Overlap(P ) =

⋃
P ′∈Π(P ){` : ` is the overlap of P ′ and W}. The algorithm computes Π(P ) and Overlap(P ) during

the preprocessing step as well.
For regular expression pattern matching, it also computes the smallest integer µ(P ) such that p = µ(P ) · ρ ∈

occ(P,W ) and p is a witness for P in W (in the sense of Definition 3.3).
Finally, the algorithm creates a directed graph G(P ) = (V,E) from the compact Thompson automaton TC(R).

Consider again the string W = (∆(P ))∞. For each canonical prefix P ′ ∈ Π(P ), the algorithm creates a node v ∈ V
corresponding to a pair (P ′, r), where r is the remainder of the overlap of P ′ and W modulo ρ. Additionally,
for every fragment W [i . . j] = P ′′ ∈ Π which is anchored by an anchor a ∈ A∗(W ), it creates a node v ∈ V
corresponding to a pair (P ′′, j (mod ρ)) (for two identical prefix-remainder pairs, it creates just one node).

Consider two nodes v′, v′′ ∈ V . Suppose that v′ corresponds to (P ′, r′) and v′′ to (P ′′, r′′), where P ′, P ′′ are
canonical prefixes of atomic strings A′, A′′, respectively, and r′, r′′ are remainders modulo ρ. For 0 < ` ≤ 10ρ, the
algorithm adds an edge (v′, v′′) of length ` to E if there is a walk in TC(R) from the ending state of the transition
labelled by A′ to the ending state of the transition labelled by A′′ such that the concatenation of the labels in
this walk equals to a string L = ∆(P )[r′ . .]∆(P )α∆(P )[. . r′′], where the integer power α is chosen so that |L| = `
(in other words, the concatenation equals to a fragment of W with the offsets defined by v′ and v′ and of an
appropriate length, if such a fragment does not exist, the algorithm does not create the edge).

It might seem that the resulting graph is infinite, but as we show below, this is not the case.

Claim 4.8. Consider all occurrences W [`i . . ri], i ∈ Z+, of a string X in W . The size of the set {ri
(mod ρ) : W [`i . . ri] is anchored by a ∈ A∗(W ), i ∈ Z+} is O(log ρ).
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Proof. We consider two cases: |X| ≥ 2ρ and |X| < 2ρ. In the first case, by Fact 3.5, if there is at least one
occurrence of X in W , then X is periodic with period ρ. By Corollary 4.7, we have ri = q (mod ρ) for some
fixed q and all i ∈ Z+. The claim follows from Lemma 4.2.

In the second case, for all a ∈ A∗(W ) such that a ≥ 2ρ, and for all strings U ∈ Σ∗, V ∈ Σρ such
that V 6= W [1 . . ρ], all occurrences of X that contain |U | + |V | + a are contained in (UVW )[|U | + |V | +
a − 2ρ + 1 . . |U | + |V | + a − 2ρ − 1] = W [a − 2ρ + 1 . . a − 2ρ − 1]. It follows that for all a, a′ ∈ A∗(W )
such that a, a′ ≥ 2ρ and a = a′ (mod ρ), the sets {ri (mod ρ) : W [`i . . ri] is anchored by a, i ∈ Z+} and {ri
(mod ρ) : W [`i . . ri] is anchored by a′, i ∈ Z+} are equal. Moreover, each of them contains only a constant number
of elements. Therefore, the size of the set {ri (mod ρ) : W [`i . . ri] is anchored by a ∈ A∗(W ), a ≥ 2ρ, i ∈ Z+}
is O(log ρ) by Lemma 4.2. It remains to estimate the size of the analogous sets for anchors smaller than 2ρ.
The number of such anchors is O(log ρ) by Lemma 4.2, and each of them can anchor only a constant number of
occurrences of X. The claim follows.

Corollary 4.9. G(P ) contains |V | = O(d log2 n) nodes and |E| = O(d2 log4 n) edges, and can be constructed
in O(ρ · d3 log4 n) time.

Proof. The size of Π, and consequently Π(P ), is O(d log n). For each string P ′ ∈ Π(P ), the remainder r of the
overlap of P ′ and W modulo ρ is defined in a unique way. By Claim 4.8, for each string P ′′ ∈ Π there are O(log ρ)
different remainders r modulo ρ such that there is an anchored occurrence of P ′′ ending at a position p = r
(mod ρ). Thus |V | = O(d log2 n).

Observe that the interval [0, 10ρ] can contain only a constant number of values ` such that the power α is an
integer. Hence for each pair of nodes we have only a constant number of possible edges, so |E| = O(d2 log4 n).
For each edge, we can check whether it exists in time O(ρ · |T (R)|) = O(|ρ| · d).

Corollary 4.10. (Of Theorem 3.8) There exists an algorithm which, given the graph G(P ), its two nodes v1

and v2 and a number x ≤ n, decides if there is a walk from v1 to v2 of total weight x in O(xd3 polylog n) time
and O(d3 polylog n) space and succeeds with high probability.

Proof. Recall that ρ ≤ n. We substitute the bounds from Corollary 4.9 into Theorem 3.8. Then we repeat
the algorithm of Theorem 3.8 2cdlog ne times and output the majority answer to obtain a success probability of
at least 1− 1/nc.

Main phase. During the main phase of the algorithm, we run the pattern matching algorithm (Theorem 3.4) for
every P ∈ Π. For every non-periodic P ∈ Π, we store (at most) two latest witnesses. For every periodic P ∈ Π,
we run the pattern matching algorithm for ∆(P ) = P [|P | − ρ+ 1 . .] and T , where ρ is the period of P .

Definition 4.11. We say that a fragment T [i . . j] is a streak of a string X if T [i . . j] = Xk for some integer k ≥ 1
and it is maximal, i.e. it cannot be extended neither to the left nor to the right.

