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Quality assurance for MRI-only
radiation therapy: A voxel-wise
population-based methodology
for image and dose
assessment of synthetic
CT generation methods

Hilda Chourak1,2*, Anaïs Barateau1, Safaa Tahri1,
Capucine Cadin1, Caroline Lafond1, Jean-Claude Nunes1,
Adrien Boue-Rafle1, Mathias Perazzi1, Peter B. Greer3,4,
Jason Dowling2*, Renaud de Crevoisier1 and Oscar Acosta1

1University of Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France,
2The Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research
Organisation (CSIRO), Health and Biosecurity, Brisbane, QLD, Australia, 3School of Mathematical
and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia, 4Radiation Oncology,
Calvary Mater Newcastle Hospital, Newcastle, NSW, Australia
The quality assurance of synthetic CT (sCT) is crucial for safe clinical transfer to an

MRI-only radiotherapy planning workflow. The aim of this work is to propose a

population-based process assessing local errors in the generation of sCTs and their

impact on dose distribution. For the analysis to be anatomically meaningful, a

customized interpatient registration method brought the population data to the

same coordinate system. Then, the voxel-based process was applied on two sCT

generation methods: a bulk-density method and a generative adversarial network.

TheCT andMRI pairs of 39 patients treated by radiotherapy for prostate cancerwere

used for sCT generation, and 26 of them with delineated structures were selected

for analysis. Voxel-wise errors in sCT compared to CT were assessed for image

intensities and dose calculation, and a population-based statistical test was applied

to identify the regions where discrepancies were significant. The cumulative

histograms of the mean absolute dose error per volume of tissue were computed

to give a quantitative indication of the error for each generation method. Accurate

interpatient registrationwas achieved, withmean Dice scores higher than 0.91 for all

organs. The proposed method produces three-dimensional maps that precisely

show the location of the major discrepancies for both sCT generation methods,

highlighting the heterogeneity of image and dose errors for sCT generationmethods

from MRI across the pelvic anatomy. Hence, this method provides additional

information that will assist with both sCT development and quality control for

MRI-based planning radiotherapy.

KEYWORDS

quality assurance, voxel-wise analysis, population-based evaluation, synthetic CT
assessment, dosimetric assessment, MRI-only radiation therapy
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1 Introduction

Magnetic resonance imaging (MRI) is becoming

increasingly integrated into clinical radiotherapy (RT)

planning and monitoring. MRI-guided RT is motivated by the

superior soft tissue contrast compared to CT and the non-

ionizing modality. However, MRI does not provide

information on the electron density of tissue, which is essential

for radiotherapy dose calculation. To overcome this issue,

several approaches to generate synthetic CT (sCT) in

Hounsfield units (HU) from a specific MRI have been

developed (1, 2). These include bulk-density (3, 4), atlas-based

(5), and machine-learning models, such as patch-based methods

with feature extraction (6) and, more recently, deep-learning

models (DLMs) (6–12).

Currently, sCT image quality assessment is based on global

metrics that measure the discrepancies between reference CT

and the corresponding sCT (12, 13). The most common are

intensity-based (14) metrics, like the mean absolute error

(MAE), mean error (ME), mean squared error (MSE), and

peak signal-to-noise ratio (PSNR). Structural similarity (SSIM)

(15, 16) is also often computed. These metrics have been

reported at a global level, restricted to a single value describing

the agreement within the body contour of the patient or within

an organ (12). Regarding dosimetric evaluation, the dose

distributions obtained from sCT are assessed by comparing

the dose–volume histogram (DVH) and gamma analysis (17–

20) to the ground truth (dose distribution from reference CT).

DVHs are volume-based statistics that are not relatable to

spatial locations, while gamma are spatial distributions; they are

usually condensed to a single pass-rate metric, and gamma

scores are difficult to interpret clinically. For sCT evaluations,

each patient is usually assessed in isolation and the results are

then combined. However, it has been reported that errors might

appear heterogeneously distributed across different tissue

densities (6, 16, 21–24).

Assessing the spatial distribution of errors at a population

level may help to identify their origin as well as clinical impact

and may subsequently improve the accuracy of sCT generation

methods. It can also be useful to compare and select sCT

generation methods, and, to a large extent, it may lead to the

introduction of quality control protocols within the MRI-based

RT planning workflow.
Abbreviations: AE, absolute error; APE, absolute percent error; BDM, bulk-

density method; CCS, common coordinate system; DLM, deep-learning

model; DSC, Dice similarity coefficient; DVH, dose–volume histogram; E,

error; ESR, error subregions; GAN, generative adversarial network; MAE,

mean absolute error; MAPE, mean absolute percent error; ME, mean error;

RSDAE, relative standard deviation of absolute error; sCT, synthetic CT; SD,

structural description; vMAE, voxel-wise mean absolute error; vMAPE,

voxel-wise mean absolute percent error; vME, voxel-wise mean error.
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Voxel-wise population analysis can provide powerful tools

to assess the clinical impacts of image and dose difference across

individuals (25, 26). However, their application requires an

accurate non-rigid registration of a whole population to a

single coordinate system and the implementation of voxel-wise

statistical tests. Previous preliminary work has demonstrated the

feasibility of this method, but the analysis methods were limited

in clinical scope (27).

The aim of this paper was to propose a multiscale strategy to

assess the accuracy of sCT generation methods, starting with a

standard error evaluation in the whole pelvis followed by the

assessment of organ errors and finally by the implementation of

a voxel-wise workflow.

