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Massive Multi-Player Multi-Armed Bandits for IoT
Networks: An Application on LoRa Networks

Hiba Dakdouk, Raphaél Féraud, Nadege Varsier, Patrick Maillé, and Romain Laroche

Abstract—More and more manufacturers, as part of the
transition toward Industry 4.0, are using Internet of Things (IoT)
networks for more efficient production. The wide and extensive
expansion of IoT devices and the variety of applications generate
different challenges, mainly in terms of reliability and energy
efficiency. In this paper, we propose an approach to optimize
the performance of IoT networks by making the IoT devices
intelligent using machine learning techniques. We formulate the
optimization problem as a massive multi-player multi-armed
bandit and introduce two novel policies: Decreasing-Order-
Reward-Greedy (DORG) focuses on the number of successful
transmissions, while Decreasing-Order-Fair-Greedy (DOFG) also
guarantees some measure of fairness between the devices. We
then present an efficient way to manage the trade-off between
energy consumption and packet losses in Long-Range (LoRa)
networks using our algorithms, by which LoRa nodes adjust their
emission parameters (Spreading Factor and transmitting power).
We implement our algorithms on a LoRa network simulator
and show that such learning techniques largely outperform the
Adaptive Data Rate (ADR) algorithm currently implemented in
LoRa devices, in terms of both energy consumption and packet
losses.

I. INTRODUCTION

The Internet of Things (IoT) has gained a great attention in
the last decade. The world has been witnessing such a massive
growth in the node deployment that the IoT survey reported
on the Forbes website [1]] forecasts more than 75 billion con-
nected IoT devices by 2025. Massive 1oT applications require
energy-efficient and low-complexity nodes. To support such
requirements, Low Power Wide Area Networks (LPWANS),
that provide large coverage areas, low transmission data rates
with small packet data sizes, low device complexity and
long battery life have evolved [2]. LPWANSs include several
technologies operating in the unlicensed industrial, scientific
and medical (ISM) frequency band (868 MHz in Europe,
915 MHz in North America, and 433 MHz in Asia), and
the Long Range Wide Area Network (LoRaWAN) developed
by the LoRa alliance [3]] is one of these massively deployed
technologies for low power and long distance transmissions.
However, with the great increase of IoT deployment, a major
problem of systems’ coexistence arises. Inside the unlicensed
band, the different systems are not separated in the frequency
domain but overlapping in the sense that they may use the
same frequency resource at any time, causing interference and
hence transmission failures. In this context, we propose in this
paper an approach to optimize the communications in IoT

H. Dakdouk, N. Varsier, R. Féraud are with Orange Labs, France
P. Maillé is with IMT Atlantique, France
R. Laroche is with Microsoft Research Lab, Canada

networks by configuring IoT devices so that they are aware
of the best operating parameters in order to avoid interference
and packet loss while consuming as little energy as possible.

We consider a large number N of devices communicat-
ing through a unique gateway on a limited number K of
orthogonal (independent) channels (N > K). The devices
use an acknowledgement protocol slotted in time, where an
acknowledgement is sent by the gateway to the transmitting
device after each successful transmission. A transmission fails
if and only if a collision occurs. If this is the case, the packets
of all colliding devices are lost and no acknowledgement is
sent. There exist two types of collision. An internal collision
occurs when two or more devices send packets to the gateway
at the same time slot through the same channel. External
collisions may also occur with unknown and uncontrolled
devices. Therefore, even if only one device sends a packet
on one channel at a given time slot, the packet may not be
received by the gateway. Because of their nature, external
collisions make the probabilities of successful transmission
(and hence the channels’ qualities) uncontrollably differ over
channels. Another important feature of the studied problem
is that, in the general case, the gateway cannot know that
packets have been sent by some devices if a collision occurs.
As a consequence, the estimation of the channel quality can
only be done at the device side in a decentralized way. In such
conditions and in order to maximize the number of successful
transmissions of the IoT network while consuming as little
energy as possible, we model our problem as a massive multi-
player multi-armed Bandit.

Multi-Player Multi-Armed Bandits. Multi-Armed Bandit
(MAB) refers to an online decision-making game where a
player has to make decisions at specific time steps by se-
lecting an arm from a set of K available arms. Each arm is
associated with a sequence of rewards that are randomly and
independently drawn according to an unknown distribution.
At each turn, the player should select an arm and receive the
reward corresponding to the selected arm. The player’s goal is
to maximize its cumulative reward over time by compromising
between exploring the arms that have loosely estimates in
order to build a better one, and exploiting the arm that seems
to be the best in order to maximize the cumulative reward. The
player should follow a certain policy that chooses the arm to
play at each turn based on the previous outcomes.

In this work, we focus on stochastic MABs, where we
assume that the rewards are generated independently from an
unknown and constant distribution. UCB (Upper Confidence
Bound) [4] is one of the most commonly used algorithms in



stationary stochastic environments. It builds an upper confi-
dence bound of the expected reward of each arm, and selects
the arm with the highest bound at each iteration. UCB can be
used in selfish MAB [3] for optimizing the packet data rate
in IoT networks. Notice however that the basic assumption
of selfish UCB does not hold in our setting: due to internal
collisions and learning of other players, the reward evolves
during time.

The multi-player multi-armed bandit (MP-MAB) problem is
a class of MAB problems where instead of a single agent, there
exists a set [N] of N players, where all players have access to
the same set of arms [K], and have to make decisions at some
pre-specified time instants and observe the corresponding
outcome. In this model, the notion of collisions is introduced,
i.e., whenever two or more players select the same arm at
the same time, they all suffer from a collision. Different
collision models have been proposed, but the simplest one
consists in giving a 0 reward to each of the colliding players.
In this context, the players must learn to access the arms
while maximizing their rewards, which necessitates avoiding
collisions.

To set the aforementioned problem into the framework of
multi-player MAB, each [oT device is considered as a player, a
channel is considered as an arm, and the reward corresponds to
the reception or not of the acknowledgement from the gateway.

Related Work. The decentralized multi-player multi-armed
bandits have been studied for opportunistic spectrum access
in [6]-[9], where primary users have a strict priority over
secondary users, which are allowed to sense a channel before
sending a packet in order to check whether it is free. The ob-
jective of those works is to avoid collisions between concurrent
secondary users, that share the same channels, while choosing
the best channels, i.e., with the highest probabilities of being
free of primary users. This line of work makes the assumption
that there are less players than channels, that the collisions
with other players are observed, and uses orthogonalization
techniques to avoid collisions. In [10], the authors propose
to use collisions to estimate in a first phase the number of
players and the value of arms, and then applies a Musical
Chair approach to allocate each player on a different /V-best
arm. In [11]], the authors improve this approach by reducing
the first phase to the estimation of the value of arms and
then use a trekking approach to allocate each player on a
different V-best arm without the knowledge of the number
of players. In [12], the authors propose a communication
protocol based on controlled collisions that achieves almost
the same performance as a centralized algorithm. In [13]], the
authors improve this result by electing a leader that explores
the arms and allocates other players on different estimated V-
best arms. The leader communicates to the other players the
list of estimated N-best arms when it changes using the same
communication protocol as in [12]]. An interesting extension
of the problem setting is proposed in [[14] for handling the
case where the mean rewards of arms are not the same for
each player. Despite its merits, this thread of research makes
the assumption that sensing information is available and the
number of players is small (N < K), which are respectively

impractical and unrealistic assumptions for IoT networks. In
contrast, in this paper we do not consider any condition on
the number of players, neither we consider primary/secondary
user setting, and we do not allow sensing. Instead, players
observe the success or failure of their transmissions.

Motivated by IoT networks, in [5]] the authors propose a new
problem setting where sensing is not allowed, the number of
players is larger than the number of channels, and the players
asynchronously play: each player has the same probability
of sending a packet at each time slot. The authors show
experimentally that selfish UCB, which consists in each player
independently playing UCB [4], i.e., a classic commonly-used
MAB algorithm, works surprisingly well. This experimental
result has been confirmed in the case of LoRa networks
using stochastic and non-stochastic multi-armed bandits in
[15]], [16] or in the case of the IEEE 802.15.4 time-slotted
channel hopping protocol [17]. Despite its good experimental
performance, this algorithm has no theoretical guarantees, and
it has been shown that selfish UCB can fail badly on some
cases [18]. With a similar problem setting but with different
probabilities to send packets, the authors in [19]] propose a
cooperative algorithm that aims to find a set of optimal arms
while minimizing the number of plays. However, that work
does not optimize the number of optimal arms to find, and the
exploitation policy followed by the players is uniform, which
is clearly sub-optimal. These limitations are resolved with our
proposed algorithms.

Finally, the optimization problem we propose to solve is
related to the slotted-Aloha protocol [20]], where each player
n transmits a packet with a probability p,, at the beginning of a
slot. For instance, in [21]] the authors formulate the decentral-
ized throughput maximization problem in an Aloha network
with a single channel in a way that is close to our optimization
problem. However, that work considers a single channel, and
the decision variable is the sending probability p,, rather than
the choice of the channel. If the probabilities of sending a
message are optimized, then the application constraints of
IoT (frequency of sending messages or real-time messages)
cannot be respected. In [22], the authors propose a best-
response algorithm which solves the throughput maximization
problem for the multi-channel Aloha protocol. They notably
show that the best-response algorithm converges to a Nash
Equilibrium in a finite time. However the authors consider
that the channel capacities and the strategies of other players
are known, and that each player has the same probability
of sending a message at each slot, which is unrealistic and
restrictive for IoT networks.

Contributions and paper organization. In this paper, we
study the extension of the problem proposed in [5]], where at
each time slot, each device n has a probability p, to send
a packet to the gateway [19]. We propose an explore-then-
exploit approach, where a decentralized exploration algorithm
outputs an estimation of the parameters. Players send these
estimates to the gateway in order to centralize the decision
making. Then, the gateway computes a policy to be used
during the exploitation phase. We then test our approach on
LoRa networks using a LoRa network simulator, and compare



it with the already-implemented Adaptive Data Rate (ADR)
algorithm.