The pattern matching algorithm detects streaks of ∆(P ) in the arrived prefix of T . Every witness r for
P belongs to occ(P, T ) and by Observation 3.7 ends in such a streak. At any moment of the algorithm, we
store (at most) two latest streaks and a compact representation of witnesses in occ(P, T ) that end in it. For
membership testing we assume that the witnesses are defined as in Definition 3.2, and for pattern matching
as in Definition 3.3. Perhaps a bit counter-intuitively, the representation contains witnesses from occ(P, T ) and
witnesses for other canonical prefixes as well, the reason for it will become clear later. Formally, the representation
of a streak S = T [i . . j] consists of the following elements, where ρ = |∆(P )|:

1. For each P ′ ∈ Π(P ) and its overlap ` with W , the representation contains p = i + ` − 1 if p ∈ occ(P ′, T )
and is a witness;

2. All witnesses in occ(P, T ) that belong to the interval [i . . i+ 12ρ− 1];

3. For every ` ∈ Overlap(P ), all witnesses in occ(P, T ) that belong to the interval [i+ ` . . (i+ `− 1) + 8ρ];

4. For every P ′ ∈ Π, all witnesses r ∈ occ(P ′, T ) such that T [r−|P ′|+1 . . r] is a fragment of S and is anchored
by an anchor in A∗(F ) ∩ [i, i+ 4ρ].
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By Observation 3.7 and Lemma 4.2, the compact representation of witnesses in a streak has size O(d log2 n).
The algorithm uses the compact representations of witnesses to decide whether a newly detected occurrence
r ∈ occ(P, T ) for some P ∈ Π is a witness:

Lemma 4.12. Let d < n. Assume that T [r] is the latest arrived character of the text and that r ∈ occ(P, T ).
Assume that for each non-periodic P ′ ∈ Π we store two latest witnesses in occ(P ′, T ), and for each periodic P ′ ∈ Π
we store the two latest streaks of ∆(P ′) and compact representations of the witnesses in them. In addition, assume
that we store the set of all atomic strings A such that (r−1) is a witness for occ(A, T ). One can decide whether r
is a witness for P in O(nd4 polylog n) time and O(d3 polylog n) (extra) space with high probability.

Proof. Let P = A[1 . .min{2k, |A|}], where A is an atomic string. Consider two cases: k = 0 and k ≥ 1.
Case 1: k = 0. If k = 0, let Ai1 , Ai2 , . . . , Aij be the atomic strings such that there is an ε-transitions path

from the endpoint of the transition labelled by Ai′j , 1 ≤ j′ ≤ j, to the starting point of the transition labelled

by A. The position r is a witness for P iff for some 1 ≤ j′ ≤ j, the position (r − 1) is a witness for Aij′ . We can
decide whether this holds in O(d) time.

Case 2: k ≥ 1. If k ≥ 1, the position r is a witness for P iff r− 2k−1 is a witness for P [1 . . 2k−1]. For brevity,
denote r′ = r− 2k−1, P ′ = P [1 . . 2k−1], and ρ = |∆(P ′)|. If P ′ is non-periodic and r′ ∈ occ(P ′, T ), the algorithm
stores it explicitly by Observation 3.6. Otherwise, by Observation 3.7, r′ belongs to one of the two latest streaks
of ∆(P ′), let it be a fragment S = T [i . . i+ ` · ρ− 1]. Suppose that r′ is a witness for P ′. Let us first explain the
solution for the regular expression membership problem, and then we will show how to modify it for the regular
expression pattern matching problem.

In the membership problem, if r′ is a witness for P ′, then T [1 . . r′]P [2k−1 + 1 . .] is a partial occurrence of R
and there is a partition of T [1 . . r′] = T [`1 . . r1]T [`2 . . r2] . . . T [`m . . rm], where each T [`m′ . . rm′ ], 1 ≤ m′ < m, is
an atomic string, and T [`m . . rm] = P ′. Let T [`m′ . . rm′ ] be the fragment containing i. We consider two subcases:
rm′ − i+ 1 > 2ρ and rm′ − i+ 1 ≤ 2ρ.

Case 2(a): rm′ − i+ 1 > 2ρ. We claim that in this subcase rm′ − i + 1 equals the overlap ` of T [`m′ . . rm′ ]

and W = (∆(P ′))∞. By definition, rm′ − i+ 1 ≤ `. Suppose that rm′ − i+ 1 < `. If `− (rm′ − i+ 1) is a multiple
of ρ, then we obtain that T [rm′−ρ . . rm′−1] = ∆(P ′), a contradiction with the definition of S. If `− (rm′− i+1)
is not a multiple of ρ, then there is an occurrence of ∆(P ′) in the prefix (∆(P ′))2 of S that does not end at
positions ρ or 2ρ. By Corollary 4.7, we obtain a contradiction. Therefore, rm′ − i + 1 = ` and the compact
representation of witnesses in S stores rm′ ∈ occ(T [`m′ . . rm′ ], T ).

If m′ = m or rm − rm′ ≤ 8ρ, then we are done: if r′ is a witness, it must be stored explicitly, and we can
check whether it is the case in O(d log2 n) time. Otherwise, we use the following claim:

Claim 4.13. There is a sequence m′ = m0 < m1 < m2 < · · · < mq = m such that each T [`mq′ . . rmq′ ], 1 ≤ q′ < q,
is either anchored by an anchor a ∈ A∗(S), or has length at least 2ρ, and for each 1 ≤ q′ ≤ q, `mq′ −rmq′−1

≤ 10ρ.

Proof. The sequence is built as follows. Let m0 = m′ and mq′ be the latest index added to the sequence. If
there is an index m′′ such that T [`m′′ . . rm′′ ] has length at least 2ρ or m′′ = m and `m′′ − rq′ ≤ 10ρ, then
set mq′+1 = m′′ and continue. Otherwise, let m′′ be the smallest index such that `m′′ − rmq′ ≥ 8ρ. Note that
we also have `m′′ − rmq′ ≤ 10ρ (otherwise, the length of T [`m′′−1 . . rm′′−1] would have been larger than 2ρ). By
Lemma 4.2, there is mq′ < m̃ ≤ m′′ such that T [`m̃ . . rm̃] is anchored by an anchor a ∈ A∗(S)∩ [rm′′−4ρ+1, rm′′ ].
We set mq′+1 = m̃ and continue.

Let v′ be the node in G(P ) corresponding to (T [`m′ . . rm′ ], rm′ − i + 1 (mod ρ)), and v be the node
corresponding to (P ′, rm − i + 1 (mod ρ)). We have that j′ is a witness iff there exists the sequence m′ =
m0 < m1 < m2 < · · · < mq = m as above iff there is a walk from v to v′ of length |T [rm′ + 1 . . rm]| ≤ n, which
we can check in O(nd4 polylog n)time and O(d3 polylog n) extra space with high probability via Corollary 4.10
(we must check whether this condition is verified for each of the O(d log2 n) witnesses stored in the compact
representation of S).