The whole scan population was brought to the same

coordinate system via a customized non-rigid registration

method. Two different sCT generation approaches were

chosen as examples to illustrate the methodology: a bulk-

density method (BDM) and a deep-learning method, based

upon a generative adversarial network (GAN) architecture (6,

28). Then, a comprehensive population-based statistical analysis

is performed, including a permutation test adapted to non-

parametric paired data and the evaluation of the error dispersion

at a voxel-wise scale for each method. The presented

methodology not only provides a population spatial

quantification of the sCT image value and dose errors but also

allows comparison across different sCT generation approaches

using the same dataset.
2 Materials and methods

2.1 Data

A cohort of 39 patients with prostate cancer aged 58–78

years were used to generate sCT scans. For each patient, a CT

scan was acquired on a GE LightSpeed RT or a Toshiba Aquilion

(256 × 256 × 128 matrix with a voxel size of 1.17 mm × 1.17 mm

× 2.5 mm or 2.0 mm), and a T2-weighted MRI was acquired on a

Siemens Skyra 3T in the treatment position (resolution of 1.6

mm × 1.6 mm × 1.6 mm). Each CT was resampled and

registered to the corresponding MRI via a symmetric rigid

registration followed by a structure-guided non-rigid method

(29, 30) to rectify the main anatomical variations due to the

delay between both acquisitions.

MRI was then preprocessed to correct non-uniformity (31)

with the Insight Toolkit Library.

As some organs’ delineation, crucial for the interpatient

registration, were incomplete, voxel-wise analysis was

performed on the 26 patients with bones, prostate, bladder,

and rectum delineated on MRI by two physicians. The rectal

length started at 2 cm below the clinical target volume (CTV).

Two CTVs were defined: CTV1 including prostate and seminal

vesicles and CTV2 corresponding to the prostate only.
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2.2 Workflow

The proposed workflow is presented in Figure 1. It includes

the generation of sCTs using two methods (BDM and GAN) and

dose computation. Then, sCTs and dose distributions followed a

standard evaluation in the native space. Finally, an accurate

customized organ-driven non-rigid algorithm was applied to

bring all the data to the same coordinate system, where voxel-

wise analysis was performed.
2.3 Synthetic CT generation methods

2.3.1 Bulk-density method
BDMs have an application to the quality assurance (QA) of

sCT scans (4) and are also employed in this work to demonstrate

that the differences between scan quality for different sCT

methods can be determined with our workflow. sCTs were

obtained by assigning HU values to the patient’s soft tissue,
Frontiers in Oncology 03
bones, and air segmented from MRI. For bone segmentation,

automatic tools from Varian Eclipse were used on CT. This

contour was then rigidly aligned to the MRI scan, and contours

were manually adjusted by a research radiation therapist (31).

The volume of air resulted from thresholds in the inner part of

the rectum delineated on MRI. The soft tissue area corresponds

to the subtraction of bones and air from the body contour. A

water equivalent density (0 HU) was assigned to the soft tissue

(3, 32). For bones and air, the densities allocated were 350 and

-450 HU, respectively, which are the mean CT values of the

cohort in the corresponding segmented regions (28).
2.3.2 Generative adversarial network
The GAN architecture used in this study to generate sCT is

fully described in Largent et al. (6). The generator was a U-Net

inspired by Han et al. (33), with L2 norm as the loss function:

LG(I,  C) = jjC − G(I)jj22 (1)
FIGURE 1

Workflow of voxel-wise population-based analysis. This workflow comprises five steps: (1) synthetic CT (sCT) generation with bulk-density and
generative adversarial network (GAN) methods, (2) dose calculation and (3) error evaluation of images and doses in the native space of each
patient. This evaluation includes the computation of absolute error, error, and absolute percent error. The non-rigid registration step (4) resulted
in deformation fields, allowing for propagation of the whole data to a common coordinate system. Once all data were in the same anatomical
space, statistical analysis was performed (5), producing three-dimensional (3D) error maps for each sCT generation method and highlighting
significant difference subregions for both image and dose distributions.
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where I corresponds to the MRI intensity, G(I) to the generated

sCT, and C to the reference CT.

The discriminator was a PatchGAN, using binary cross-

entropy as the loss function:

LD(G(I),  C) = −o
n

i=1
Ci log (G(I)i)+(1 − Ci)log(1 − G(I)i) (2)

G(I) is the sCT produced by the generator from the target

MRI, C is the corresponding reference CT, and n is the number

of voxels in C.

LG(I,C) and LD(G(I),C) were combined to create the

adversarial loss.

Axial two-dimensional CT and MRI slices were used to train

the model, and threefold cross-validation was applied. The

training cohort comprised 26 patient data and a validation

cohort size of 13.
2.4 Dose calculation in native space

Volumetric modulated arc therapy (VMAT) was planned on

reference CT images with the Pinnacle v.9.10 (Philips

Healthcare, Cleveland, OH, USA) treatment planning system

(TPS) using the collapsed cone convolution algorithm and a

dose grid resolution of 3 mm. For all patients, a sequential

treatment was delivered with a total dose of 50 Gy to the CTV1

followed by a boost of 28 Gy in the CTV2, both at 2 Gy per

fraction. The beam parameters used to compute the dose on the

reference CT were used to calculate the dose on the sCT.
2.5 Image and dose error evaluation in
native space

The accuracy of the sCT generation in HU and in Gy was

first assessed in the native space to reduce bias induced by the

interpatient non-rigid registration.

Absolute error (AE), error (E), and absolute percent error

(APE) were computed by comparing corresponding CT and sCT

pairs at a voxel level, producing three-dimensional (3D) error

maps for each patient.

The global quality of sCT was evaluated with respect to the

patient’s structures (prostate, rectum, and bladder) and whole

pelvis by computing the mean absolute error (MAE), mean error

(ME), and mean absolute percent error (MAPE) in these regions

from the previous maps.