In section [[I] after discussing the assumptions and sim-
plifications done in comparison to a real IoT network, we
formalize the objective of optimizing the successful transmis-
sions. We show in Theorem [T} that there exists a deterministic
policy (an assignment of players over arms) that is optimal.
Then, in section [[l, we propose two deterministic policies:
DORG (decreasing-order-reward-greedy) aims to optimize the
number of successful transmissions, while DOFG (decreasing-
order-fair-greedy) guarantees fairness between players in terms
of successful transmission rate. In Theorem 2} we show that
DORG is optimal at least in the setting proposed in [3]
(when Vn, p, = p), while Theorem [3| establishes fairness
guarantees for DOFG. We then compare the performance of
the two policies in preliminary experiments in section [[lI-C| In
section we propose a collaborative exploration algorithm,
which has to be decentralized since the packet loss can only be
observed by players. The players output unbiased estimates of
the mean rewards of arms, i.e. the probability of not suffering
an external collision, with classic concentration properties.
Theorem [5] proves an upper bound on the number of time
steps needed to output a controlled approximation of the arms
that is near optimal in comparison to the lower bound of
K biased coin estimations in € (K/e*log1/6) [23]. Fur-
thermore, Theorem [] guarantees its communication efficiency
by stating an upper bound on its communication cost in
O (NKlog(NK + N)/6). Theorem [J| establishes a pseudo-
regret lower bound in Q (72%/ SIO%T , which holds for any
explore-then-exploit algorithm, and unveils the hardness of
the studied problem in comparison to the multi-armed bandit
and multi-player bandit problems. Then, in the specific setting
when Vn, p, = p (proposed in [3]]), Theorem E] demonstrates
that DORG enjoys a pseudo-regret upper bound that is optimal
in 7. Finally, Theorem [§] states fairness guarantees of our
explore-then-exploit algorithm with DOFG. In section
we compare our approach with the state-of-the-art methods
on a large set of synthetic problems. Our experiments reveal
that when using DORG, the proposed algorithm outperforms
the baselines in terms of successful communication rate, and
when using DOFG it outperforms them in terms of fairness
between players. In section we implement the proposed
algorithms and some MAB baselines into LoORaWAN technol-
ogy. The experiments done on a realistic simulator show that
the Adaptive Data Rate (ADR) algorithm, which is currently
implemented in LoRa protocol, is largely outperformed by our
algorithms in terms of energy consumption and packet losses.
We moreover show that if a team of nodes uses ADR while
another team uses our approach, the first team consumes more
energy and suffers of more packet losses. We finally conclude
in section by suggesting directions for future work. The
reader will find the societal impact in appendix [A] additional
experiments in appendix [B] and the proofs in appendix [C]

II. MASSIVELY MULTI-PLAYER MULTI-ARMED BANDITS

In the following, we model the problem of optimizing the
communications in IoT networks as a massive MP-MAB after
presenting the main assumptions that we make.

A. Underlying assumptions

To best formulate our optimization problem, we model an
IoT network by considering the following:

1) The number of devices could be greater than the
number of channels: Unlike most of previously men-
tioned works, we do not assume the number of devices
is less than the number of channels. Indeed, in Internet
of Things (IoT) networks, a large number of devices are
connected to the Internet through wireless gateways, and
hence the number of devices cannot be lesser than the
number of channels.

2) Each successful uplink transmission is followed by
a downlink acknowledgement: The communication
protocols used in IoT allow to assign a binary outcome
for each transmission (success or not) since each up-
link transmission is followed by time windows during
which the device listens to the gateway to receive the
acknowledgement of the uplink transmission.

3) Sensing information is not possible: The players can-
not distinguish internal and external collisions, rather
they can only observe the success or failure of their
transmissions. This is known to be a difficult case for
multi- player multi-armed bandits, however it is realistic
for ToT networks, where sensing information is too
costly in terms of energy consumption.

4) Downlink transmissions do not fail: We do not con-
sider that collisions could occur when the gateway sends
acknowledgements. Indeed, these downlink collisions
require that at least two acknowledgements are sent from
the gateway at the same time to different devices located
at the same place, which cannot happen with a unique
gateway using a protocol slotted in time, and which
would be unlikely in a real Internet of Things (IoT)
network, where a finite number of gateways is positioned
to cover the maximum area.

5) Each player has a probability of sending a packet
at each time step: The frequency of sending packets
through the gateway depends on the application (health-
care, security, smart cities, marketing, home automa-
tion...). Moreover, for several real-time applications, the
device has to send a packet when an unknown and
uncontrolled event occurs. For instance, a user’s device
can interact with its environment in real-time, to get
a green light when the user faces a crossroad, an ad
when the user is in front of a shop, a ticket when
getting on the bus, and more critical applications such
as healthcare ones. Such packets has to be sent and
processed as soon as possible, and therefore the authors
in [[16] suggest a modification in the LORA@FIIT [24]
link-layer protocol, so such emergency packets are given
the priority to be retransmitted in case of failure over
other types of normal packets in order to guarantee QoS
in LoRa networks. In this work, in order to model the
packets’ delivery rate, we assume that each player has
a probability of sending a packet at each time step.

6) Players are Socrati(ﬂ: Considering that the probability

Ifrom the ancient Greek aphorism "know thyself" attributed to Socrates.



of sending a packet depends mainly on the type of
devices, we assume that each player knows its own
probability of sending a packet.

7) Known number of players: We assume that the number
of players is known by the gateway, which is realistic
in IoT protocols (the gateway can keep track of all
the devices it has received packets from), and that the
gateway sends this information to each player at the
beginning of the game.

8) Players can share information by including their
messages in the payload of the packet they need
to send: We allow the devices to share information by
sending messages to other devices through the gateway
using the IoT protocol. As in IoT networks the payload
of each packet can contain up to 255 bytes [25]], [26]], we
assume that in the same packet 8 bytes of the payload
can be used to send a message to other players. We
hereby distinguish between the two terms: a packet that
corresponds to the regular transmissions of a device, and
a message that corresponds to the information shared
between the players.

B. Problem Formulation

We consider a large set [N] of N devices (players) com-
municating with a unique gateway on a limited number K
of orthogonal channels (N > K), using an acknowledgement
protocol slotted in time. Let [K] denote the set of K arms. At
each time slot ¢ each player n € [N] has a constant probability
pn to send a packet, such that 1 > p > p, > 0, where
p is the duty cycle that is imposed on the IoT network in
order to share the free bandwidth with other users. Without
loss of generality, in the following we assume that the indices
of players are sorted in decreasing order of their probability
of sending a packet: p; > ... > py. At each time slot ¢,
the set \V; of players sending packets is selected by N inde-
pendent Bernoulli samples: N; := {n € [N] such that a,, =
1, with a,, ~ B(pn)}.

For a given time slot ¢, let k;,, (or k,, when no confusion
is possible) denote the arm played by player n. The trans-
mission of a packet is successful if it does not collide with
other packets. The random variable representing an external
collision on arm k is denoted by E* ~ B(6*) (equals 0 if
collision, 1 otherwise). Similarly, internal collisions between
the controlled players are represented by the random variables
(I%) re[k] (equals O if collision, 1 otherwise) and depend on
the implemented policy. After playing arm k, player n ob-
serves the binary outcome Y*» = EFn [¥n j e. knows whether
a collision occurred or not (through an acknowledgement) but
cannot distinguish external and internal collisions.

We will call a policy a (possibly randomized) way for
players to select the channel to use for their next transmis-
sion. Formally, a policy = will be a vector of probability

distributions over the set of arms: 7 = (mq,...,7n), With
T = (mk, ..., 7mX) € Ag, where 78 € [0,1] denotes

the probability that player n chooses arm k for sending a
packet. We denote by ufw(w) the expected reward in model

0 = {0%,...,0%} of playing arm k while the other players
follow policy 7. It is the probability that no external collision
occurs times the probability that no internal collision occurs:

N

II

n'=1n'#n

Equation (I)) shows the difficulty of the studied problem:
the mean reward of an arm for a given player depends on the
probabilities of the other players to send a packet and on the
policies they follow. The aggregated average reward in model
0 = {0',..,0%} per time slot over all players pg(7) is:

iy p(m) = 6 (1= parmy).- )

(I—pumy). ()

I

K N
/LB(T") = Z oF an-ﬂ'f;
k=1 =1 n'€[NJ\{n}

This performance metric corresponds to the expected num-
ber of successful transmissions per time slot. The optimization
problem in Equation (2) with respect to 7 has a solution, since
the objective function is continuous and the set of decision
variables is compact. But the problem itself is not convex with
respect to 7¥, hence classical convex optimization methods
cannot be applied.

Another approach is to consider a particular subset of
policies: the subset of deterministic policies is obtained when
V(k,n) € [K] x [N], 7k € {0,1}. Let k,, be the arm assigned
to player n. The expected reward per time slot in model
0 = {0',..,05} of a deterministic policy 7 can then be
written as:

(1 _pn’) (3)

II

n'#n, st k,r=kn,

N
He (7T) = Z pnekn
n=1

II

n€[N], st kn=Fk

Z Dn

(1 —pn)
n€[N], st. kn=k L=pn

K
= Zek
k=1

zk £k
where z* is the probability that no player assigned to arm

k sends a packet, and /¥ is the sum of the activation odds for
all players assigned to arm k.

Theorem 1. There exists a policy maximizing the overall
network utility (equation [2)) that is deterministic.

Theorem [] states that at least one solution is a deterministic
policy, which justifies to consider only the subset of deter-
ministic policies. However, as a deterministic policy is an
assignment of players over arms, there are N deterministic
policies. This means that when IV and K are not small, finding
the optimal policy is hopeless, and this even if the model 0 is
known in advance, which is not the case.

C. Discussion

In face of these impossibility results for both stochastic
and deterministic policies, for handling massively multi-player
multi-armed bandits, we aim to find reasonably good determin-
istic target policies in the next section. Then, in section we



Algorithm 1 Reward Greedy
(DORG if players are sorted in p,, decreasing order)

Algorithm 2 Fairness Greedy
(DOFG if players are sorted in p,, decreasing order)

Inputs: [K], [V], {Hk}kre[K]’ {pn}ne[N]
Qutput: 7
Init: per-arm inactivity probabilities: z* = 1.
Init: per-arm activation odds sums: ¢* = 0.
1: for n=1to N do
2 Set ky, € argmax¢ () OF 2R (1 — ¢F).
3 Update zFn « 2% (1 —p,).
4. Update Fn < (kn 4 ==
5:  Set mFn =1, and Vk # k,, 7% = 0.
6: end for

will propose an exploration algorithm that finds an unbiased
and controlled approximation of the model 6 for computing
the target policy. This explore-then-exploit approach allows to
compute a controlled approximation of a target policy, even
in the case where N and K are not small. Moreover if N
and K are small, a controlled approximation of the optimal
policy can be obtained. The alternative approach consisting of
using an optimal multi-armed bandit algorithm that consider
each deterministic policy as an arm will lead to a regret lower
bound in Q ( vV NET) [27]. Notice that even when N and K
are small (for instance in the order of 10) the dominant term
of the regret lower bound is not 7', but N K,

III. COLLABORATIVE EXPLOITATION IN MASSIVELY
MULTI-PLAYER BANDITS

A. Reward greedy algorithm

In this section, we propose a greedy algorithm that aims to
maximize the network utility (equation (3)).

Lemma 1. For a deterministic policy w, let pg(n[n]) denote
the expected reward when only players 1, ...,n are playing (all
players n’ > n are deactivated). Then we have the recursive
expression:

po(ln]) = po(mln — 1]) +p0* (1=t ) ofr .

where zf“n] is the probability that arm k is not used by any
of the first n players, and Ef“n}c is the sum of activation odds
of the n first players for arm k.