Case 2(b): rm′ − i+ 1 ≤ 2ρ. Consider now the second subcase. If rm ≤ 12ρ, then we are done: if r′ is a

witness, it must belong to the compact representation of witnesses in S, which can be verified in O(d log2 n)
time. Otherwise, rm − rm′ ≥ 8ρ. By Lemma 4.4(a) there is p, m′ < p ≤ m, such that T [`p . . rp] is anchored by
an anchor A∗(F ) ∩ [i, i + 4ρ − 1], and therefore T [`p . . rp] is stored in the compact representation of witnesses
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in S. Analogously to Case 2(a), we can show equivalence of the following conditions: r′ is a witness; there
is a walk in G(P ) from the node corresponding to (T [`p . . rp], rp − i + 1 (mod ρ)) to the node corresponding
to (T [`m . . rm], rm − i+ 1 (mod ρ)) of length |T [rp + 1 . . rm−1]|. We can therefore decide whether r′ is a witness
via Corollary 4.10 in O(nd4 polylog n) time and O(d3 polylog n) space with high probability.

We now explain how to modify the argument so that it can be used for regular expression pattern matching.
Note that in pattern matching, if r′ is a witness for P ′, then there is some position `′, 1 ≤ `′ ≤ r′ such
that r′ ∈ occ(P ′, T ) is a witness. The position `′ can be inside the streak S, i.e. m′ can be undefined, making it
impossible to apply the argument above. However, we can easily check if this is the case using the integer µ(P ′)
we computed during the preprocessing step: if µ(P ′) · ρ ≥ (r′ − i+ 1), then r′ is a witness and we are done, and
otherwise `′ ≤ i (if r′ is a witness), m′ is defined, and we can apply the argument above.

Theorem 4.14. Given a streaming text T of length n and a regular expression R of size d. There is a randomised
algorithm that solves the membership and the pattern matching problems for T and R in O(d3 polylog n) space
and O(nd5 polylog n) time per character of the text. The algorithm succeeds with high probability.

Proof. If d ≥ n, we can use Claim 3.1. Below we assume that d < n. Recall that we do not account for the
time used during the preprocessing step (but one can note that it is polynomial in d and the total length of the
atomic strings of R). The information computed during this step, including the graphs G(P ) for each P ∈ Π,
takes O(d3 log5 n) space.

During the main step, we use Lemma 4.12 to maintain the compact representations of the streaks of ∆(P ) for
each P ∈ Π, and to decide, eventually, whether T matches the regular expression R. Whenever an instance of the
pattern matching algorithm detects an occurrence of ∆(P ), we decide in constant time whether this occurrence
extends the latest streak of ∆(P ) or starts a new one. If the number of streaks becomes equal to three, we discard
the oldest streak.

When an instance of the pattern matching algorithm detects r ∈ occ(P, T ) for some P ∈ Π, we must decide
whether r is a witness and whether we must store it in the compact representation of the streaks containing r.
We apply Lemma 4.12 to decide whether r is a witness in O(nd4 polylog n) total time and O(d3 polylog n) space
and then in O(d log n) time whether r must be added to the compact representations of the streaks containing r.
Note that a position r can belong to occ(P, T ) for O(d log n) canonical prefixes P ∈ Π, and therefore in the worst
case we spend O(nd5 polylog n) to process r. The compact representations of the streaks take O(d2 log3 n) space.

Recall that F contains all atomic strings A such that there is an ε-transitions path from the endpoint of
the transition labelled by A to the final state of TC(R). In the regular expression pattern matching problem, we
report all positions r such that r is a witness in occ(A, T ) for some A ∈ F . In the regular expression membership
problem, T ∈ L(R) if n is a witness for occ(A, T ) for some A ∈ F .

5 Proof of Theorem 3.8

An important tool in our proof is the framework that allows computing output of a circuit time- and space-
efficiently. Before we describe the framework in detail, we provide some notation following [12]. A circuit is a
directed acyclic graph with nodes of in-degree 0 or 2. Degree-0 nodes are called inputs and degree-2 nodes are
gates. In our application, every node corresponds to a vector from Ztp (i.e. a vector of length t with values in Zp)
indexed from 0 to t− 1, for some values of p and t that will be specified later. A vector in Ztp is a singleton if it
has at most one non-zero entry.

There are two types of gates: � and � that denote respectively the pointwise addition and vector convolution
binary gates, that is (a� b)[i] = a[i] + b[i] and (a� b)[i] =

∑i
j=0 a[j] · b[i− j]. Every gate corresponds to the result

of its underlying operation applied to its incoming nodes. We say that a convolution gate with input a, b ∈ Ztp
does not overflow, if for all i ≥ t, (a � b)[i] = 0. An element ω is a t-th root of unity in Zp iff ωt ≡ 1 mod p
but ωs 6≡ 1 mod p for all 0 < s < t.

With the definitions at hand, we are ready to state the technique introduced by Lokshtanov and Nederlof [50]
for complex numbers and its modular variant discussed by Bringmann [12]:

Theorem 5.1. (cf. [12, Theorem 4.2]) Let p be a prime, t ≥ 1, and suppose that Zp contains a t-th root of
the unity, ω. Let C be a circuit over (Ztp,�,�) which takes as an input only singleton constants and outputs
a vector out(C) ∈ Ztp. Suppose that no convolution gate overflows. Then given p, t, ω, and 0 ≤ x < t we can
compute out(C)[x] in time O(|C|tpolylog p) and space O(|C| log p).
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For Bringmann’s framework to be efficient, one must provide a method to choose p and ω. Bringmann [12]
showed two different methods, one requiring the Extended Riemann Hypothesis and the other one resulting in an
additional tε factor in both time and space [12, Lemma 4.4]. Below we show that one can achieve the bounds of
the former method unconditionally.

5.1 Finding primes The goal of this section is to prove the following theorem:

Theorem 5.2. There is a procedure that, given y, finds in O(y polylog y) arithmetic operations and O(log y)
space a prime p and ω such that for every N ≤ 2O(y log y), with probability at least 1/2 the following holds:

1. ω is a t-th primitive root of unity in Zp, for some t satisfying y ≤ t = O(y polylog y);

2. p = O(y2 polylog y);

3. p - N .