AE(i) = XCT (i) − XsCT (i)j j (3a)

MAE =
1
no

n

i=1
AE(i) (3b)
Frontiers in Oncology 04
E(i) = XCT (i) − XsCT (i) (4a)

ME =
1
no

n

i=1
E(i) (4b)

APE(i) =
XCT (i) − XsCT (i)

XCT (i)

����
���� (5a)

MAPE =
1
no

n

i=1
APE(i) (5b)

with n being the number of voxels, and XCT(i) and XsCT(i) the

intensities of the ith voxel in, respectively, the reference and the

generated image, in HUs for image evaluation or in Gy for

dose evaluation.

The closer to zero the AE, E, APE, and so their respective

means, the more accurate the prediction.
2.6 Organ-driven registration

First, an individual MRI scan from the cohort was selected as

a template (exemplar) by considering the median volumes of the

bladder, rectum, and prostate. Then, a customized organ-driven

registration based upon previously proposed methods (25, 34)

was performed with overall optimized alignment across

the organs.

Input images for the registration were a combination of the

MR images and structural descriptions (SDs) of the delineated

organs obtained as follows:
- Euclidean distances to the surface were computed for all

structures (35).

- For the rectum, a scalar field was generated by applying

the Laplacian equation inside the volume (36). The

Laplacian field provided a normalized distance map to

the central path of the organ.

- For the prostate, the Laplacian was also computed with

respect to its barycenter.
Finally, the scalar fields of all structures were merged into a

global structural description of the organs and combined to the

MRI (Figure 2). Afterward, all the structures were rigidly aligned

using the Elastix toolbox (translation). From bones to the

bladder, each structure requires a different level of

deformation. To handle this high variability, non-rigid

registration based on diffeomorphic Demons (37) with four

levels of resolution was successively applied to the i) bladder,

ii) whole pelvis, iii) prostate, iv) rectum, and v) bones.

The Demons algorithm uses Gaussian regularization,

which involves smoothing the deformation field. The sigma

of the Gaussian filter was set to 1, and the numbers of iterations
frontiersin.org
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for the four levels of resolution were i) 300, 300, 200, and 20 for

the bladder contour; ii) 200, 200, 100, and 0 for the whole

pelvis; iii) 200, 200, 150, and 5 for the prostate SD; iv) 100, 100,

100, and 5 for the rectum SD; and v) 100, 100, 150, and 50 for

the bones SD.

For the bladder, a b-spline transform using the Elastix

toolbox was also performed on SD prior to the Demons

registration (step i).

Each step resulted in deformation fields: 3D vectors defined

at each voxel and providing the appropriate transformation. The

resulting 3D deformation fields were combined and applied to

delineated structures, reference CTs, sCTs, dose planning, and

error maps to propagate all the data from their native spaces to a

common coordinate system (CCS).

After the propagation of CT in the CCS, the bones, including

the femoral heads, were split between spongy and cortical and

separately registered to preserve their inner structure

composition. This final transformation was then applied to

sCT, dose, and error maps.

For the propagation of CT in the CCS to be meaningful, each

CT–MRI patient pair had to be properly coregistered prior to the

interpatient registration.

This step-by-step approach can accommodate the high

anatomical interindividual variability and facilitates the

propagation of delineated structures, including the registered

reference CTs, sCTs, dose distributions, and error maps from

their native spaces to a CCS.
Frontiers in Oncology 05
As a visual indicator of the performance of this process, a

checkerboard of the template MRI with the mean population

MRI in the CCS and a checkerboard of the template CT with the

mean population CT in the CCS are presented in Figure 3. The

probability maps, also in Figure 3, allow the visualization of the

discrepancies between the delineated organ contours

following registration.

Table 2 summarizes the volumes of the delineated organs

prior to and after the registration process.

The Dice similarity coefficient (DSC) between the template

structures, Vt_MRI, and the corresponding deformed delineated

organ, VMRI, was also used for validation.

DSC =
2(Vt _MRI ∩ VMRI)
Vt _MRI + VMRI

(6)

For the voxel-based population analysis to be meaningful,

only accurately registered data were included (DSC > 0.85 for all

the segmented organs). The 26 cases passed this criterion.
2.7 Voxel-wise analysis in common
coordinate system

2.7.1 Image and dose mean error map
computation

Once all data were in the CCS, voxel-wise MAE (vMAE), ME

(vME), and MAPE (vMAPE) maps for images and dose
FIGURE 2

Preprocessing step for the non-rigid registration process. After organ delineation, a structural description was performed by computing the
Euclidean distances to the surface and the Laplacian equation. This was finally combined to MR images to obtain the deformation fields used to
bring all the data from their native space to the common coordinate system (CCS).
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distributions were obtained by averaging the voxel error data

across the cohort. v represents that these data are now voxel-

specific and hence spatial, i.e., they are not averaged across a

particular patient’s voxels; they are found by considering all the

patient cohort values for a particular voxel i.

Therefore, in the CCS, errors are defined as follows:

vMAE(i) =
1
po

p

j=1
jXCT (i, j) − XsCT (i, j)j (7)

vME(i) =
1
po

p

j=1
XCT (i, j) − XsCT (i, j) (8)

vMAPE(i) =
1
po

p

j=1

XCT (i, j) − XsCT (i, j)
XCT (i, j)

����
���� (9)

vMAE(i) is the mean absolute error, vME(i) the mean error,

and vMAPE(i) the MAPE for a voxel i. XCT(i, j) and XsCT(i, j)

represent the values, in HUs for the image assessment or in Gy

for the dose assessment, of the reference CT and the sCT,

respectively, for the ith voxel of the jth image of the population,

and p is the total number of patients in the population.
Frontiers in Oncology 06
The template scan body contour was applied to these images

to focus on the region of interest and discard slight body contour

variation due to registration. Then, the relative standard

deviation of the absolute error (RSDAE), also known as the

coefficient of variation, was used for the evaluation of the

dispersion of the prediction error at a voxel-wise scale.