Lemma [Il reveals a recurrence relation over n of the
expected total reward. Under the assumption that the problem
parameters are known, Lemma [I] paves the way to the defini-
tion of DORG, decreasing-order-reward-greedy (Algorithm [T,
a recursive algorithm that assigns player n to arm k, such
that the right-hand term of the recursive equation in Lemma
[I]is maximized. The result is highly dependent on the order
in which the players are added to the pool, but the following
theorem shows Algorithm |I| can lead to an actual optimum.

Theorem 2. If 5~ () 125~ < K + 1, then there exists an

ordering over players o* _I[);V] — [N] such that Algorithm
returns an optimal policy.

Inputs: [K], [N], {ek}ke[K]’ {pn}ne[N]
Qutput: ©
Init: per-arm inactivity probabilities: z* = 1.
1: for n=1to N do
2 Let k,, € argmax ¢k oF 2+
3. Update zF» < 2k (1 —p,)
4 Set wFn =1, and Vk # k,,, 7% = 0.
5: end for

Remark 1. When Vn,p, = p [|5] Theorem (2| states that
DORG returns the optimal policy. The precondition of Theorem
clearly holds in IoT networks, where the duty cycle p is
commonly set to less than 0.01 [26].

In DORG, we sort the players in the decreasing order of
their probabilities to send packets so that the most frequently-
playing players, which are responsible of a major part of sent
packets, are assigned to the best arms in order to maximize
the number of successful transmissions. In the next section,
we experimentally show that scheduling players by decreasing
activity values is a good heuristic, significantly outperforming
the random scheduling.

B. Fairness greedy algorithm

Theorem [I] states that the resource assignment of an optimal
deterministic policy is a Pareto optimum: as the network utility
is maximum, if a user increases its own utility (equation (T)))
another user has necessarily to decrease its utility (due to
equation (2)). Notice that a Pareto optimum does not provide
any guarantee about the fairness of the resource allocation
among players. In this section, we design a policy to ensure
fairness among players, for which we will use the definition
below.

Definition 1 (a-fairness). A policy 7 is said to be o-fair if

ming, ¢ [N] fn,0(T) K ko k
maxy c[N] tn,0 () Ee where ,U,n’g(ﬂ‘) - Zk:l Trn'#n,@(’]r)

Building a fair policy can be done by balancing the load
with respect to the mean rewards of arms. The fair greedy
algorithm (see Algorithm [2) assigns sequentially each player
to the arm that maximizes the reward of the arm times the
probability of no internal collision. The player scheduling also
plays an important role and we prove a lower bound on the
fairness of Algorithm 2] when players are sorted in decreasing
order of p,. In that case we coin this algorithm DOFG, which
stands for decreasing-order-fair-greedy.

Theorem 3. DOFG generates a-fair policies, with o > 1 —
maxne[N] Pn-

Theorem [3] implies that when the probability of sending
packets of the most frequent player is not high, which is the
case in IoT networks, DOFG is a fair policy. In the following
section, experimental evidence about performance and fairness
of DORG and DOFG is provided.
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Fig. 1: With a fixed number of arms K = 10, and for IV values (ranging from 16 to 512 on a log scale), the performance of
DORG, DOFG, and Reward Greedy (Algorithm E[) with random ordering is compared.

C. Preliminary Experiments

In this section, we perform the following experiment: the
problem parameters are sampled as follows: Vn € [N],p, ~
U(o, 0.3 and Vk € [K],0% ~ U(0,1). Figure 1| compares the
performance of DORG, DOFG, and Reward Greedy (Algorithm
[I) with random ordering, where each point is the average of
10,000 runs. Figure[Ta] that compares the expected reward ratio
of the algorithms with respect to DORG, where 7 denotes the
policy to be compared with DORG, reveals that sorting the
players in decreasing order is a good policy. However, it has
to be noted that the difference between DORG and a random
ordering is much thinner when p,, are smaller, as expected in
a real setting. We also notice that DOFG expected reward loss,
as compared to DORG, is below 20% until N =~ 75. Figure
illustrates the result of Theorem |3} and indicates that the
fairness lower bound is tight. It also shows that, while DOFG
only loses 20% rewards when N ~ 75 as compared to DORG,
its fairness is approximately 30 times larger.

Further, on figure |Ic| we notice that the expected number of
channels with collisions stops increasing as N grows around
N = 100. It is the moment when the channels get completely
saturated. N = 100 coincides with the point where the fairness
gets to 0 on figure[Tb] We explain this phenomenon as follows:

2Such high values for p, are used to graphically observe the expected
properties.

each channel  fills up, up to the point when ¢* > 1. When
all the channels reached this point, adding new players to the
network actually decreases the expected reward, and DORG’S
strategy condemns the arms with the lowest % and use them as
a garbage bin for new players. These channels get so crowded
that there is a collision on it with a very high probability,
in order to keep the other channels functionally unspoiled. In
comparison, to guarantee fairness DOFG does not throw away
players on a bin channel.

Similar experiments with different settings are presented in

Appendix

IV. COLLABORATIVE EXPLORATION IN MASSIVELY
MULTI-PLAYER BANDITS

The policies Reward Greedy and Fairness Greedy necessi-
tate the knowledge of the model # and the probabilities to
send packets of the players p, which are unknown to the
players. Therefore, we propose in the following a collaborative
exploration algorithm that returns unbiased estimates of the
mean rewards of the arms.

A. Principle

Decentralized explore-then-exploit approach: The choice
of the policy depends on the metric to be maximized: for
maximizing network utility, DORG policy (Algorithm[T)) should



be used, while to guarantee some fairness among players,
DOFG policy (Algorithm ) is to be used. However both
policies require an estimate of the model 8, which can only
be obtained after sufficient exploration. Since the gateway
cannot observe the collisions (packet losses), the learning
(exploration) is done at the device (player) side. Therefore,
we propose a decentralized exploration algorithm performed
with the packets that the players have to send, i.e. they do
not send extra packets dedicated for exploration but just the
packets they need to send with probability p,, hence they do
not lose any of their packets neither consume higher energy.
Then, the exploration is followed by an exploitation phase, i.e.
explore-then-exploit approach: an exploration algorithm shares
the probabilities of sending packets of players at the beginning,
which is necessary to compute the exploration policy of each
player and outputs an e-approximation of the model 8 with
high probability for a sufficiently small €, and then a target
policy is used during the exploitation phase.

Definition 2 (e-approximation). 0% is said to be an e-
approximation of arm k, if the difference between it and 0F is
less than € : |0F — 0F| < e.

Collaboration: In order to reduce the exploration time needed
to find an e-approximation of each arm, we propose to
distribute the exploration task on the players: each player is
responsible of a predefined number of samples ¢ for each
arm according to its probability of sending a packet, so that
all players would finish their estimations almost at the same
time. At the end of the exploration phase, each player sends
its e-approximation of each arm to other players through
the gateway. Then, the target policy can be computed in a
centralized way (by the gateway) or separately within each
player. Our exploration algorithm as the algorithm in [28],
belongs to the federated multi-armed bandits as defined in
[29], as the players learn independently on different data and
share their knowledge afterwards. In Algorithm [3] we assume
that a message to other player can be sent with the packet at
the same time slot (see section [I).

B. Description of the algorithm

The function send(s), used in Algorithm [3] means that
message s is sent by player n and broadcast to other players
through the gateway on a channel chosen uniformly over K.
The function send(s) returns 1 if an acknowledgement is
received by player n from the gateway or O else. When player
n receives the probabilities of sending packets of all other
players (Algorithm 3|line 11), it computes the required number
of samples of each arm ¢}, according to Lemma 2] When player
n samples at least ¢} times an arm k, it sends its estimation
é’,j and t* to other players (Algorithm [3| lines 16,18) each
in a distinct message (in distinct time slots). éﬁ is computed
according to equation (@). The exploration phase ends when
the arms have been sampled enough by a subset of players
and the estimations of this subset have been successfully sent
(Algorithm [3] line 20). Finally, the players compute the global
estimations of arms by combining the received local ones
(Algorithm [3] line 21).

Algorithm 3 Collaborative Exploration in Massively Multi-
Player Multi-Armed Bandits

Inputs: [K], [N], e € [0,1], § € (0,1)

Output: § = {§* Vk € [K]}

Init: ¢t := 0; Vn € [N] : t} := oo, ackl, := 0; V(n,k) €
[N] x [K]: ack2k :=0,ack3k :=0

1: repeat

2 Ne:={n€[N],an ~ B(pn),an =1}
3 forn €N, do

4: kn ~U(1, K)

5 Yn (thn) .= Iﬁﬁzk

6 e (m) = T Y (1) ke
7 thn = thn 41

8 if ackl, = 0 then

9: ackl,, = send(py,)

10: else

11 if Vi € [N],ackl; =1 then
12 Vi, o = — 21108 (QK/?

2(epf (mu))? X251 P

13: end if

14: if 3k, 5 > t* then

15: if ack2k = 0 then

16: ack2k = send(0F)

17: else if ack3® = 0 then

18: ack3k := send(tF)

19: end if
20: end if
21: end if
22:  end for
23 t=t+1

VE 3 th> Xt

. . 7 neN’ neN
24: until IN' C N, Wk S ack2k — [A|
neN’
ik Sonen Onth
25: all players calculate 9% := <2EA—T0
ZnEN' tn

The sampling strategy used in collaborative exploration is
the Uniform Policy m,: Vn,Vk, 7% = . Then, player n can
estimate the mean reward of arms using:

R nk
0 = ) e )
pn(ﬂ'u)
N N
phm) =TI Q-pemi)= T (—pu/K)
n'=1,n'#n n'=1,n'#n

Lemma 2. With Algorithm to obtain with a probability
1 — ¢ an e-approximation of the mean rewards of arms, player
n needs to sample each arm at least

. pnlog (2K/0)
"2 ([T en (=P /K2 X i

In the following we study the communication cost and the
exploration duration of the proposed exploration algorithm.

times.




C. Analysis of the algorithm

The communication cost presents the number of transmis-
sions needed to successfully send the messages of Algorithm

Bl

Theorem 4. Communication cost. When Algorithm [3] stops,
the number of messages sent is, with probability 1 — 6, less
than C(N(1 + 2K)), where

logm/d
K (op /KON ) 7 Hw'
o (1~ 3, S )

Theorem [ states an upper bound on the number of messages
issued by the N players for sharing the probabilities of
sending packets, and for sharing their estimations that is in

0 (NK log NKHV)

C(m) m’r

)
Theorem 5. Exploration duration. With a probability at least

1—90, when N > 2 Algorithm [3| stops while finding the -
approximations of model 8 = {0, ...,0%} at:

[ya)

Klog (NK/9)
T2e2((1 - p1/K))N2 Y ps

ﬁ*

LK NK+(K)3/2 c@),  NK

LS L .S CB) 1 oe M

2(pn)? 575 PN 2 75
KCO(3)

+—=,

PN
where py = Min,c[N] Pn, P1 = MaXpe[N] P, and C(3) is
the needed number of transmissions to successfully send 3
messages.