Let B be a constant to be determined later. To compute numbers p and ω we run the following procedure:

1. Set x to be the smallest number such that 1
2

√
x log−B x ≥ y (using binary search);

2. Choose a random q ∈ [ 1
2 , 1] ·

√
x log−B x;

3. Find a prime p such that p ≤ x and p ≡ 1 mod q (by guessing candidate p and checking all numbers up to√
p if they divide p or not);

4. Find a generator g of Z∗p (by guessing candidate g and checking if g
p−1
p′ 6≡ 1 mod p for all prime divisors p′

of p− 1);

5. Set t = q and ω = g
p−1
t .

Clearly, t | p− 1 and ω = g
p−1
t is well-defined. As g is a generator, we have that ω is a t-th primitive root of

unity in Z∗p. By the choice of x and p, we have p ≤ x = O(y2 polylog y) and hence y ≤ q = t = O(y polylog y).
In the following lemma we show that with probability at least 7/8, there are many primes p satisfying p ≤ x
and p ≡ 1 mod q and hence we can efficiently find one. Finally, we show how to find the generator g efficiently.
Let π(x; q, a) = |{p ≤ x : p ≡ a (mod q)}| and φ(n) = |{1 ≤ a ≤ n : gcd(a, n) = 1}|.

Lemma 5.3. Let q be chosen uniformly at random from [ 1
2 , 1] ·

√
x log−B x. With probability at least 7/8 we

have π(x; q, 1) = Ω(
√
x(log x)B−1).

Before we prove the lemma, we remind some number-theory notation and facts related to counting primes.
The reader familiar with this area can skip this part. We first remind the definitions of von Mangoldt function Λ(n)
and Chebyshev functions ψ and ϑ:

ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n), where Λ(n) =

{
log p if n = pk for some prime p and k ∈ Z+,

0 otherwise.

ϑ(x; q, a) =
∑
p≤x

p≡a (mod q)

log p, where the summation is over prime numbers p.

By skipping the last two arguments we denote ϑ(x) =
∑

0≤a<q ϑ(x; q, a) and similarly for ψ(x).

Fact 5.4. (By definition) ϑ(x; q, a) ≤ π(x; q, a) · log x.

Fact 5.5. (cf. [59, Theorem 13]) ψ(x; q, a) ≤ ϑ(x; q, a) +O(
√
x).
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Proof. Theorem 13 of [59] states that ψ(x) − ϑ(x) = O(
√
x), so for completeness we show an adaptation of this

property to numbers forming an arithmetic progression.

ψ(x; q, a)− ϑ(x; q, a) =
∑
n≤x

n≡a mod q

n=pk,k≥1

log p−
∑
p≤x

p≡a mod q

log p

≤
∑
n≤x
n=p2

log p+
∑
n≤x

n=pk,k≥3

log p

≤ ϑ(
√
x) +O( 3

√
x log2 x) = O(

√
x)

as
∑

n≤x
n=p2

log p =
∑
p≤
√
x log p = ϑ(

√
x) and finally ϑ(x) = x+ o(x) by [59, (2.29)].

Theorem 5.6. (Bombieri–Vinogradov theorem [10]) For every A > 0 there exists B = B(A) > 0 such that
for every x: ∑

q≤
√
x(log x)−B

max
y≤x

max
gcd(a,q)=1

∣∣∣∣ψ(y; q, a)− y

φ(q)

∣∣∣∣ = O(x log−A x).

With all the notation at hand we are ready to prove Lemma 5.3.

Proof. [Proof of Lemma 5.3]
LetR = [ 1

2 , 1]·
√
x log−B x be the range from which we draw q. By choosing y = x and a = 1 and summing only

over q ∈ R we lower bound the left-hand side of Bombieri–Vinogradov theorem obtaining that, for every A > 0
there exists B = B(A) > 0 such that

(5.1)
∑
q∈R

∣∣∣∣ψ(x; q, 1)− x

φ(q)

∣∣∣∣ = O(x log−A x).

Similarly to Markov’s inequality, for q chosen uniformly at random from R we have with probability at least 7/8:

(5.2)

∣∣∣∣ψ(x; q, 1)− x

φ(q)

∣∣∣∣ = O(
√
x(log x)−A+B)

Indeed, there can be at most |R|/8 numbers q in R such that ψ(x; q, 1) ≥ 8·Ω(x log−A x)
|R| = Ω(

√
x(log x)−A+B)

in order not to exceed the right-hand side of (5.1). Let B be the constant from Theorem 5.6 for A = 1. Without
loss of generality, we assume B ≥ 3 > A = 1. Now we rewrite (5.2) using properties of φ(n), ϑ(n) and ψ(n) and
obtain:

π(x; q, 1) = Ω(
√
x(log x)B−1)

In more detail:

x

φ(q)
− ψ(x; q, 1) = O(

√
x(log x)−A+B) from (5.2)

x

q
≤ ϑ(x; q, 1) +O(

√
x) +O(

√
x(log x)−A+B) from Fact 5.5 and φ(q) ≤ q

x

q
≤ π(x; q, 1) · log x+O(

√
x(log x)−A+B) from Fact 5.4 and B > A

π(x; q, 1) ≥
√
x(log x)B−1 −O(

√
x(log x)−A+B−1) as q ∈ R

π(x; q, 1) = Ω(
√
x(log x)B−1) as A = 1
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Lemma 5.7. Suppose π(x; q, 1) = Ω(
√
x(log x)B−1). With probability at least 7/8, in O(

√
x log x) arithmetic

operations and O(log x) space we can find such a prime p ≤ x such that p ≡ 1 mod q.

Proof. Clearly, we can check if a number n is prime by iterating through all numbers 2, 3, . . . ,
√
n and checking

if they are a divisor of n. Let Q = {n ≤ x : n = 1 mod q}. Observe that the probability that a number chosen
uniformly at random from Q is prime is at least:

π(x; q, 1)

|Q|
=
π(x; q, 1)

x/q
= Ω

(√
x(log x)B−1

√
x log−B x

x

)
= Ω

(
1

log x

)
Hence by checking Θ(log x) numbers from Q we find a prime with probability at least 7/8.

Lemma 5.8. With probability at least 7/8, we can find a generator g of Z∗p in O(
√
p) arithmetic operations and

O(log p) space.

Proof. First, we generate the set of all divisors of p− 1 in O(
√
p) time by iterating through 2, 3, . . . ,

√
p− 1 and

checking if they are a divisor of p− 1. By using an auxiliary accumulator we can restrict only to prime divisors,
we call this set D. Now we can check if a number g is a generator of Z∗p by checking if for every p′ ∈ D, a prime

divisor of p − 1, we have g(p−1)/p′ 6≡ 1 mod p. Using exponentiating by squaring, this runs in total O(polylog p)
time.