RSDAE(i) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
op

j=0(AE(i, j) − vMAE(i))2
q

vMAE(i)
(10)

with AE(i, j) = |XCT(i, j) – XsCT(i, j)|

Therefore, for each voxel i, the lower the RSDAE, the higher

the probability to have an absolute error close to the vMAE(i)

value. Figures 4, 5 illustrate the results, respectively, for image

and dose assessment.
2.7.2 Permutation test
To complete this study, voxel-wise paired permutation tests

proposed by Konietschke et al. (38) were performed for each

method with the R software package for non-parametric

multiple comparisons (39). This statistical approach is an

adaptation of Student’s t-test for non-parametric paired data
B

C

A

FIGURE 3

Visual quality control of the interpatient registration. Checkerboard comparison of (A) the template MRI with the mean of all the population
MRIs registered in the Common coordinate system (CCS) and (B) the template CT with the mean population CTs in the CCS. Probability maps
are presented in (C). It is the result of the overlapping of all the delineated structures in the same space to estimate the precision of the
registration. In blue, few structures are overlaid (poor quality of registration). In red, all the patient structures correspond to the same anatomical
location (100%, perfect registration).
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and includes permutation tests. The hypothesis in this study was

that the intensity in HUs, or the dose in Gy, of the generated sCT

scans was identical to the value of the reference scans (Figure 6).

Two paired lists of values were determined for each voxel

and compared.

Multiple comparisons may lead to type I errors, namely the

false-positive rate. Therefore, to limit these errors, 10,000

random permutations were utilized to estimate the p-value.

The procedure to estimate the p-value followed these steps:
Frontiers in Oncology 07
• The computation of the statistics (38) on the initial data:

U = (U1, ···,Up), with U1 = (XCT(1),XsCT(1)) the paired

values for patient 1, and p the total number of patients in

the population.

• The computation of the statistics on randomly permuted

data defined as Uperm = (Uperm1, , Upermp), with Uperm1 =

{((XCT(1), XsCT(1)), ((XsCT(1), XCT(1))} the two possible

paired values for patient 1. This step was repeated 10,000

times.
A B

C

FIGURE 4

HU error maps in the common coordinate system. Axial and sagittal views of voxel-wise mean absolute error (vMAE), voxel-wise mean error
(vME), and voxel-wise mean absolute percent error (vMAPE) maps in the same anatomical space and the corresponding histograms (C) for sCT
generated with the (A) bulk-density and (B) GAN methods. The relative standard deviation of the absolute error [RSD(AE)] is also illustrated.
Color scales of error maps were associated to histograms.
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Fron
• The comparison of the results obtained with the

swapped data Uperm and the one obtained in the first

step to estimate the p-value (38).
This test resulted in 3D maps, where a voxel i corresponds to

the probability that the initial hypothesis was true for the ith

voxel of the generated sCTs. The regions of significant

differences (p-value< 0.05) between CTs and sCTs on one

hand and between dose plans calculated on CTs and sCTs on
tiers in Oncology 08
the other were generated. These volumes, referred to as error

subregions (ESRs), are illustrated in Figure 7.
2.8 Mean absolute dose error—volume
histogram

This cumulative histogram is a quantitative tool, allowing for

the assessment of absolute error in the dose calculations on the
A B

C

FIGURE 5

Mean dose error maps in the Common coordinate system (CCS). Axial and sagittal views of vMAE, vME, and vMAPE maps in the same
anatomical space and the corresponding histograms (C) for dose computed from sCT generated with (A) bulk-density and (B) GAN methods.
The RSD(AE) is also illustrated. Contours of the delineated organs of the template were overlaid on each image, and the color scales of error
maps were associated to histograms.
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sCT and CT scans with respect to the volumes of tissue. It was

built in the same way as DVHs and computed from the vMAE

map in the CCS. The regions of interest for this evaluation were

the bladder, rectum, prostate, and pelvis. To focus on the region

of the dose distribution, the pelvic region was cropped to within

2 cm above and 2 cm below the rectum, according to the

superior-to-inferior axis.

Two criteria for evaluation were selected: V0.5Gy and V1Gy,

which correspond, respectively, to the total volume with an

absolute error greater than or equal to 0.5 and 1 Gy.
2.9 Dosimetric endpoints

2.9.1 Gamma analysis
Dose plans were propagated to the CCS and combined,

resulting in the mean reference CT dose and mean dose for each
Frontiers in Oncology 09
sCT generation method. Thus, a spatial dose evaluation was

conducted comparing mean dose distributions with a 3D gamma

analysis (local, 1%/1 mm, dose threshold 10%) using VeriSoft

software. The gamma pass rate, corresponding to the percentage

of voxels with gamma inferior to 1, and mean gamma were

reported, additionally to gamma maps in the axial plan.
2.9.2 DVH criteria
The absolute differences between dosimetric values

calculated on the reference CT propagated in the CCS and

those calculated using sCT generated from the BDM and the

GAN were determined. The contours used were the bladder,

rectum, and prostate of the template in the CCS.

Table 4 presents the average differences of the mean dose,

D2%, D50%, and D95% for each method, with Dx% representing

the dose in x% of the volume of interest.
FIGURE 6

Paired permutation test general workflow: example for the image evaluation using Hounsfield units. For each voxel, coordinates (x,y)
correspond to paired data (A1, B1), …, (Ap, Bp). These pairs were used to determine if the generated (B) and reference (A) samples were identical
or not following the procedure proposed by Konietschke et al. (38). A p-value (x,y) is obtained for each voxel, highlighting the regions where the
differences are significant. The same process was applied on dose distributions.
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3 Results

3.1 Image and dose error evaluation in
native space

Table 1 depicts the results of the evaluation in the native

space for both bulk-density and GAN methods. The BDM

presented higher MAE, MAPE, and ME than the deep-

learning-based approach. The worst MAE scores for both

methods were in the bone regions (244.4 HU for the BDM

and 124.3 HU for the GAN). This structure also had a higher

mean CT number and standard deviation (342 HU ± 317 HU).