Theorem [3] states an upper bound on the number of time
slots needed by all players to finish their estimations of
the mean rewards of the arms and to share them. The left
term in O (K®/?/e*log K/§) is the dominating term of the
upper bound of the sample complexity. It is near optimal in
comparison to the lower bound of K biased coin estimations
in Q (K/e*log1/6) [23].

For the regret analysis of the proposed algorithm, we define
the pseudo-regret as follows:

Definition 3 (Pseudo-regret). Let m; be a policy generated
at time t by an algorithm, and g () be its value in model
0 = {6, ...,05}, we define the pseudo-regret with respect to
the optimal policy 7}, as R(T) = 23;1(#9 (mg) — po(me)).

Theorem 6. Pseudo-regret upper bound. when Yn &€
[N],pn, = p, and N > 3, the pseudo-regret with respect to
the optimal policy mp of Algorithm |3| followed by the policy
w; is upper bounded by:
T?/3log NKT
R(T) <O

)= (p3/2(1 —p/K)*N2N

To show how tight this bound is we provide below a

lower bound on the pseudo-regret of any explore-then-exploit
approach.

+K9/4T2/3> .

Theorem 7. Pseudo-regret lower bound. There exists a model
0 = {0, ...,0%} and a distribution of players p;,...,pn such
that the pseudo-regret with respect to the deterministic optimal
policy mpy of any exploration algorithm that outputs an e-
approximation of each arm 0% with probability at least 1—1/T
and which is followed by the optimal policy using the estimated
model is at least:

N

Theorem [7| reveals the difficulty of the studied problem
in comparison to the multi-armed bandit and multi-player
bandit problems. Indeed, in the case of bandit, the pseudo-
regret lower bound of explore-then-exploit algorithms is in
Q(v/KTlogT) [30], and in the case of multi-player bandit,
there exists an explore-then-exploit algorithm with a regret
upper bound in O(K+/T'logT) [12]. The difference in power
of T' of the pseudo-regret lower bounds of bandits and mas-
sively multi-player bandits is due to the fact that, in the studied
problem, the whole model 6 is needed to compute the optimal
policy, and not only the /N best arms: when the exploration
stops, there is no guarantee that the arms are sufficiently
sampled to compute the optimal policy without mistakes of
assignment of players over arms. The independence of K
of the pseudo-regret lower bound of massively multi-player
bandits is due to the fact that, at each time step, K players can
sample the arms. Finally, the pseudo-regret lower and upper
bounds are tight in 7, since the pseudo-regret upper bound of
3[ followed by the policy 772 reaches the pseudo-regret lower
bound (Theorem [6).

R(T) > Q <T2/31°gT> .

Theorem 8. Fairness. Applying Algorithm 3 followed by
DOFG (Algorithm [2) on 0 returns with a probability 1 — §
an a-fair policy in the true model 0, with

2Ke
(0Fn —e)zkn °
1—pn

a>1l—p —

maXpe[N]

Theorem 8| implies that, using e-approximations of arms,
with high probability DOFG still has the same fairness guar-
antee minus a term that decreases with e.

D. Experiments on simulated environment

In order to illustrate and complete the analysis of the
aforementioned algorithms, we first compare the performance
of collaborative exploration (Algorithm [3) with selfish explo-
ration, where each player explores selfishly, and with follow-
the-leader exploration (FtL), where only the most frequent
player explores. Then we compare collaborative exploration
followed by DORG(A) and DOFG(H), with selfish UCB [5]
and selfish EXP3 [31]], which respectively consist in inde-
pendently playing UCB and EXP3 on each player, and with
CBAIMPB [[19]], where the players find (¢/, m)— optimal arms
and exploit them uniformly with m = 5,¢ = 0.2. We run
simulations with various values of N, and K = 10, such
that Vk, 6% ~ 1/(0,1). The distribution of players is uniform
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Fig. 2: (a) exploration phase, (b) successful communication rate, (c) internal collision rate, (d) external collision rate, (e)
fairness, (f) successful communication rate versus time. The successful communication and collision rates are cumulative over
time. O when collaborative exploration is used, fs when selfish exploration is used, and 01, when follow-the-leader exploration
is used. 6 is the ground truth.



and the upper bound of the distribution is chosen such that
the internal collision rate does not exceed 0.15 when the
number of players reaches 1300 and play the arms uniformly,
$0 Vn,p, ~ U(3.107%,2.2.1073). § = 0.05, ¢ = 0.1. The
curves are averaged over 10 trials and run on 10° time steps.

In figure Zh, we observe that the exploration time of
collaborative exploration is two orders of magnitude less than
follow-the-leader exploration and three orders of magnitude
less than selfish exploration but one order of magnitude more
than CBAIMPB, which stops exploration when it finds the
best arms. Concerning the communication cost, we observe
that the communication cost of the collaborative exploration
is only one order of magnitude greater than other exploration
algorithms, however it is more than two times less than the
upper bound stated in Theorem [] which is in the order

NK + N
of O (NK log %

stopping condition of Algorithm [3] does not imply that all
players have been sampled enough, but that the arms have
been sampled enough. As a consequence, all the estimations
of all players do not need to be shared, but only those of
players that have finished their estimations.

The performance differences of the exploration policies
affect the whole performance of DORG(H) and DOFG(8),
which consist of the exploration algorithm followed by the
corresponding exploitation phase. That is why, in figures 2b
and 2f, the successful communication rate when using selfish
exploration and follow-the-leader exploration are dramatically
less than the one of collaborative exploration. In figures[Zp and
, DOFG(0) is slightly outperformed in terms of successful
communication rate by DORG(6). DORG(#) and DOFG(H)
exhibit the same behavior, and we can notice that DORG(é)
and DOFG(0) clearly outperform selfish UCBI, selfish Exp3
and CBAIMPB, and tend to perform as well as DORG(0) and
DOFG(@) as N increases (figure 2b). This improvement is due
to their low external collision rate (figure 2d) thanks to playing
more the best arms, while because of playing more the best
arms, their internal collision rate is higher (figure 2c). Finally,
while Selfish Exp3 is theoretically better suited for our problem
setting, it is clearly outperformed by Selfish UCB.

Concerning fairness, DOFG(é) clearly outperforms selfish
UCBI, selfish Exp3 and DORG(), while DORG(H) is out-
performed by them when N is high (Figure [2¢). CBAIMPB
offers a high fairness between players due to the uniform
selection of the arms by all players during both exploration and
exploitation phases. The use of selfish exploration leads to high
fairness level due to its very long uniform exploration phase,
in contrast to follow-the-leader exploration that suffers of very
low fairness level due to the fact that, during the exploration
time, only the leader can send messages.

The observed fairness of DOFG(8) in figure 2k differs from
the theoretical one (Theorem [3). This is due to the fact
that the mean rewards of players are observed on a finite
number of time slots (10°). Figure [3| shows the progress of
the fairness level achieved by DOFG(#) policy as time passes.
The black plot corresponds to the theoretical fairness level
proved in Theorem [3| In order to reach the theoretical fairness
level, the observed mean rewards of all players have to reach

. This is due to the fact that the
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Fig. 3: Fairness level achieved by DOFG(f) as a function of
time with 10 players.
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TABLE I: Spreading factors and corresponding SNR required
for ADR [32]], antenna sensitivities [33]], and Inter-SF collision
threshold [34]

Required SNR | LoRa gateway antenna | Inter-SF collision

SF for ADR (dB) sensitivity (dBm) threshold (dB)
SF7 -1.5 -123 -1.5
SF8 -10 -126 -9

SF9 -12.5 -139 -13.5
SF10 -15 -132 -15
SF11 -17.5 -134.5 -18
SF12 -20 -137 -22.5

their expected values. Due to the low probabilities of sending
packets of the players, this would take a long time. As shown
by figure 3] the observed fairness tends to the theoretical
fairness in 10® times steps for 10 players.

In the next section, we propose an adaptive modelling of
the LoRa communications such that we can apply DORG
and DOFG to optimize not only packet delivery but also to
minimize the energy consumption.

V. APPLICATION TO LORA NETWORK
A. LoRaWAN Technology

LoRaWAN is a LPWAN protocol designed to optimize
LPWANSs for battery lifetime, capacity, range, and cost. Lo-
RaWAN follows a pure-ALOHA principle and is basically a
single-hop technology that relays messages from the nodes to
the central server via gateways. It is based on the chirp spread
spectrum modulation technique, that supports 6 orthogonal
spreading factors corresponding to 6 different data rates:
SF7 (50 kbps) to SF12 (300 bps). The different SFs are
orthogonal, allowing simultaneous transmissions of multiple
frames with different SFs. At each transmission, the node
selects the communication parameters including the spreading
factor, radio channel, and the transmitting power that varies
between 2 dBm and 14 dBm. The higher the SF (i.e., the lower



the data rate and the slower the transmission), the longer the
communication range. Consequently, the choice of an SF can
be seen as a trade-off between coverage and message duration
(and thus, energy consumption) [35].

As any IoT technology, LoRa is bonded with many
constraints, including the maximum duty cycle, which defines
a maximum percentage of time during which an end-device
can occupy a channel. Therefore, LoORaWAN nodes follow a
pseudo-random channel hopping at each transmission while
meeting the duty-cycle constraint which is 1% in EU 868 for
example. The resulting frequency diversity makes the system
more robust to interference. The choice of the spreading
factor as well as the transmitting power is done at the gateway
using the so-called Adaptive Data Rate (ADR) algorithm.
ADR compromises between energy consumption and packet
loss depending on the past performance of each end node.
It was established for stationary end nodes and stable radio
channel environments [36].

B. Adaptive Data Rate Algorithm

An Adaptive Data Rate (ADR) mechanism is built into
LoRaWAN for dynamically managing each end node’s link
parameters in order to increase the packet delivery ratio and
to decrease energy consumption. It is only suitable for static
devices and should not be applied on mobile devices since
the radio channel changes dramatically with every frame. We
hereby present a simple baseline way to implement this de-
cision mechanism recommended by Semtech [37].Its perfor-
mance has been evaluated in [38]]. This algorithm in its present
form is limited to EU868 Industrial Scientific and Medical
bands, and to 6 data rates (SF12/125kHz to SF7/125kHz). The
ADR mechanism adjusts the data rate (SF) and the transmitting
power of an end device based on the values of the Signal to
Noise Ratio (SNR) of the last 20 transmissions (i.e., for each
transmission, it considers the maximum of the various SNRs
reported by the different gateways who received this given
frame) following the steps below:

o an SNR margin is calculated such that:
SNRpargin = SNRyax — SNR(SF) — margin_db,

where:

— SNR,,.x is the maximum SNR value among the last
20 received packets,

— margin_db is the installation margin of the network
which is a device specific static parameter, It is
typically 10 dB in most networks [37],

— SNR(SF) is the required SNR to successfully de-
modulate a frame, and is a function of the SF of
the end-device’s last received frame and presented
in table [

o Ngep := round( SNRmarin/3) is calculated to determine
the number of steps to perform:

— if Nyep is negative (i.e. SNRs are low), the transmit-
ting power is incremented by 3 X N, dBm,

— if Ngep is positive (i.e. SNRs are high), SF is de-
creased by Ngep, in order to decrease the time-on-
air and save energy, if SF7 is reached and there are
still steps remaining, then the transmitting power is
decreased by 3 dBm for each remaining step until
the minimum power (2 dBm) is reached.