The probability of a random g ∈ {0, . . . , p − 2} to be a generator is φ(p − 1)/(p − 1) = Ω(1/ log log p),
as φ(n) = Ω(n/ log log n) [59, Theorem 15]. Hence by checking Θ(log log p) numbers from Z∗p we find a generator
with probability at least 7/8.

Finally, as x ≥ y2 and π(x; q, 1) = Ω(
√
x(log x)B−1) and B ≥ 3 we have π(x; q, 1) ≥ y log2 y ≥ 8 logN ,

as N ≤ 2O(y log y). Because N has at most logN prime divisors, the probability that the chosen prime p is one of
them is at most 1/8. Summing up, there are four events due to which our algorithm can fail:

1. The number q does not satisfy π(x; q, 1) = Ω(
√
x(log x)B−1);

2. We did not find p in the planned number of iterations;

3. The chosen p divides N ;

4. We did not find g in the planned number of iterations.

We note that we do not have access to the value of N during the algorithm, so we cannot spot immediately that
the chosen p is wrong. When we fail to find g or p in the planned number of iterations we terminate. However,
if q is chosen wrongly, we cannot detect it immediately, but then the subsequent steps (choosing p or g) will have
a larger probability of failure. To conclude, the overall probability of a failure is at most 1/2 and the running
time of the whole procedure is O(

√
x polylog(x)) = O(y polylog y). This concludes the proof of Theorem 5.2.

5.2 Walks in a weighted graph. We can finally prove Theorem 3.8. We first describe an algorithm
that uses significantly much more time and space than desired, and then improve it. We compute arrays Ck
for k ∈ {0, . . . , dlog xe} indexed by nodes u, v ∈ V (G), where Ck[u, v] is a bit-vector of length x+ 1 such that:

1. Ck[u, v][d] = 1 implies that there exists a walk of weight d from u to v;

2. For every d ≤ 2k, if there exists a walk of weight d from u to v in G, we have Ck[u, v][d] = 1.

In other words, Ck contains the information about all walks of weight at most 2k inG and possibly some other walks
of weight at most x. We initialize the array C0 in the following way: ∀u∈V (G)C0[u, u][0] = 1 and C0[u, v][d] = 1
if there is an edge from u to v of weight 0 ≤ d ≤ x. If there are 0-weight edges in G, we first need to compute
their transitive closure in G in O(|V (G)|3) time and mark in C0 all walks of total weight 0 or 1 in G. We define
(or,Convolutionx)-product of matrices consisting of bit-vectors, truncated to the first x+ 1 positions:
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∀u,v∈V (G)
d∈{0,...,x}

(A�B)[u, v][d] :=
∨

w∈V (G)
i∈{0,...,d}

A[u,w][i] ∧B[w, v][d− i]

Now we compute the consecutive arrays Ck by repeated application of (or,Convolutionx)-product as follows:

Ck+1 := Ck � C0 � Ck

Both invariants for the array Ck follow by inductive reasoning, as every walk of weight d can be split into
three parts of weights d1, d2, d3 where d1, d3 ≤ d/2 and the middle part consists of a single edge (recall that for
each edge (u, v) of weight 0 ≤ d ≤ x we have C0[u, v][d] = 1). Then, for the given nodes v1, v2 we can return the
entry Cdlog xe[v1, v2][x].

This approach runs in O(|V (G)|2x) space and O(|V (G)|3 + |V (G)|2xpolylog x) time when we use the fast
Fourier transform at every step. Observe that this complexity matches the time and space bounds stated in
Theorem 3.8 for the case when x = O(|V (G)|). Hence, we focus on the case when x = Ω(|V (G)|).
Saving space with circuits. To save both time and space, we will use circuits and the framework of Theorem 5.1.
In order to use this framework, we need to modify our algorithm in various aspects. First, in O(xpolylog x) time
we find the appropriate values of p, t, ω using Theorem 5.2 from Section 5.1 for y = Θ(x) that will be defined
precisely later. Then t = O(x polylog x). Instead of bit-vectors as entries of the array Ck, we operate on vectors
from Ztp over (Zp,+, ·). In other words we use � (addition in Ztp) instead of Boolean or and � (the standard
(+, ·)-convolution modulo p) instead of the Boolean (∨,∧)-convolution. Then the � product between A � B
becomes (A � B)[u, v] = �w∈V (G)A[u,w] � B[w, v]. With � defined this way, Ck[u, v][d] counts modulo p walks
from u to v of weight d, possibly counting one walk more than once — we analyse these values in detail at the
end of the proof.

Now we describe the construction of the circuit. To simplify the presentation, we work with multi-ary addition
gates �∗ which can be replaced with binary gates � at the expense of doubling the total size of the circuit.

1. For every k ∈ {0, . . . , dlog xe} and u, v ∈ V (G) we create a �∗ gate Ck[u, v];

2. For every node v ∈ V (G) we create a singleton constant Vv with only the 0-th entry set to 1, connected to
the �∗ gate C0[v, v];

3. For every edge (u, v, d) ∈ E(G) from node u to v of weight d, we create a singleton constant Eu,v,d with
only the d-th entry set to 1, connected to the �∗ gate C0[u, v];

4. As (A � B)[u, v] = �∗w∈V (G)A[u,w] � B[w, v], we can implement every product X = A � B with |V (G)|3

gates Xw[u, v] := A[u,w] � B[w, v] and |V (G)|2 gates X[u, v] := �∗w∈V (G)X
w[u, v]. For every k > 0, it

holds Ck = Ck−1�C0�Ck−1, so we need an intermediate product C ′k := Ck−1�C0 and then Ck := C ′k�Ck−1.

The above construction gives a circuit on O(|E(G)| + |V (G)|3 log x) gates with singleton constants, out of
which we need to output if Cdlog xe[v1, v2][x] > 0. However, we still cannot use the framework from Theorem 5.1,
as we cannot guarantee that there are no convolution gate overflows. Indeed, if there are edges of weight almost x,
we would obtain walks of weight x2. In the following paragraph we show a refined construction in which we have
more control on the maximum weight of walks considered in the k-th step of the algorithm.