Regarding dose calculation, MAE reached 1.46 Gy,

equivalent to 1.85% of the expected dose, in the prostate for

the BDM and 0.34 Gy for the GAN. For each method, MAPE

was similar for the prostate, rectum, and bladder (approximately

0.02 for the BDM and 0.01 for the GAN) and superior in bones

(0.06 and 0.04). The standard deviation for all error types and all

delineated organs was larger for the BDM compared to the GAN.
3.2 Registration

The customized non-rigid registration process accurately

brought the 26 patients of the cohort in the same anatomical

space, as shown by the average Dice score of 0.98 ± 0.01 for the

body contour, 0.93 ± 0.01 for the bones, 0.96 ± 0.01 for the bladder,

0.91 ± 0.02 for the rectum, and 0.91 ± 0.02 for the prostate. The

mean volume, in cubic centimeters, of each delineated structure

ended close to the volume of the template’s organs in the CCS

(Table 2) confirming the efficiency of the method.
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The accuracy of the registration inside the body is also

illustrated visually in Figure 3.
3.3 Voxel-based error maps

3.3.1 Image assessment
Figure 4 depicts the vMAE, vME, and vMAPE error maps

computed in the CCS for both the BDM and the GAN method.

The RSDAE map, representing the dispersion of the absolute

error distribution at each voxel considering the overall cohort, is

also included. It illustrates the voxel-wise quality assessment of

sCT generated for each method. The histograms of these 3D

error maps are presented in this figure, which allows the

comparison of the accuracy of both methods. Differences in

intensity up to 250 HU in the rectum and more than 500 HU in

cortical bones were found for the BDM. An underestimation (in

red, Figure 4) of more than 200 HU in the cortical bones and

approximately 140 HU in the rectum were observed in the sCT

generated from the BDM, as well as an overestimation (in blue,

negative values) of 200 HU in spongy bones. For the GAN, the

highest vMAE was found in bones (approximately 100 HU and

up to 220 HU in denser regions). The vMAE reached 200 HU in

a small specific region within the rectum, close to the prostate

and seminal vesicles. According to the vME map, the GAN

approach led to an overestimation (in blue, Figure 4) in the

previously described location in the rectum, with a score equal to

-85 HU, and in spongy bones (-40 HU). There was an

underestimation of 110 HU in cortical bones (in red,

Figure 4). The errors highlighted with the vMAPE were in

spongy bones and in the rectum for both methods, also in the
FIGURE 7

Studentized paired permutation test results. Significant error subregions brought out by Konietschke’s paired permutation test, in red, overlaid
on mean MR images in the CCS for HU values (left) and overlaid on the mean dose plans in the CCS for Gy values (right). This statistical test
produced p-value maps. Differences of intensities (HU) on one hand, and dose (Gy) on the other hand, were considered as significant for
p-value< 0.05.
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contour of the bladder for the GAN. The vMAPE histogram for

the BDM has a narrow distribution around 1 in soft tissue, as

computing the MAPE in this area, where the sCT value is equal

to 0 HU, results in dividing the reference CT value by itself.

Although the RSDAE was more than 1.5 and 2, respectively, for

the BDM and the GAN in the rectum, the highest values were

not at the same location.

Figure 7 presents significant ESRs, in red, overlaid on the

mean MR images in the CCS and on the mean dose distribution.

Most of the HU values predicted with the BDM were

significantly different from the reference CT HU values, except

in an important part of the bladder and tissue interfaces.

According to the studentized permutation test result, ESRs

were preferentially located in cortical bones, skin, a part of the

prostate, and regions scattered around the bladder and the

rectum for the sCT obtained with the DLM.
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3.3.2 Dose assessment
Figure 5 illustrates the dose differences for the whole

population data. As for the image assessment, the resulting

maps allowed to evaluate and compare locally resulting in the

dose calculation of both sCT generation methods. For the BDM,

vMAE in the organs at risk increased up to 1.7 Gy, just near the

prostate. The most predominant absolute errors for the GAN

appeared in the rectum with differences up to 0.75 Gy and the

first centimeter of the body contour. In the prostate, the vMAE

was approximately 0.3 Gy. The vME reached 0.4 Gy on the body

contour for the DLM. The vMAPE confirmed the error on the

body contour but not in the rectum for both approaches. RSDAE

highlighted the same area in the rectum than vMAE and vME

maps (RSDAE > 1.5). The higher the delivered dose, the higher

the error observed, with an underestimation of the dose

distribution of 1.3 Gy in the prostate for the BDM. As for
TABLE 1 Error evaluation performed in the native space for sCT generation methods.

IMAGE (HU) DOSE (Gy)

GAN BULK-DENSITY Mean CT number GAN BULK-DENSITY Mean dose

MAE 33.9 ± 7.6 96.4 ± 16.5 0.06 ± 0.02 0.2 ± 0.36

Global PELVIS MAPE 1.3 ± 0.6 2.3 ± 0.8 18 ± 184 0.1 ± 0.03 0.12 ± 0.04 8.9 ± 13.4