The end-device has also the possibility to manage its
transmit parameters itself by making use of ADR mechanism
that resides at the end-device side. If the end-device does not
receive any downlink frame from the gateway for a certain
number of sent packets, it must try to regain connectivity by
first stepping up the transmit power to default power (i.e.,
the max power 14 dBm). It must further lower its data rate
(increase the SF) step by step every predefined number of sent
packets until it reaches the lowest data rate (i.e., SF12) [3].

Notice that ADR is a heuristic and is not based on any
optimization objective: it increases and decreases SF and
transmitting power depending on the SNR values. It also
treats each device individually regardless of other devices in
the network. In this work, we contrarily aim to optimize the
global network capacity by adapting massively multi-player
multi-armed bandits for handling the trade-off between energy
consumption and packet losses. We compare the performance
of the ADR algorithm with different multi-armed bandit
algorithms using a LoRa network simulator presented below.

C. LoRa Network Simulator

For our simulations we extended a realistic LoRa network
simulator [39] and adapt it to our settings. It is described
below.

Network Operation: By default, LoRa devices use pure
ALOHA for transmissions. However, due to the need of
synchronized nodes and referring to [40] that shows that
slotted-ALOHA (where a device can only transmit data
in the start of a time slot) outperforms pure-ALOHA in
terms of packet error rate, throughput, collision, and energy
consumption, we propose that the devices transmit according
to the slotted-ALOHA protocol. Each node n transmits at
the beginning of a time slot with a fixed probability p,,. The
time slot is of a configurable duration that together with p,
respect a duty cycle of 1%. We consider devices of class A,
which after each uplink transmission open two short reception
windows in order to receive a downlink transmission from the
gateway as an acknowledgement of their uplink transmission
reception at the gateway. The devices always receive an
acknowledgement if their uplink transmission is successful. In
case of a packet loss, an end-device n retransmits its packet
in the next time slots with a probability p/, > p,, whose value
depends on the application. The maximum possible number
of retransmissions is configurable and depends on the device
(we consider 8 maximum retransmissions in the simulator).

Transmission Success and Collision Rules: The success or
failure of a transmission mainly depends on two important
metrics: the Received Signal Strength Indicator (RSSI) which



characterizes the power level of a received radio signal, and
the Signal to Noise Ratio (SNR). A packet is successfully
received by a gateway if it does not collide with any other
packets, and if its RSSI is strictly greater than the antenna
sensitivity. The antenna sensitivity depends on the SF of the
sent transmission as reported in table[l] A collision may occur
when two or more packets sent on the same radio channel are
received simultaneously. There are two types of collisions:

o Intra-SF collisions: occurs when the colliding packets
(packet a and packet b) are of the same SF. The packet
with the highest power will be decoded if it is at least 6
dB higher than the other LoRa packets: RSSI, —RSSI;, >
6 dB.

o Inter-SF collisions: occurs when the colliding packets
are of different SFs (SF, # SF;). The packet is
demodulated if the power difference is strictly greater
than the inter-SF collision threshold which depends
on the SF of the corresponding frame (see table [I):
packet "a" is demodulated if: RSSI, —RSSI;, > Thr(SF,).

Propagation Model: Propagation is modeled by the universal
Okumura-Hata model, which is an accurate and widely used
propagation model for predicting path loss in urban areas.
Adaptations to rural and suburban areas are also added as
recommended by ETSI for GSM 900 MHz [41]. This model
takes into account the effects of diffraction, reflection and
scattering caused by city structures. It is generally used
for frequency ranges of 150 MHz to 1500 MHz, for a link
distance varying from 1 km to 20 km and for antenna heights
varying from 30 m to 200 m and from 1 m to 10 m for the
transmitter and the base station antenna respectively [42].
Typical indoor penetration losses are considered (18 dB, 15
dB, 12 dB and 10 dB for dense urban, urban, suburban and
rural environments respectively) along with additional 6 dB
loss for deep indoor environments [43[], [44].

Environment Modeling: Two main environmental aspects
are modeled: shadowing and fast fading. Shadowing is the
effect causing the received signal power to fluctuate due
to objects obstructing the propagation path between the
transmitter and the receiver. The resulting loss is modeled
as a random variable following a log-normal distribution
with a standard deviation of 12 dB (resp., 6 dB) for outdoor
(resp., indoor) settings. Fast fading or Rayleigh fading is the
variation of the signal power due to multipath propagation,
and its resulting loss is modeled using a Rayleigh distribution.

D. Optimizing LoRa Communications using Massive Multi-
Player Multi-Armed Bandit

At each transmission, a node selects the corresponding
SF and TP , and then observes a reward. We have a set
of 30 arms of pairs of (SF,TP) corresponding to the 6
possible spreading factors (SF7, SF8, SF9, SF10, SF11 and
SF12) and 5 transmitting power (2 dBm, 5 dBm, 8 dBm,
11 dBm and 14 dBm). Minimizing the energy consumption
while maintaining a high packet delivery ratio (PDR) are two

incompatible objectives: as SF and TP increase PDR increases
and energy consumption increases. That is why our approach
for handling energy consumption is to introduce a parametric
function used to penalize high-energy consuming arms. We
first normalize the values of the energy consumption of each
arm with respect to the largest possible consumed energy
(the arm with the highest power and greatest SF (SF12, 14
dBm)). Let €* € (0, 1] be the value of the normalized energy
consumed on arm k. The values of e* are presented in table
M We consider the following penalty function according to
the energy consumption of arm k:

aqg(e") = (1 — aek)s. (5)

€a.q(€") is a decreasing function of the energy consumption
e*. The parameters o € [0,1) and ¢ > 1 allow to shape it,
depending on the energy consumption of arms (table [II).

TABLE II: The normalized energy consumption per arm e”,

where the colors from blue to red correspond to the values
from low to high

SF7 | SF8 SF9 | SF10 | SF11 | SF12
— 0:009° 0.016 | 0.032 | 0.063
g 5 0:009° 0.018 | 0.031 | 0.063 | 0.126
-g 8| 0.01 0.018 | 0.037 | 0.063 | 0.126 | 0.251
E’ 11{0.021| 0.037 | 0.073 | 0.125 | 0.251 | 0.501
- 14(0.042| 0.073 | 0.146 | 0.25 0.5 1

As mentioned previously, a packet is successfully received if
it does not collide with any internal or external transmissions,
and the RSSI is strictly greater than the antenna sensitivity.
To model packet delivery, we consider three random variables
for every arm k:

e EF ¢ {0,1} denotes the event ‘no external collision
occurs’ (intra-SF or inter-SF collision with an unknown
node),

e I¥ € {0,1} denotes the event ‘no internal collision
occurs for node n’(intra-SF or inter-SF collision with an
known node),

e DF €{0,1} denotes the event ‘no decoding error occurs’
(RSSI lower than the antenna sensitivity).

Consequently, the event ‘transmission is successful’ for node
n is denoted T% € {0,1}, such that:
TF = E*I*DE. (6)
To handle both energy consumption and packet delivery we
combine equations (3)) and (6) in the reward function of node
n playing arm k below:

RF(a,q) = (1 — ae®)ITh. (7

To handle packet delivery, the used propagation model
takes into account all conditions impacting it. Inter-SF or
intra-SF collisions may occur even if the transmissions are
not performed using the same parameters (SF, TP). Moreover,
the propagation model introduces a decoding error, which
depends on the topography, the position of the node, and the



TABLE III: The network configuration and input parameters

Channel Frequency 868 MHz
Bandwidth 125 kHz
Number of Gateways 1

Gateway noise figure 3dB
Gateway antenna gain 5 dBi
Indoor penetration loss 15 dB
Additional deep indoor loss 6 dB
Gateway antenna height 30 m
End-device height 1.5 m
End-device antenna gain 0 dBi
Targeted C/N after despreading 6 dB

position of the gateway. Notice that this realistic propagation
model violates two assumptions made by the theoretical
model described in section the channels are orthogonal,
and the arms are the same for all players. Moreover, the
re-transmissions are not taken into account in the utility
function (equation [2), and hence in the target policies DORG
and DOFG. Finally, we did not modify the LoRa protocol
for including an optional 8 bytes overhead for exchanging
messages between players. We simply consider the messages
between players as a regular transmissions. Despite there
is a significant gap between the theoretical model and the
true model, in the next section we will see that Massively
Multi-Player Multi-Armed Bandits is a competitive candidate
for choosing the connection parameters of LoRa transmissions
in order to minimize the energy consumption while ensuring
high reliability.

E. Experimental results

Experimental setup: For our simulations, we consider a
network operating in the LoRa European band 863 —870 MHz.
We consider only one gateway and assume all transmissions
are done on one frequency channel (868 MHz). The network
configuration and input parameters are summarized in table
We consider the worst case of a deep indoor LoRa network in
an urban city. The frame size is 11 bytes (4 bytes of payload
for the consumption index and 7 bytes Zigbee Cluster Library
application protocol overhead) [39] corresponding to a smart
metering application. We consider a set of N = 400 end nodes
where each node n has a fixed probability p,, to send a packet
at the beginning of a time slot. The distribution of the nodes is
uniformly chosen such that Vn, p, ~ U(7.107%,5.1073). We
consider the maximum number of transmissions = 8. In case
of a packet loss of any node n, it will increase its probability to
send packets to p!, = p,, X 8 in order to be able to retransmit it
before a new packet is needed to be sent. The communication
parameters of the retransmissions are chosen according to
the policy the nodes follow. In such settings, we compare
the performances of ADR algorithm [32]], selfish UCB [18]],
selfish Exp3 [45]], which is a commonly-used algorithm in non-
stochastic environments, CBAIMPB [19]], and collaborative
exploration followed by DORG or DOFG.

Due to the very slow increase of energy values near 0 and
very fast increase near 1 as shown in table [l we set the
parameters of the penalty function to a = 0.5 and ¢ = 4.
Although DORG and DOFG assume that the mean rewards of
the arms are the same for all the nodes which necessitates that
all nodes be located at the same distance from the gateway, we
consider here that the nodes are uniformly distributed in the
hexagonal cell region centered by the gateway. We consider 3
different inter-sight distances d = {500, 1000, 2000}. For each
trial, 5.10° packets are sent by the nodes. The figures present
the averaged values over 40 trials with 95% confidence inter-
vals. We perform two different experiments, each considering
different external traffics.