Refined construction. Let ε be a value to be determined precisely later. Instead of the arrays Ck, we
will compute arrays Dk that, informally, describe all walks of total weight at most (1 + ε)k, some walks of
weight d ≤ (1 + ε)k · (1 + ε)2k·log(1+ε) and no longer walks. As we operate on values modulo p, let D′k[u, v][d]
be the value of Dk[u, v][d] if computed exactly, without taking modulo p at every step. Formally, for every k =
{0, . . . , dlog1+ε xe} we have:

1. D′k[u, v][d] > 0 implies that there exists a walk of weight d from u to v;

2. For each d ≤ (1 + ε)k, if there exists a walk of weight d from u to v in G, we have D′k[u, v][d] > 0;

3. Dk[u, v][d] = 0 for all d > (1 + ε)k · (1 + ε)2k·log(1+ε).
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The array D0 stores all walks of total weight at most 1, that is D0[u, v][d] = 1 iff d ∈ {0, 1} and there is a walk
from u to v of total weight d. It can be computed in O(|V (G)|3) time as C0, by first computing all pairs of nodes
connected by a walk of 0-weight edges. Now we show how to obtain the array Dk. Again, every walk of weight d
can be cut into three parts of total weights d1, d2, d3 where d1, d3 ≤ d/2 and the middle part consist of a single
edge. We need to control the total weight of the walk, so we will iterate over all possible base-(1+ε) logarithms of
weights of the three parts k1, k2, k3. For all possible values d1, d2, d3 such that d1 + d2 + d3 ≤ (1 + ε)k, we process
the triple k1, k2, k3 where ∀i∈{1,2,3}(1 + ε)ki−1 < di ≤ (1 + ε)ki . Then, from the definition of arrays Dk, every
walk of weight di will be included in Dki . For single edges of particular weight, let Bk describe all pairs of nodes
connected by an edge of weight at most (1 + ε)k: Bk[u, v][d] = 1 iff d ≤ (1 + ε)k and there is an edge of weight d
from u to v. Note that Bk = Bk−1 � Fk where Fk describes all edges of weight from

(
(1 + ε)k−1, (1 + ε)k

]
. We

restrict only to triples k1, k2, k3 satisfying both:

(a) (1 + ε)k1−1 + (1 + ε)k2−1 + (1 + ε)k3−1 ≤ (1 + ε)k(5.3)

(b) 2 · (1 + ε)
max{k1,k3}−1 ≤ (1 + ε)

k
(5.4)

and call such triples k-good. Then we compute Dk in the following way:

(5.5) Dk := �∗k−good k1,k2,k3Dk1 �Bk2 �Dk3

Now we show that all the invariants about Dk are satisfied. Clearly there are no false-positive entries in the
array. We never miss a walk of weight at most (1 + ε)k, as the condition (a) filters out the triples ki contributing
only the walks of total weight larger than (1 + ε)k. The condition (b) guarantees that the first and third part of
the walk have weight at most 1

2 (1 + ε)k. In the following lemma we show that we also never construct walks of
too large weight.

Lemma 5.9. For every k and every k-good triple k1, k2, k3, the largest weight of a walk in Dk1 �Bk2 �Dk3 is at
most (1 + ε)k · (1 + ε)2k·log(1+ε).

Proof. Induction on k. Without loss of generality assume k1 ≥ k3 and then the walks in Dk1 � Bk2 �Dk3 have
total weight at most:

≤(1 + ε)k1 · (1 + ε)2k1·log(1+ε) + (1 + ε)k2 + (1 + ε)k3 · (1 + ε)2k3·log(1+ε)

≤[(1 + ε)k1 + (1 + ε)k2 + (1 + ε)k3 ] · (1 + ε)2k1·log(1+ε)

≤(1 + ε)k+1 · (1 + ε)2k1·log(1+ε) (from the condition (a))(5.6)

Now we use the condition (b) of a good k-triple:

(1 + ε)
k ≥ 2 · (1 + ε)

k1−1
apply log1+ε(·) and rearrange

k − k1 ≥ log1+ε 2− 1 multiply both sides by 2 · log2(1 + ε)

2 · log2(1 + ε) · (k − k1) ≥ 2 · (1− log2(1 + ε)) > 1 as 1 + ε <
√

2

2k · log2(1 + ε) ≥ 2k1 · log2(1 + ε) + 1

Applying the above inequality to (5.6) concludes the inductive step.

Setting ε = 1/ log x, as log(1 + ε) > ε we obtain that there are

r = dlog1+ε xe ≤ 1 +
log x

log(1 + ε)
= O

(
log x

ε

)
= O(log2 x)

arrays Dk to compute. As log(1 + ε) < 2ε, the largest possible weight is bounded from above by

(1 + ε)r · (1 + ε)2r·log(1+ε) ≤ (1 + ε)r·(4ε+1) ≤ (1 + ε)(log1+ε x+1)·(4ε+1)

≤ x · x4ε · ((1 + ε)ε)
4 · 2 = O(x · 24·log x· 1

log x ) = O(x).
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Hence, the appropriate choice of y = Θ(x) guarantees that no convolution gate overflows.
Now we estimate the size of the constructed circuit. We compute r = O(log2 x) arrays Dk. For each of them

we process O(r3) k-good triples which perform two � products each. Every � product introduces O(|V (G)|3) �
and � gates. Hence the total number of gates is O(|E(G)|+ |V (G)|3 · polylog x).

Finally we discuss the properties of the values computed in Dr and all the intermediate gates. Recall
that D′k[u, v][d] is the value of Dk[u, v][d] if computed exactly, without taking modulo p at every step. For
each d ≤ (1 + ε)k, every walk between u and v of weight d contributes at least 1 to D′k[u, v][d]. Notice that such
walk may contribute more than 1, as it can be cut into three parts in many ways, for different triples k1, k2, k3.
As no walks of weight different from d contribute to D′k[u, v][d], there is a walk from u and v of weight d
iff D′k[u, v][d] > 0. However, while computing the arrays Dk we operate in Zp, so we might have false negative
error if p | D′k[u, v][d]. In Theorem 5.2 we include such situations in the probability of failure (we fail if p | N ,
where N = D′r[u, v][d]), but we need to ensure that D′r[u, v][d] never exceeds 2O(t log t).

Lemma 5.10. Suppose we execute the above algorithm up to the r-th matrix Dr in Z, not applying modulo p in
every gate. Then all the obtained values are bounded by 2O(x log x).