ME 3.4 ± 15.6 -10.4 ± 24.3 0.11 ± 0.05 0.19 ± 0.27

MAE 124.3 ± 22.4 244.4 ± 29.8 0.06 ± 0.03 0.24 ± 0.46

BONES MAPE 1.3 ± 0.8 3.9 ± 1.8 342 ± 317 0.04 ± 0.02 0.06 ± 0.03 14.6 ± 15.1

ME 23.9 ± 45.7 20.4 ± 62.3 0.03 ± 0.08 0.24 ± 0.47

MAE 18.2 ± 4.9 17.1 ± 5.8 0.11 ± 0.1 0.72 ± 1.88

BLADDER MAPE 2.2 ± 1.2 1.1 ± 0.1 4 ± 19 0.01 ± 0.01 0.02 ± 0.05 25.8 ± 22.7

Organ- ME 4.9 ± 12.0 4.9 ± 12.9 -0.02 ± 0.15 0.69 ± 1.89

wise MAE 67.1 ± 66.6 140.9 ± 71.8 0.23 ± 0.23 0.79 ± 1.62

RECTUM MAPE 2.1 ± 1.2 6.8 ± 6.2 -13 ± 135 0.01 ± 0.0 0.02 ± 0.05 36.7 ± 19.2

ME -16.3 ± 77.6 98.2 ± 82.9 -0.04 ± 0.18 0.58 ± 1.68

MAE 17.6 ± 3.8 34.2 ± 8.5 0.34 ± 0.2 1.46 ± 3.54

PROSTATE MAPE 1.2 ± 1.0 1.0 ± 0.0 29 ± 24 0.0 ± 0.0 0.02 ± 0.05 78.7 ± 0.8

ME 3.7 ± 11.3 30.7 ± 11.6 -0.04 ± 0.38 1.3 ± 3.61
f

Global scores for the whole pelvis and per organ are presented. Mean absolute error (MAE), mean absolute percentage error (MAPE), and mean error (ME) were computed between
reference CT and sCT (image results in HU) and between dose distribution calculated from these images (dose results in Gy). Reference CT number and mean dose in each anatomical
region are also indicated.
Bold values highlight best metrics scores.
TABLE 2 Volume of delineated structure in cm3 prior and after the non-rigid registration.

VOLUME IN NATIVE SPACE (cm3) REGISTERED VOLUME (cm3) TEMPLATE IN CCS (cm3)

mean std min max mean std min max

BODY 14362 2092 10608 18300 15392 261 14363 15812 15374

BLADDER 274 142 113 633 243 3 237 251 246

BONES 1259 205 908 1817 1082 36 1031 1183 1076

PROSTATE 40 19 16 82 33 1 31 37 34

RECTUM 66 29 25 133 36 1 34 37 36
These data are presented regarding the volume of the template in the common coordinate system (CCS).
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image analysis, dose error map histograms appeared wider than

for the GAN (Figure 5).

According to Figure 7, a major part of the dose plans

computed from the BDM was considered as significantly

different from the ground truth. For those calculated from

sCT generated with the GAN, ESRs were localized

surrounding the body, mainly on the skin and until 3 cm

inside the body.
3.4 Mean absolute dose error per volume

Figure 8 presents the comparison of the two sCT methods by

showing the absolute dose difference (Gy) per percentage of

tissue volume. This metric reveals a larger error for the BDM

than the GAN, regardless of the organ considered. No volume

reached 1 Gy of dose difference for the GAN sCT (Table 3).
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3.5 Dosimetric endpoints

The results of 3D gamma analysis (criteria: local, 1%/1 mm,

low dose threshold = 10%) performed on the mean dose volume

in the CCS are presented in Figure 9. This allows for a local

comparison of the gamma maps of each sCT generation method.

In Table 4, dosimetric criteria assessment shows an absolute

difference superior to 1 Gy in the prostate for the BDM, while the

GAN results are around 0.33 Gy in this location.
4 Discussion

This study proposed a methodology based on voxel-wise

population analysis to assess the local errors in sCT generation

approaches and their impact on the dose distribution. It also

allows the comparison of the performance of several sCT
FIGURE 8

Mean absolute dose error–volume histogram. Mean absolute difference between dose computed from the reference CT and dose computed
from the synthetic CT generated with the bulk-density method (continuous line) and GAN (dotted line) for a specific volume of delineated
structures. Each color represents a tissue volume.
TABLE 3 Percent of tissue volume with a mean absolute error (MAE) reaching 0.5 Gy (V0.5 Gy) and 1 Gy (V1 Gy) for both sCT generation methods.

BULK-DENSITY GAN

PELVIS BLADDER RECTUM PROSTATE PELVIS BLADDER RECTUM PROSTATE

V0.5 Gy 16.58% 77.03% 80.93% 100% 1.10% 0% 10.03% 0%

V1 Gy 3.63% 16.48% 31.85% 100% 0.08% 0% 0% 0%
The mean of voxel values of the vMAE map in the CCS was computed in the whole pelvis and in the template’s structures (bladder, rectum, and prostate).
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generation methods. The full evaluation process was applied on

two sCT generation methods, allowing for the examination of

heterogeneity of errors in not only HU but also 3D dose

distributions across the pelvis.

The presented methodology relies on the accuracy of the

interindividual non-rigid registration step, as for all voxel-based

approaches (40). Registration methods have been developed in

morphometry studies (41–43). Previous studies in the pelvic area

included the structural descriptions of the bladder and prostate

only (25) or rectum only (34) or were combined to CT (44). The

voxel-wise statistical analysis performed here includes a novel

integration of bones, with a step dedicated to the preservation of

their inner structure. The combination of these structural

descriptions with MR images is also original in this context
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and achieved a precise registration of the whole pelvis as it offers

superior contrast in soft tissue. With the Demons algorithm for

deformable registration, the amount of deformation is limited by

the deformation field smoothing at each iteration, which helps

avoid large and unnatural displacement. The algorithm is quite

robust to breaking down; however, this is possible if the anatomy

or modality is very different, particularly if the rigid registration

step has failed prior to the Demons algorithm.

The same pelvic MRI data used in this study had been

successfully evaluated in previous work that has relied on the

same registration method (31, 45). While the reported DSCs

highlight the structural similarities, these are also robust

indicators for when the analysis would break down. The major

displacement of the organs leading to non-realistic deformation
TABLE 4 Absolute difference of dosimetric criteria computed for both bulk-density and GAN methods using the template contours in the
Common coordinate system (CCS).