Experiment 1:

In the first experiment, to simulate external traffic, we
consider S = 200 static devices located in the same area,
each sends packets with a fixed probability p = 0.01. These
external nodes elect an arm k for each transmission with a
probability I¥ ~ 24(0, 1), such that Zszl I* = 1, which makes
the environment stationary. Notice however that for selfish
Exp3 or selfish UCB, which does not take into account other
nodes, the environment cannot be considered as stationary,
since the internal nodes can change arm and hence due to the
collisions the reward function evolves during time.

In figure 4] we present the average values of the total energy
consumed by the end nodes, the total number of lost packets
and the total sum of rewards gained by the end-devices. It
clearly shows that the nodes when implementing the ADR
algorithm suffer of very high energy consumption and packet
loss compared to the learning methods with any inter-site
distance. This directly leads to greater sum of rewards for
all the learning methods, and implies that MAB algorithms
guarantee better management of the trade-off between energy
consumption and packet loss, and provides a better QoS.

Despite there still being a gap between the theoretical model
and the true model, DORG and DOFG largely outperform
ADR in terms of energy consumption and packet losses and
outperform UCB by compromising energy consumption and
packet loss (see figure [d), while the latter shows to be highly
robust against collisions. We also notice that selfish UCB
outperform selfish Exp3 even though the stationary assumption
is violated.

Experiment 2:

In this experiment, we consider that the external nodes
are LoRa devices that follow the ADR mechanism. Due to
ADR mechanism, the external nodes can change an arm at
each time step. This introduces a non-stationarity even for the
collaborative algorithms DORG and DOFG: the percentage of
ADR nodes that change their arms tends to the order of 8%

(figure [5).



10°

‘
I ¢-500
[ o- 1000
[d=2000
3
c
S
a
£
g 1041 =
o
>
>
Q
[
w
108
ucB DORG DOFG CBAIMPB  Exp3 ADR
(a) Energy consumption
108 T T
I 6-500
[ ¢-1000
[1d=2000 B
@
2
g 10°) = _ ]
o — = =2
17)
[}
-
H
104 1
ucB DORG DOFG CBAIMPB  Exp3 ADR
(b) Total number of lost packets
x10%
I ¢-500 | ]
[ 01000
[1d=2000 | ]

Cumulative Rewards

uce DORG DOFG CBAIMPB

Exp3

(c) The total rewards of the network

Fig. 4: Experiment 1: Performance of the LoRa network
with end nodes distributed in hexagonal areas centered by the
gateway with three different radii and external nodes following
a fixed policy

o
N
1

= d=500
== d=1000
d=2000

o
®

o
o

o
>

o
N

o

o

o

<3
T

Average number of arm changes
o
o
()
T

o o

o o
o N S
—

5
time x10°

o
o -
w
N

Fig. 5: Average number of arm changes with respect to the
number of plays

Notice that despite the non-stationary environment, the
results are very similar to those in the previous experiment:
all MAB algorithms outperform ADR, and our developed
algorithms outperform other state-of-the-art MAB algorithms
(figure [6). This experiment reveals that if there exist some
nodes that does not follow our collaborative algorithms but
ADR, they will lose in terms of delivery rate, while consum-
ing more energy. Finally, notice that the explore-then-exploit
algorithms DORG and DOFG are more appropriate for low-
complexity devices (used in IoT networks) than classic selfish
MAB algorithms, since after the exploration phase ends no
computation takes place at the device side, while using MAB
algorithms the devices keep computing confidence bounds or
distributions to find the next arm to select.

VI. CONCLUSION

We tackled the problem of optimizing transmissions in IoT
networks. To do so, we modeled our problem as a massively
multi-player multi-armed bandit problem, and proposed two
policies DORG and DOFG that are efficient with any number of
players, and can handle internal and external collisions without
sensing. We then tested our algorithms on LoRa networks by
replacing the ADR algorithm with our developed algorithms
to manage the trade off between the energy consumption
and the packet loss by selecting the spreading factor and the
transmitting power of the transmissions. Using a LoRa simu-
lator that meets the LoRaWAN standards, we experimentally
showed that the multi-player MABs outperform the standard
ADR algorithm by managing the trade off between the energy
consumption and packet loss and achieving high reduction of
both metrics at different distances from the gateway.
Regarding future research directions, we plan to adjust
the two DORG and DOFG policies so they take into account
the different mean rewards of the arms between the players
and non-orthogonal channels, and consider the case of non-
stationary environments. Also, in this work we considered a
slotted-ALOHA transmission protocol where nodes send at the
beginning of the fixed-duration time slots. But, since the time-
on-air of packets varies (depending on the selected spreading
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factor), considering slotted-ALOHA necessitates long-duration
time slots which decreases the performance by creating more
collisions. Future works could overcome this by considering
sub-slotting: one time slot can be divided into several sub-slots
of durations that depend on the time-on-air of the transmission
(1 sub-slot for SF12, 2 sub-slots for SF11, 4 for SF10,..etc.).
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APPENDIX
A. Broader Impact

Optimizing the communications in IoT networks has a clear positive environmental impact. Indeed, when the number of
collisions decreases, obviously the amount of wasted energy also decreases. Moreover, [oT devices often work on batteries, and
minimizing the wasted energy increases the lifetime of batteries, which reduces the amount of batteries that need to be recycled.
The decrease of the number of collisions is done thanks to the cooperation between players. In this work, we develop the
concept of fairness between players, which is a necessary condition of cooperation. We believe that providing a mathematical
framework to guarantee the fairness and then to favor cooperation is a necessity in our world where more and more automatic
devices equipped with machine learning algorithms exchange information. This work is a first step in this direction.

In a real life implementation of this work, to take care about ethical consideration, we will need also to take into account
that the purposes of the devices is not the same. Some of them could have significant packets to transmit, for instance for heath
care and emergency purpose. The fairness has to be weighted by the purpose of the devices. Finally, in a real life application
the system has to be protected against malicious players that may lie about its probability of being active or about the rewards
of a channel for bypassing the fairness constraint of algorithms. We believe that this issue can be fixed by the gateway that
can check the consistency of the observed rewards and probabilities of each player’s activity.

B. Preliminary experiments

Similar to the experiments in section |lII-C| figures with N = 200 and K ranging from 4 to 256 on a log scale are available
below.
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C. Proofs

1) Notations: For the sake of ease the reading of proofs, we provide below the notations.

notation | meaning

N number of players.

[N] set of players.

Pn probability that player n sends a packet.

K number of arms.

(K] set of arms.

05 mean reward of arms k.

] model 8 = (91,.‘.,9;().

ék estimated mean reward of arms k.

[ estimated model 8 = (61, ..., ).

€ approximation term.

6 probability of failure.

nk probability that player n chooses arm k.

Tn policy of player n, m, = (7}, ..., 7X).

™ policy of players, m = (71, ..., 7).

T uniform policy.

al decreasing order fair greedy policy generated by Algorithm 2.

To optimal policy in model @, which is deterministic, when it is clear in the context, we use 7*.

e () mean reward in model @ of the policy 7, when it is clear in the context, we use pu(7).
For a stochastic policy: pg (1) = S0 8 SN ppok [T zn(1— P/
For a deterministic policy pg(7) = 25:1 APAILE

Pl probability that arm & is not used by any other players, z* = Hn’E[N],kn:k(l — Pn).

1k sum of activation odds on arm k of other players, I¥ = Zn’E[N],k‘n:k: lf—z".

kn arm assigned to player n.

w[n] policy 7 when players n’ > n do not play.

2*[n) probability that arm k is not used by any of the first n players.

1%[n] sum of activation odds of the n first players for arm k.

pl,fb(ﬂ') probability that no other players have chosen arm & using policy 7.

2) Proof of Theorem [I There exists an optimal policy which is deterministic.

Proof. We may write the global objective as:

K N N
po(m) = ok > Pk II a-pwrh) (8)
k=1 mean reward of arm k n=1 n'=1,n"#n

probability that player n chooses arm k

probability that no collision occurs

Let us assume that 7 = {7, },e[n] is optimal. Let us fix all player policies but player n’s. Then, we notice that 1 (7)
k Opg(m)

is linear (see (§)) in each m; ',k = 1,..., K, meaning that the maximum is achieved for any k; € argmaxc(g) — 5.5 » and
therefore the optimal policy may have been chosen so that 7, is deterministic: wf;* = 1 and Vk # k*, 7% = 0. The same
reasoning can be repeated for the other players, so that there exists an optimal policy that is deterministic. [

3) Proof of Lemma ‘ For a deterministic policy , let ug(m[n]) denote the aggregated expected reward when only the
players 1,...,n are playing (all players n’ > n are deactivated). Then we have the recursive expression

wo(mlnl) = po(eln — 1)) + pad (1= i) oty

where zfjl ] is the probability that arm k is not used by any of the first n players, and Efn] is the sum of activation odds of the
n first players for arm k.
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Proof. We have:

AMWmZMW[—m+M(H%WMW—m

= pe(mwln Z gkz[n] Z 0" Zn 1] [n 1]

ke[K] ke (K]
= pg(r[n — 1)) + 6%z ef — gkn Vg 9)

n 1] [n—1]

kn
i = Zn-ny - 11)

kn
“[n]
= pg(w[n —1]) (1-— oFn pn — 2k o
He pn [n 1] [n— 1] — D [n 1]%[n—1]
= pg(r[n — 1)) +pnokn . ( gkn 1])

where the line (9) comes from the fact that zfjl] = Zﬁlq] and Efn] = Efnq] for all k # k,,. O

]
= po(w[n —1]) +

4) Proof of Theorem [2}

Lemma 3. As long as (¥_, < 2, the reward-greedy criterion for Algorithm (1| decreases as we add a new player n:

sty (1= thy) < by (1= thy) - (10)
Proof. We look at the difference:

Wk £ b 2y (1= €)= 2y (1= €hiy) =0 (11)

Ay (1) — =y (1 - dy) = 0 -paefy <1 iy - 1%},”)
— by (1= gy) (12)

= =)y (1= ) —pofiy
i ( — 1]> (13)
= —purfiy (1) —parfiy (14
pazfiy (2 Gy) (15)

Since p,, and z[kn_ are always positive, we may conclude.

1
O

Theorem 2 If >, (v 125~ < K + 1, then, there exists an ordering over players o™ : [N] — [N] such that Algorithm
returns an optimal policy.

Proof. The proof makes use of Lemma [3| I which states that, as long as /% _;

decreases as we add a new player n.