Proof. Recall that ε = 1
log x , r = dlog1+ε xe, we operate on vectors with t = O(xpolylog x) entries, and the

convolutions do not overflow as the result always fits in the first y = O(x) elements of the vectors. Let
f(k) be a monotonous function that upper bounds the values in D′k and g = |V (G)|. Observe that a single
product A � B of matrices with entries bounded by respectively amax and bmax results in a matrix with entries
bounded by g ·y ·amax ·bmax. Hence, as values in Bk2 are 0 or 1, from Equation (5.5) we have the following bound:

f(k) ≤
∑

k−good k1,k2,k3

f(k1) · (y · g)2 · f(k3) ≤ k3(y · g)2 · f2(kmax) ≤Wf2(kmax)

where kmax is the largest possible value of ki that can be a part of a k-good triple and W = r3 · (y · g)2 = O(x5)
as y = O(x) and we consider the case when x = Ω(g). From Equation (5.4) we have:

2 · (1 + ε)
kmax−1

< (1 + ε)
k

kmax + log1+ε 2− 1 < k

As arguments of f are integers, it would be more convenient to write kmax ≤ k − c where c = dlog1+ε 2 − 1e ≥
log1+ε 2− 1. As f is monotonous, we have:

f(k) ≤

{
W · f2(k − c), k ≥ c
W, k < c

which solves by induction to f(k) < W 2d
k
c
e+1−1. Then, as W = O(x5) we have:

f(r) < W 2d
r
c
e+1−1 < WO(2r/c) < 2O(2r/c log x)

Finally, we show that r/c ≤ log x+O(1).

r

c
≤

log1+ε x+ 1

log1+ε 2− 1
=

log x
log(1+ε) + 1

log 2
log(1+ε) − 1

=
log x+ log(1 + ε)

1− log(1 + ε)
≤ log x+ 2ε

1− 2ε
(as log(1 + ε) < 2ε)

=
log2 x+ 2

log x− 2
= log x+O(1)

Combining that with the above bound on f(r) we obtain:

f(r) < 2O(2r/c log x) ≤ 2O(2log x+O(1) log x) = 2O(x log x)

which gives the desired bound on the obtained values.
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Hence we can apply Theorem 5.1 to the circuit computing Dr[u, v] for the values p, t, ω from Theorem 5.2. The
running time of the algorithm is O(|C|tpolylog p) = O((|E(G)| + |V (G)|3)x polylog x) as |C| = O(|E(G)| +
|V (G)|3 · polylog x), t = O(x polylog x), p = O(y2 polylog y) and y = Θ(x). The space complexity is bounded
by O(|C| log p) = O((|E(G)|+ |V (G)|3) polylog x). This concludes the proof of Theorem 3.8.
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time approximation of longest palindromes in streams. Algorithmica, 81(9):3630–3654, 2019. doi:10.1007/

s00453-019-00591-8.
[34] Pawe l Gawrychowski, Jakub Radoszewski, and Tatiana Starikovskaya. Quasi-periodicity in streams. In 2019

Symposium on Combinatorial Pattern Matching (CPM), volume 128 of LIPIcs, pages 22:1–22:14, 2019. doi:

10.4230/LIPIcs.CPM.2019.22.
[35] Pawe l Gawrychowski and Tatiana Starikovskaya. Streaming dictionary matching with mismatches. In 2019

Symposium on Combinatorial Pattern Matching (CPM), volume 128 of LIPIcs, pages 21:1–21:15, 2019. doi:

10.4230/LIPIcs.CPM.2019.21.
[36] Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat. The streaming k-mismatch problem: tradeoffs

between space and total time. In 2020 Symposium on Combinatorial Pattern Matching (CPM), volume 161 of LIPIcs,
pages 15:1–15:15, 2020. doi:10.4230/LIPIcs.CPM.2020.15.

[37] Shay Golan, Tsvi Kopelowitz, and Ely Porat. Towards optimal approximate streaming pattern matching by matching
multiple patterns in multiple streams. In 2018 International Colloquium on Automata, Languages, and Programming
(ICALP), volume 107 of LIPIcs, pages 65:1–65:16, 2018. doi:10.4230/LIPIcs.ICALP.2018.65.

[38] Shay Golan, Tsvi Kopelowitz, and Ely Porat. Streaming pattern matching with d wildcards. Algorithmica,
81(5):1988–2015, 2019. doi:10.1007/s00453-018-0521-7.

[39] Shay Golan and Ely Porat. Real-time streaming multi-pattern search for constant alphabet. In 2017 European
Symposium on Algorithms (ESA), volume 107 of LIPIcs, pages 41:1–41:15, 2017. doi:10.4230/LIPIcs.ESA.2017.41.

[40] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of Computer and System Sciences,
62(2):367–375, 2001. doi:https://doi.org/10.1006/jcss.2000.1727.

[41] Piotr Indyk. Faster algorithms for string matching problems: matching the convolution bound. In 1998 IEE
Symposium on Foundations of Computer Science (FOCS), page 166, 1998. doi:10.1109/SFCS.1998.743440.

[42] Theodore Johnson, Shan Muthu Muthukrishnan, and Irina Rozenbaum. Monitoring regular zxpressions on out-
of-order streams. In 2007 IEEE International Conference on Data Engineering (ICDE), pages 1315–1319, 2007.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited693

D
ow

nl
oa

de
d 

12
/0

6/
22

 to
 1

31
.2

54
.2

52
.9

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

http://dx.doi.org/10.1007/978-3-642-15369-3_41
http://dx.doi.org/10.1007/978-3-642-15369-3_41
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.43
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.31
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.18
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.127
http://dx.doi.org/10.1007/978-3-319-77313-1_2
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2019.6
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.15
http://dx.doi.org/10.1109/TKDE.2002.1000341
http://dx.doi.org/10.1109/TKDE.2002.1000341
http://dx.doi.org/10.1007/s00453-019-00591-8
http://dx.doi.org/10.1007/s00453-019-00591-8
http://dx.doi.org/10.4230/LIPIcs.CPM.2019.22
http://dx.doi.org/10.4230/LIPIcs.CPM.2019.22
http://dx.doi.org/10.4230/LIPIcs.CPM.2019.21
http://dx.doi.org/10.4230/LIPIcs.CPM.2019.21
http://dx.doi.org/10.4230/LIPIcs.CPM.2020.15
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.65
http://dx.doi.org/10.1007/s00453-018-0521-7
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.41
http://dx.doi.org/https://doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1109/SFCS.1998.743440


doi:10.1109/ICDE.2007.369001.
[43] Adam Kalai. Efficient pattern-matching with don’t cares. In 2002 ACM-SIAM Symposium on Discrete Algorithms

(SODA), page 655–656, 2002.
[44] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. Proton: multitouch gestures as regular

expressions. In 2012 Conference on Human Factors in Computing Systems (CHI), page 2885–2894, 2012. doi:

10.1145/2207676.2208694.
[45] Stephen C. Kleene. Representation of events in nerve nets and finite automata. RAND Corporation, Santa Monica,

CA, 1951.
[46] Tomasz Kociumaka, Ely Porat, and Tatiana Starikovskaya. Small space and streaming pattern matching with k edits.