BULK-DENSITY GAN

BLADDER RECTUM PROSTATE BLADDER RECTUM PROSTATE

Mean dose absolute difference (Gy) ± std 0.71 ± 1.90 0.69 ± 1.85 1.45 ± 3.62 0.10 ± 0.10 0.16 ± 0.12 0.33 ± 0.21

D2% absolute difference (Gy) ± std 1.59 ± 3.66 1.44 ± 3.28 1.41 ± 3.58 0.27 ± 0.19 0.50 ± 0.62 0.33 ± 0.22

D50% absolute difference (Gy) ± std 0.67 ± 1.88 0.66 ± 1.68 1.43 ± 3.63 0.09 ± 0.09 0.18 ± 0.20 0.33 ± 0.21

D95% absolute difference (Gy) ± std 0.24 ± 0.83 0.22 ± 0.56 1.49 ± 3.63 0.03 ± 0.05 0.04 ± 0.04 0.32 ± 0.22
Absolute difference of the dose means, D2%, D50%, and D95% computed between the reference CT and the synthetic CTs in the rectum, bladder, and prostate. Dx% represents the dose in x
% of the volume of interest.
FIGURE 9

Dose distributions and gamma maps. Dose distributions were propagated to the CCS and combined, resulting in mean reference CT dose,
mean dose for sCT generated from bulk density, and mean dose for sCT generated from GAN method. These dose distributions were used to
calculate the gamma pass rate (criteria: 3D, local, 1%/1 mm, low dose threshold = 10%).
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within the body during the registration will impact the DSC of

the contours and can provide a good QA step to ensure that the

registration has not failed. The mean DSC of 0.98 for the body

contours indicates that the registration on this dataset appears to

be accurate.

This method permits to map organs, images, and doses in a

single coordinate system. Comparison by voxel is thus

anatomically meaningful for both images and doses.

vMAE, vME, vMAPE, and RSDAE 3D maps were produced,

showing the distribution of mean error across the pelvis for a

whole population. The error map histograms are a quantitative

tool to compare the chosen methods. As vMAE map values

appear to be correlated to the reference intensity (the most

important errors are in cortical bones, where the mean HU value

is the highest), the relative difference, vMAPE, was also

computed as a measure of prediction accuracy. The purpose of

vME maps is to determine if the prediction tends to be

systematically superior or inferior to the reference, and the

RSDAE, also known as the coefficient of variation, can be

interpreted as the uncertainty maps of each method (46).

RSDAE gives an insight into the regions where HU prediction

is trustworthy or not. Therefore, each 3D map computed in this

study illustrated complementary information on errors

produced in both sCT and dose distributions.

To define if the errors were significant across the anatomy in

the CCS, a voxel-wise statistical test was applied on images and on

dose distributions. The permutation test proposed by Konietschke

et al. (38) was used to cope with the multiple comparison

problems and is appropriate for paired and non-parametric

data. Other permutation tests, such as Chen’s (47) used in

Chourak et al. (27), do not appear suitable in our approach as

they do not compare each CT to its corresponding sCT.

The two evaluated methods were the BDM and the DLM

using the GAN. The BDM is a historical approach for MRI-only

radiation planning and was first integrated in a commercialized

device (MRCAT, Philips (48)). The BDM also has an application

to the QA of sCT scans (4). This approach is simple and does not

involve registration, but it lacks accuracy as it does not take

tissue heterogeneity into account. The BDM presented in this

paper was chosen as an illustration of the proposed

methodology, but it has been shown that more accurate

methods exist (3, 48–50).

Although several sCT generation methods have been proposed

in the literature, recent studies head toward deep-learning strategies

(12, 51) DLMs such as the GAN trained with paired data rely on

intrapatient registration precision (52). The multimodal

registration of the input data and training is time consuming, but

generated sCTs are, in general, more accurate (6, 20).

According to the RSDAE map, the GAN was more consistent

in HU prediction and resulted in more reliable dose planning.

For both methods, important MAEs and MEs arose in the

rectum, near the prostate. This area corresponded to a high

RSDAE regarding other structures and a high MAPE, expressing
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the lack of accuracy of both methods in this location.

Furthermore, the error did not stand out as significant with

the studentized permutation test for the GAN. This wide error

might be due to the change in patients’ anatomy between CT and

MRI acquisition but is not necessarily related to an incorrect

prediction of the HU. Another possibility is that the change in

patients’ anatomy disrupted the training phase for the GAN.

The BDM statistically lacked accuracy for HU prediction

and dose calculation. For the GAN HU values, significant

differences were observed in cortical bones, especially in the

femoral heads, but no significant consequences appeared in the

dose distribution.

Although HU prediction accuracy is important, sCT

generation needs to be reliable for dose planning. Dosimetric

assessment is thus crucial and is usually based on DVH, which is

an organ-based metric, and gamma analysis. The gamma was

computed in the CCS, allowing for the extraction of local values

across the population. The location of dose discrepancies is

clearly visible, with gamma superior to 1 in the prostate for the

BDM (Figure 9). Gamma results allow a spatial dose analysis of

the sCT generation method for the chosen criteria (1%/1 mm in

this study).

Recent studies in sCT generation involve deep learning for

different anatomical locations. Nevertheless, artificial

intelligence (AI) is not yet fully trusted for clinical use, and

key points to assess AI solutions in radiology are raised (53).

Critical questions for performance and validation are related to

robustness to input variability, training data, and potential

sources of bias identified by developers. As the GAN was

trained with paired CT and MRI, the multimodal registration

accuracy directly impacts the quality of sCT (52). In addition,

uncertainties inherent to deep-learning models (54) also

generate misprediction.