We prove below that this Lemma applies for all picked arms if ZnE[N 1”—’; < K + 1. By reductio ad absurdum, we
assume that Zn €[N i - < K + 1 and that there exists some arm k and some player ordering o (not necessarily ¢*) such
that 7*(o(N)) = k and (% ((N—1)) > 2. Where 7" is an optimal policy and o([N — 1]) denotes the N — 1 first indexes in

< 2, the reward-greedy criterion for Algorithm

the o reordering. Then, there must exist an arm k' for which 60 (v=1)) < 1, otherwise we would have ZHE[N] 1{—2 >

D one[N-1] 13’;(:()”) > K + 1. It means that, for %', the reward-greedy criterion Z?([N—u) 1- éo_( N— 1])) is positive, and

therefore larger than that of k: z(’j([ N-1]) (1 - KU([ N 1])>, which is negative. As Lemma (| states that the reward-greedy

criterion is incrementally optimal, it means that &’ would have been a strictly better arm for player o(NN), which contradicts
the assumption that 7* is optimal.

Let an optimal policy 7* be given, and let us construct the player ordering ¢* such that Algorithm |1} applied on the o*
ordering returns 7*.

It is direct to understand that Algorithm [T applied on a o* player ordering would retrieve 7*. Indeed, Algorithm [4] makes it
so the players are ordered to be incrementally optimal. The last piece of the proof is to check the existence of a player o*(n)
assigned to a reward-greedy arm on line 2.
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Algorithm 4 Reconstruction of a player ordering that allows Algorithm [I] to return 7*
Inputs: [K], [NV], {Hk}ke[K]’ {pn}nG[N]’ T
Output: o* such that Algorithm [T| returns 7*
Init: per-arm inactivity probabilities: z* = 1.
Init: per-arm activation odds sums: ¢¥ = 0.
Init: Set of players remaining to be assigned: N = [N].
1: forn=1to N do
2. Let 0*(n) be an element of A such that 7*(c*(n)) € arg maxye(x) 072% (1 — £%).
3 Update N« N — {o*(n)}.
4 Update 2" < 2" (1 = pye(ny).
5. Update ¢Fr < (Fn + %.
6: end for o

Again by reductio ad absurdum, we assume that there is no remaining player that 7* assigned to a reward-greedy arm k*.
Then, it means that until the last selection, this arm will not be picked and another arm % will be picked instead. We showed
at the beginning of the proof that the reward-greedy criterion is only decreasing as the arms are being selected, and that the
reward-greedy criterion of an arm not being selected, such as k*, is constant. So it means that 7*(¢c*(N)) should be k*, hence,
the contradiction.

We may therefore conclude the proof by stating that Algorithm 4 will never fail to construct o* and that Algorithm [T] applied
to the o* player ordering will return 7*. O

5) Proof of Theorem 3} DOFG generates o-fair policies, with

a > 1— max p,. (16)
n€[N]

Proof. Let ! be the policy generated by DOFG. For every arm, we have the following equality:

@Fn kn
po(r) =0 [ A=pu)=7—— {17)
n'#n, st k1 =kn Pn

We prove now that min,e [y fin,0(7") = pin,6(7"). We proceed by induction. The base case is direct for N = 1. Now, we
prove the induction step by assuming that it is true for N and prove it for N + 1. We have to distinguish two cases whether
kn equals kx1 or not.

Case ky = kn41, then from Equation (17} we have pni1.0 (nt) = 11_;1’]\]11;11\;”9 (n). Since we know by construction that

pN+1 < pn, we may conclude that px1.6(7!) < pune(nh).

Case ky < kn.1, then stating that un41,0(7") > pn.e(7") would imply that ky was not optimally selecting the arm at
the previous step, which brings a contradiction.

Let us assume without loss of generality that player N has been assigned to arm K. Since W]TV has been chosen so that to
maximize 6%2F at iteration N, it means that:

in i, e(rh) = B> ok *. 18
nnel[%u,,e(ﬂ) NN,O(W)_’?El?;((] z (18)

We also know that:

() o (19)
max [, e(7m') = max
ne[N]'u -9 ne[N] 1 —pp,
maXe(x) Ok 2k 20)
~ 1 —max,¢[n) Pn
1
< min g, o(7), 21
S T py atfhy o) @D
which concludes the demonstration. O

6) Proof of Lemma [2} By using Algorithm [3] in order to obtain with a probability 1 — ¢ an e-approximation of the mean
rewards of arms, player n needs to sample each arm at least

. pn log (2K/0)

ty, = i times.
262(Hn/¢N(1 —pn /K))? 31 pi
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Proof. Due to equations [I] and 4] for a given probability of failure § € [0, 1], and a given approximation factor €, Vn € [N,
Vk € [K] we have:

, ) A )

P(lu* = fim] > €) < 2z = P(I0" =05 > €}) < 2, (22)
where e;L. = E'Hn’%n(l —.pnr/I.().
Applying Hoeffding’s inequality:

P(|6F — 05| > €,) < 2¢72neh”. (23)

Therefore for obtaining an e-approximation of arm k on player n with a probability 1 — %:
> 10g(2./f2(/6) — > i log(2K/0) > o= i log(2K/9) i
2er; 262 (I (1 = por / K)) 2¢([ Lz (1 = P/ K))

Now, as Algorithm [3| shares the estimations of the IV players for finding e-approximation of arm k with high probability,
we need ij:l t* =t' samples.
Pn log(2K/9)

22T (1= e /[ K))2 S0

Hence, if each player samples arm % at least ¢} > [ ] times, an e-approximation of arm

6 is obtained with a probability 1 — 2.
O

7) Proof of Theorem [}

Lemma 4. In Algorithm |3| so that player n sends successfully m messages, with a probability 1 — § player n needs to issue
a number of transmissions C(m), which is at most:

logm/d .
m a N1 — + 1| transmissions.
— D1
1 1-F = TV gk
0g < D k=1 K >
Proof. Let C(1) be the random variable corresponding to the number of transmissions of player n to send a message. C(1)
follows a geometric distribution with a probability of success p = p,(m,) = 2(:1 pn(ﬂu)@’“, and probability of failure

K
q =1 — p. Let F' be the number of failures before the success. We have:

P(CL)<F+1)=1-¢"=1-4,
log o
log ¢

Assuming that p1 > pa,...,pn—1 = pn, We get pn () =[], 2, (1 —pnr/K) < (1 —p1/K)N~1. Consequently, for sending
m messages, with a probability 1 — § any player needs at most :

—r=|

log §
C(m)<m Oégl /m TK)N 1 +1
D i
O
Theorem [d] When Algorithm [3] stops, the number of messages sent is, with probability 1 — 8, less than C(N(1 + 2K)),
where
1 5
Cm) = m cerm) )
log (1 - 224, (=0 gr)

Proof. The required number of messages to send during Algorithm [3[is at most V(14 2K). Using Lemma E} the total number
of transmissions done by all players to send successfully their messages is with probability 1 — 9:

log§/(N(1+2K))

log(1 — Zile %gk)

C(N(1+2K)) < N(1+2K)

+1 24)



23

8) Proof of Theorem b} With a probability at least 1 — 0, when N > 3, Algorithm 3| stops while finding the e-approximations
of 6 at:

. K log (NK/6) K K2 NKE (K\*? [c(3), NK KC(3)
t" < ~ I+ o— |tz log—+ | — log + ,
2¢2((1 = p1/K))2N=237 0 pi 2pN 2(pn) d DN 2 o PN

where py is the lowest probability of sending a packet among the players, and C(3) is the needed number of transmissions
to successfully send 3 messages.

Proof. A player n stops, while finding its estimations with high probability, when it plays each arm k at least ¢}, times (Lemma
. Let t* be the number of plays of arm k by player n before the algorithm stops at time ¢* with high probability. ¥ is a
binomial random variable with parameters ¢* and p,, /K. Then we have:

E[tF] = 2.t (25)

The estimation does not terminate if this event occurs: E = {3n € [N], 3k € [K],tk <X + C(3)}.
Applying Hoeffding’s inequality we get:

_ P 2 _ 0

,P(tﬁ K 1< —€) <exp = ——. 26)

Hence, when E does not occur = Vn we have with probability at most §:

N [t NK

Dn t* NK

. —log — +t* 2
& Kt + 5 og 5 +t +C(3) <0, (28)

K 1. NK 1. NK p,
SVt > — = log — —log — + 4= (tx 29
>2pn <\/2 g — + 5 log —5 + K(”“LC(?’)))’ (29)

2

K? \/1 NK 1. NK pn
Sttt > — ~log — “log — + 42 (t* + C(3 30
t>4(pn)2< 20g5+ 20g5+K(n+())), (30)

Then, when E does not occur and hence the estimation terminates, we have Vn with probability at least 1 — J:

< 4{:)2 <\/; log]\;—K—&- ;103;]\;[(4-4];;(15;—#0(3)))2, 31
ot < 4(};5)2 log N(SK L K ;nC(B)) N 2(1;2)2 \/; log N(SK\/; log ¥ + 4215+ C(3)), (32)
=t < 4([:)2 log N(;K Kl ;0(3)) + 455)2 log N(SK + Ii\/an(t;; +0(3))log NTK (33)
=t < K <t;§ +C3)+ \/QK(t; +C(3))log N6K> + 2(}:)2 log NéK. (34)

n
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Then using Lemma [2] the following inequality holds with a probability at least 1 — §:

K log (2K K nlog (2K NK
oK Palog@K/D) oy, | K ( polog@K/) C(3)> log -
Pn 262(Hn’76N(1 —pw /K))? Y i1 pi 2pn \ 2¢ (Hn’;éN(l —pw [K))? i pi
(35)
L K NK
2pn)? 0
K nlog (NK/6 K nlog (NK/§ K
P\ 262([ Lyron (1 = pnr /)2 32000 i \/ 2pn 262(I Ly zn (1 = pur /K))2 3252 i 2pn
(36)
L K ONK
2p)? ° T8
Klog (NK K K? NK ([ K\*? NK K
P < og (NK/9) _ N log N () C(3) log N C(3) (37)
2¢2((1 —p1/K))2N-2 "N p; 2pn ) 2(pwN) g PN 2 J PN
where py and p; are respectively the lowest and the greatest probability of sending a packet among the players.
O

9) Proof of Theorem [6}

Lemma 5. The expected instantaneous regret in the model @ of the target policy 7'(; using the estimated model 0 with respect
to the optimal policy m}, using the true model 0 is upper bounded by:

to(mg) — po(my) < 2Ke, (38)
where g () denotes the mean reward of the policy m in the model 6.
Proof.
po(mg) — po(mg) = po(m") — pg(m") + pg(7") — pg(mg) + pg(my) — pe(my) (39)
Then, we have:
o po(m*) — pg(m*) = Zszl ZFIkgh — Zle ZFIkOk < Ke, A
(772) < 0, since 7% is the best policy in the model 6.
5) = Yoy 2FIRGR — 3L ARIROF < Ke

[
T X
> O

3

O

Theorem @ When N > 3, and ¥'n € [N],p, = p, the pseudo-regret with respect to the target policy 7 of Algorithm 3
followed by a policy wg is upper bounded by:

T%/310g NKT
PR = p/K)PN 2N

R(T) <O ( + K9/4T2/3) .