CoRR, abs/2106.06037, 2021. To appear in 2021 IEEE Symposium on Foundations of Computer Science (FOCS).
[47] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan S. Turner. Algorithms to

accelerate multiple regular expressions matching for deep packet inspection. In 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM), page 339–350, 2006.
doi: 10. 1145/ 1159913. 1159952 .

[48] LeetCode. Problem 139. Word break. https: // leetcode. com/ problems/ word-break/ .
[49] Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular path expressions. In 2001 International

Conference on Very Large Data Bases (VLDB), page 361–370, 2001.
[50] Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In ACM Symposium on Theory of Computing

(STOC), pages 321–330, 2010. doi: 10. 1145/ 1806689. 1806735 .
[51] Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-parenthesized expressions in the streaming

model. SIAM Journal on Computing, 43(6):1880–1905, 2014. doi: 10. 1137/ 130926122 .
[52] Oleg Merkurev and Arseny M. Shur. Searching long repeats in streams. In 2019 Symposium on Combinatorial Pattern

Matching (CPM), volume 128 of LIPIcs, pages 31:1–31:14, 2019. doi: 10. 4230/ LIPIcs. CPM. 2019. 31 .
[53] Oleg Merkurev and Arseny M. Shur. Searching runs in streams. In 2019 Symposium on String Processing and

Information Retrieval (SPIRE), volume 11811 of LNCS, pages 203–220, 2019. doi: 10. 1007/ 978-3-030-32686-9\

_15 .
[54] Makoto Murata. Extended path expressions of XML. In 2001 ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems (PODS), page 126–137, 2001. doi: 10. 1145/ 375551. 375569 .
[55] Eugene W. Myers. A four Russians algorithm for regular expression pattern matching. Journal of the ACM,

39(2):432–448, April 1992. doi: 10. 1145/ 128749. 128755 .
[56] Gonzalo Navarro and Mathieu Raffinot. Fast and simple character classes and bounded gaps pattern matching, with

application to protein searching. In 2001 International Conference on Computational Biology (RECOMB), page
231–240, 2001. doi: 10. 1145/ 369133. 369220 .

[57] Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming model. In 2009 Symposium
on Foundations of Computer Science (FOCS), pages 315–323, 2009. doi: 10. 1109/ FOCS. 2009. 11 .

[58] Jakub Radoszewski and Tatiana Starikovskaya. Streaming k-mismatch with error correcting and applications. Journal
of Information and Computation, 271:104513, 2020. doi: 10. 1016/ j. ic. 2019. 104513 .

[59] John Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois
Journal of Mathematics, 6(1):64 – 94, 1962. doi: 10. 1215/ ijm/ 1255631807 .

[60] Philipp Schepper. Fine-grained complexity of regular expression pattern matching and membership. In 2020 European
Symposium on Algorithms (ESA), volume 173 of Leibniz International Proceedings in Informatics (LIPIcs), pages
80:1–80:20, 2020. doi: 10. 4230/ LIPIcs. ESA. 2020. 80 .

[61] Tatiana Starikovskaya. Communication and streaming complexity of approximate pattern matching. In 2017
Symposium on Combinatorial Pattern Matching (CPM), volume 78 of LIPIcs, pages 13:1–13:11, 2017. doi:

10. 4230/ LIPIcs. CPM. 2017. 13 .
[62] Ken Thompson. Programming techniques: regular expression search algorithm. Communication of ACM,

11(6):419–422, 1968. doi: 10. 1145/ 363347. 363387 .
[63] Daniel Tunkelang. Retiring a great interview problem. https: // thenoisychannel. com/ 2011/ 08/ 08/

retiring-a-great-interview-problem/ , 2011.
[64] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz. Fast and memory-efficient regular

expression matching for deep packet inspection. In 2006 Symposium on Architecture For Networking And
Communications Systems, pages 93–102, 2006. doi: 10. 1145/ 1185347. 1185360 .

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited694

D
ow

nl
oa

de
d 

12
/0

6/
22

 to
 1

31
.2

54
.2

52
.9

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

http://dx.doi.org/10.1109/ICDE.2007.369001
http://dx.doi.org/10.1145/2207676.2208694
http://dx.doi.org/10.1145/2207676.2208694
http://dx.doi.org/10.1145/1159913.1159952
https://leetcode.com/problems/word-break/
http://dx.doi.org/10.1145/1806689.1806735
http://dx.doi.org/10.1137/130926122
http://dx.doi.org/10.4230/LIPIcs.CPM.2019.31
http://dx.doi.org/10.1007/978-3-030-32686-9_15
http://dx.doi.org/10.1007/978-3-030-32686-9_15
http://dx.doi.org/10.1145/375551.375569
http://dx.doi.org/10.1145/128749.128755
http://dx.doi.org/10.1145/369133.369220
http://dx.doi.org/10.1109/FOCS.2009.11
http://dx.doi.org/10.1016/j.ic.2019.104513
http://dx.doi.org/10.1215/ijm/1255631807
http://dx.doi.org/10.4230/LIPIcs.ESA.2020.80
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.13
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.13
http://dx.doi.org/10.1145/363347.363387
https://thenoisychannel.com/2011/08/08/retiring-a-great-interview-problem/
https://thenoisychannel.com/2011/08/08/retiring-a-great-interview-problem/
http://dx.doi.org/10.1145/1185347.1185360

	Introduction
	Our results

	Preliminaries
	Technical Overview
	Regular Expression Membership and Pattern Matching
	Anchors
	Algorithms

	Proof of Theorem 3.8
	Finding primes
	Walks in a weighted graph.