These uncertainties may produce errors in sCT HU values

and so may impact dose computation.

The population-based strategy presented in this paper offers

the possibility to define at a voxel level the capability of a method

to be accurate across a cohort of patients, having variable tissue

density and anatomy, in HU and on the resulting dose

distribution. It gives an insight on the reliability of sCT

generation, where, usually, the assessment is limited to global

or organ-wise assessment (1, 55, 56).

A limitation of the registration process might be the

accuracy of the contours. Interobserver delineation for the

bladder, prostate, and rectum on a similar dataset appeared to

be close in a previous study (31). However, the experts may have

been more experienced than the physicians who segmented the

data for this project.

Nevertheless, the relations between HU errors and their

impact on dose computations are yet to be investigated. In

silico models with simulated HU errors in specific tissue

followed by dose computation could help to determine the

acceptable level of error in sCT that will not affect the dose.
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Overall, voxel-wise analysis brought out significant

differences that did not show up with the global scores and

allowed the assessment of both HU prediction and dose

distribution. This process identified locations where the sCTs

were more prone to errors. This will provide a way forward for

translation to a clinical radiotherapy practice. However, the

analysis accuracy highly depends on the quality of the

interpatient registration. As misregistration can remain,

dissociating registration errors to those inherent to the

generation methods is an issue of interest and is yet to be

fully explored.

Even if the sCT generation method appeared to be accurate,

there is no guarantee that each new sCT will be reliable for dose

calculation, especially for a patient anatomically different from

the training cohort or if the MR image presenting artifacts is

acquired with a different sequence or device.

The implemented voxel-based analysis workflow depends on

interpatient registration accuracy: a mismatch between

structures will lead to biased results. Moreover, the statistical

test presented in this paper is time consuming, as simulation

studies show that at least 10,000 random permutations are

needed for each voxel for an adequate p-value estimation (38).

Furthermore, type I errors may remain in the ESR.

This methodology is a tool for assessing and comparing sCT

generation methods and illustrating inhomogeneities. However,

more studies are required to go further in a QA process. Part of

our future work is to investigate the ability to assess a single sCT,

without reference, before its use for dose calculation.

This study focused on the male pelvic area considering

prostate cancer irradiation; however, the methodology can be

applied to any other anatomical location provided that accurate

registration is achieved.
5 Conclusion

The proposed voxel-wise population-based workflow

resulted in 3D error maps for sCT generation from MRI. This

methodology relies on a robust organ-driven non-rigid

registration that brings all the patients to the same anatomical

space. The assessment of HU and dose distributions calculated

from sCT accuracy followed a multiscale strategy, whereby

errors were computed for the whole pelvis, followed by the

organs and finally at a voxel level, allowing for a spatial

characterization of the differences across the methods. This

analysis was completed with a quantitative assessment via

error map histogram comparison and the mean absolute dose

error per volume histogram to compare different sCT generation

methods. Thus, this workflow will be useful in the comparison

and localization of errors in the sCT generation method and

provides a way forward to sCT quality control within the MRI-

based planning RT.
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based analysis for identification of urethrovesical subregions predicting urinary
toxicity after prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys (2019)
104(2):343–54. doi: 10.1016/j.ijrobp.2019.01.088

26. Finnegan RN, Reynolds HM, Ebert MA, Sun Y, Holloway L, Sykes JR, et al.
A statistical, voxelised model of prostate cancer for biologically optimised
radiotherapy. Phys Imaging Radiat Oncol (2022) 21:136–45. doi: 10.1016/
j.phro.2022.02.011

27. Chourak H, Barateau A, Mylona E, Cadin C, Lafond C, Greer P, et al. Voxel-
wise analysis for spatial characterisation of pseudo-CT errors in MRI-only
radiotherapy planning. 2021 IEEE 18th Int Symposium Biomed Imaging (ISBI)
(2021), 395–9. doi: 10.1109/ISBI48211.2021.9433800

28. Largent A, Barateau A, Nunes JC, Lafond C, Greer PB, Dowling JA, et al.
Pseudo-CT generation for MRI-only radiation therapy treatment planning:
Comparison among patch-based, atlas-based, and bulk density methods. Int J
Radiat Oncol Biol Phys (2019) 103(2):479–90. doi: 10.1016/j.ijrobp.2018.10.002

29. Rivest-Hénault D, Greer P, frip jurgen, Dowling J. Structure-guided
nonrigid registration of CT–MR pelvis scans with Large deformations in MR-
based image guided radiation therapy. CONF (2014) 65–73. doi: 10.1007/978-3-
319-05666-1_9

30. Rivest-Hénault D, Dowson N, Greer PB, Fripp J, Dowling JA. Robust
inverse-consistent affine CT-MR registration in MRI-assisted and MRI-alone
prostate radiation therapy. Med Image Anal (2015) 23(1):56–69. doi: 10.1016/
j.media.2015.04.014

31. Dowling JA, Sun J, Pichler P, Rivest-Hénault D, Ghose S, Richardson H,
et al. Automatic substitute computed tomography generation and contouring for
magnetic resonance imaging (MRI)-alone external beam radiation therapy from
standard MRI sequences. Int J Radiat Oncol Biol Phys (2015) 93(5):1144–53. doi:
10.1016/j.ijrobp.2015.08.045

32. Lee YK, Bollet M, Charles-Edwards G, Flower MA, Leach MO, Mcnair H,
et al. Radiotherapy treatment planning of prostate cancer using magnetic resonance
imaging alone. (2003) 66(2):203–216. doi: 10.1016/S0167-8140(02)00440-1

33. Han X. MR-based synthetic CT generation using a deep convolutional
neural network method: Med phys. Medical Physics (2017) 44(4):1408–19. doi:
10.1002/mp.12155
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