Proof. Let T be the time horizon, 7, be the uniform policy used in Algorithm 3, which outputs an e-approximation with high
probability of €, and 7 be the optimal policy. Let t* be stopping time of the exploration phase. Then, the pseudo-regret with
respect to a target policy 7, of Algorithm 3 is expressed as:

R(T) = t"((no(mg) — (no(mu)) + (T — %) (1o (mg) — 1o (7p)), (40)

where Lig (wg) denotes the mean reward in the model 6 of the optimal policy using the estimated model 6. The left term of
equation [40]is the instantaneous pseudo-regret of the exploration policy m, and the right term is the instantaneous pseudo-regret
of the estimated optimal policy w;.

Theorem [3] allows us to upper-bound the stopping time of Algorithm 3 with ¢* on an event of high probability 1 — 0:

2 3/2
< Klog (NK/9) _ oK) i og VE | (K> CB) g NE | KCB) ),
2¢2((1 _pl/}())QN_2 Zizl Di 2pN 2(pN) d PN 2 ) PN
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When Vn € [N], p, = p, with a probability 1 — §, we have:

Klog (NK/5) K\ K* NK (K\*? [C(3). NK KC(®3)
* < T4y = +—=log— + [ — 1 . 42
t ~2e2(1 —p/K)?N-2Np * 2p * 2p? %875 + P 9 %75 + P (42)

The instantaneous pseudo-regret of uniform policy with respect to the optimal policy 7 is upper bounded by:
po(mg) — po(mu) < K
and on the other hand we know by Lemma [5] that:
po(my) — pe(my) < 2Ke 43)

Then the pseudo-regret is controlled by the trivial upper bound K7T' on the complementary event of probability less than J:

R(T) < t"(po(mg) — po(mu)) + (T — ") (116 (mg) — po(mp)) + 0KT (44)
(45)

Then, by setting § = 1/7, the pseudo-regret of Algorithm |3 followed by a policy wg is:

R(T) < Kt* + (T — t*) x 2Ke + K, (46)
< Kt"+2KeT + K, (47)
K5%21og NKT K?
<O<p3/262(1p/K)2N2N+2p210gNKT+KT6>' (48)
Finally, by setting ¢ = K°/*/{/T, we conclude the proof:
T?/3log NKT 9/4rm2/3
R(T) <O p3/2(1—p/K)2N_2N+K T : (49)
O

10) Proof of Theorem [71 There exists a model @ = {0',...,0%} and a distribution of players p1,...,pn such that the
pseudo-regret with respect to the deterministic optimal policy my of any exploration algorithm that outputs an e-approximation
of each arm 0% with probability at least 1 — 1T and which is followed by the optimal policy using the estimated model is at
least:

logT
T)>Q(T?3==).
(1)

Proof. In the following we show that a lower bound holds for a class of models 6 and distribution of players p1,...,pn-.
Without loss of generality, we assume in the following that:
o 01 >0% .. K1 > 9K,
* D1 2 P2;-,PN-1 2 PN-
a) Choice of a class of problems.: The most difficult point for evaluating a regret lower bound is that in the general case,
the optimal policy, which maximizes the mean reward (see equation (3)), is unknown. For handling this point we choose a

particular class of problems, where N = K + 1. Then, we assume that the distribution of players and the mean rewards of
arms are such that:

Vke[K—1] 0% =014+

P1 > P2 = ... =PK > PK+1,
p1(1 = pry1) + Pr+1(1 — p1) = p2, (50
p2(1 — pry1) + pry1(1 — p2) > pe,

ke [K] 55 < 0.
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€

b) The optimal policy.: When o < 6% (equation (50)), superposing players on any arm provides less reward than
spreading players on the arms. Indeed, let A, be the gap between the mean reward of two players ki, ko, k1 < ko < K
assigned on different arms, and the mean reward of two players assigned on the same arm:

AS = pk19k1 + pk29k2 - pklekl (]- - ka) - pkzekl (1 - pkl)? (51)
= pr, (02 — 0™) + 2py,, i, 0°, (52)
= —Pky€ + 2Dk, P, 0°' > 0. (53)

Let A; 5 be the difference between the mean reward of policy that assigns player K + 1 on arm 1 and the one that assigns
it on arm 2.

Aro=(p1(1 = pri1) + prer1(l —p1))0" +p26? — p10' — (p2(1 — pres1) + presa (1 — p2))6? (54)
= p20' — p10" + p260® — (p2(1 — prt1) + Pr+1(1 — p2))f> <0 (55)

Now let Ay j be the difference between the mean reward of policy that assigns player K + 1 on arm 2 and the one that
assigns it on arm k > 2.

Aok = (p2(1 = pres1) + prs1(1 = p2))0? + p26* — pa® — (p2(1 — pret1) + Pres1 (1 — p2))o* (56)
= (p2(1 = prr1) + pr+1(1 = p2))(6% = 6%) — p2(6% — 6%) > 0 (57)

Hence, when equation (50) holds, the optimal assignment of players over arms is:
W; - (p1, 01)3 (anpK+17 92)7 ) (pK—h erl)’ (pK> QK) (58)

c) The optimal exploration policy.: As an e-approximation of each arm is needed to compute the optimal policy. The
optimal exploration policy plays each arm the same expected (with respect to the distribution of players p) number of times.
When equation (50) holds, any optimal exploration policy belongs to the following set:

g € {m € [K],vn € [K]\ {1}, k € [K]\ {m} : (pn,0"), (b1, P41, 60™)}. (59)

Hence any other assignment of players over arms generates more collisions.

d) Pseudo-regret decomposition.: Let T' be the time horizon. Let 77 be the optimal (in term of sample complexity)
exploration policy that outputs an e-approximation with high probability of 0, i.e. each arm 6%, and 7}, be the optimal policy.
We consider the time t*, where the optimal exploration algorithm 7%, outputs exactly an e-approximation of model 6. Then,
the pseudo-regret with respect to the deterministic policy mp is expressed as:

R(T) = t*(po(mg) — po(rp)) + (T — t*)(ne(mg) — po(my)), (60)

where ,ug(ﬂ;) denotes the mean reward in the model 6 of the optimal policy using the estimated model 6.

e) Lower bound of the right term.: The right term equation (60) is the instantaneous regret of the estimated optimal
policy W;. For stating a lower bound on this term, we lower bound it by the minimal gap between the optimal policy and the
estimated optimal policy when a mistake in the ranking of two arms is done. As the probability of making a mistake in the
estimation the model 6 is not null, it exists ¢ € (0,6) such that:

pe(mg) —po(ry) >c  min  (ue(mg) — po(ry)) - 61)
ke[K],0k+1 >0k

The minimal gap, between the mean reward of the optimal policy (see equation (38)) and a policy where an arm is not well
ranked, is obtained when the ranks of arms 2 and 3 are inverted.

min  (pe(mp) — po(7s)) > (p2(l — pry1) + pr1(l — p2))0° + pot®
ke[K],0k+1 >0k

— p20? — (p2(1 — pry1 + pry1(1 — p2))6°
(62)

Hence we have:
e (mg) — pe(my) > cpe, where cp > 0. (63)
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f) Lower bound of the left term.: The left term of equation (60) is the instantaneous regret of the optimal exploration
policy 7%. The optimal exploration policy cannot be the optimal policy since estimating e-approximations of arms necessitates
to play the same expected number of times the arms, and hence assigning p; and px 1 on the same arm, which is not optimal.
There are three possibilities:

e p1 and pg 1 are on arm 1:

pe(mg) — po(rg) > P191 + (p2(1 = pr41) +Pr41(1 —p2))92
— (P1(L = pr41) + Prs1(l —p1))0" — pat?,

e p1 and pg 11 are on arm m € [K]\ {1,2}:

po(mp) — po(my) = p10' + pmb™ + (p2(1 — pr41) + pr41(1 — p2))d?
— 20 — (p1(1 = pres1) + pre1(l — p1))0™ — pa6?,

e p; and px 1 are on arm 2:

to(my) — pe(my) = p10' + (p2(1 — prs1) + pr41(1 — p2))6”
—p20' — (p1(1 — prs1) + pr1(1 — p1))6°.

Hence we have:

pe(mg) — po(Tg) > cop, (64)

where cg,p, > 0 is a constant depending on the problem parameters € and p1,...,pn.

g) Lower bound of the regret.: Now, injecting the lower bound of pg(7j) — pe(7};) (equation (64)) and the lower bound
of pg(mg) — pe(my) (equation (63)) in the pseudo-regret decomposition (equation (60)), we obtain:

R(T) > tcop + (T — t¥)cpe, (65)
>t cop + TeAp —tcpe. (66)

The lower bound of number of samples for finding a bias ¢ of a coin is 2 (1 /e?log1/ 6) [23]. At each time step, a maximum
of N players are sampled. Hence, the time t* where 7% finds exactly an e-approximation of each arm 6 is at least:

K 1 X K 1
0 (e lon) 30> 0" = crpg o . (©7
We have:
K 1 K 1
R(T) Z 01007PN7€2 10g g + TCpE — ClCPGm log 5 (68)

Finally setting 6 = 1/7" and ¢ = /K /</T, obtain:

log T K1/2
EBIRT)] > Q (1?3285 L1238 - 2 plisiaer). (69)
N N
Hence, we have:
log T
E[R(T)] > Q <T2/ 301%]) . (70)
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11) Proof of Theorem ' Applying Algorithm IZ| on a model estimate 0 returns with a probability 1 — § an a-fair policy in
the true model 0:

2160 — 6
azl—maxpn—n—gjfok 71
née[N] maX,c|n] —
Proof. Theorem [3| states that the policy returned by Algorithm [2| denoted as 7' has the following fairness guarantees:
i (T
min,, .o (T
&= €V A ’9( ) > 1 — max p,, (72)

maX,e(N] f, 6(7) ne[N]

with 41, é(’]TT) denoting the expectation of rewards received by player n in estimated model 6 when following policy 7f. We
may write it as follows:

ty — gn Ok 2k
f,,6(m") =0 I a-p=7— (73)
n', stk =kn Pn
We therefore get:
i T
min,, n.o(m
o = DiBineln oo T) (74)
maxy, (N Hn,o (1)
. kn ykn
mlnne[N] T—p,,
= —ekn’;kn (75)
maxne[N] T—p,
. gkn yhn -
min,, — 1|0 — 0|0 kn
> €[N] éll:p: | A” since i <1,vn (76)
maxne(N] g 1+ [0 = Ol ~Pn
. 20— 6. o
maxpe(n] T2 + 110 — 0|
210 — 6|
Zl—maxpn—H—JLk (78)
e g

Now, Theorem [3] states that with a probability 1 — ¢ Algorithm [3] stops while finding e-approximations of model . Finally,
we get:

2[16 — ]|
(0kn —€)zkn
1=pn

a>1— max p, —

(79)
n€e[N]

max,e[N]

O
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