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(a) PL (SQF = 67) (b) RVO (SQF = 84) (c) PL and RVO (SQF = 92)

Figure 1: Simulation of two agent flows crossing at 90º using three different motion strategies, and their respective score SQF according to a
quality function. (a) Agents are steered using the Power Law model (PL, blue). Note that some agents are dragged along a diagonal towards
the up-right direction, hence deviating them from their goal. (b) Trajectories are generated using the Reciprocal Velocity Obstacles (RVO,
orange). Note that, in this case, characters tend to move apart too much from each other. (c) Using our approach, characters dynamically
switch motion policy depending on their local context, hence overcoming the motion artifacts displayed in (a) and (b). In this example,
characters use the PL model, but switch to RVO in the 90º crossing context. The agents’ color encodes their current policy. Our dynamic
adaptation results in an increase of the overall quality score, SQF .

Abstract
Simulating crowds requires controlling a very large number of trajectories of characters and is usually performed using crowd
steering algorithms. The question of choosing the right algorithm with the right parameter values is of crucial importance
given the large impact on the quality of results. In this paper, we study the performance of a number of steering policies (i.e.,
simulation algorithm and its parameters) in a variety of contexts, resorting to an existing quality function able to automatically
evaluate simulation results. This analysis allows us to map contexts to the performance of steering policies. Based on this
mapping, we demonstrate that distributing the best performing policies among characters improves the resulting simulations.
Furthermore, we also propose a solution to dynamically adjust the policies, for each agent independently and while the
simulation is running, based on the local context each agent is currently in. We demonstrate significant improvements of
simulation results compared to previous work that would optimize parameters once for the whole simulation, or pick an
optimized, but unique and static, policy for a given global simulation context.

CCS Concepts
• Computing methodologies → Simulation evaluation; Motion path planning; Agent / discrete models; Multi-agent systems;

1. Introduction

Crowd simulators are useful to populate large environments with
autonomous characters, e.g., to create lively and plausible scenes.
It has long been established that the simulation algorithms and their
parameters have a direct impact on the resulting quality of anima-

tions. Extensive research has shown that each algorithm performs
well in a limited range of scenarios, e.g., some perform better in
high density cases than others. It is also known that using appro-
priate parameter values for a specific scenario can improve per-
formance. Nevertheless, as the number of published steering algo-
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rithms and techniques continues to increase, so does the difficulty
of comparing their performances. This difficulty gave rise to a num-
ber of works exploring the questions of evaluating scenario cov-
erage [KBS∗16], setting simulation parameters [WJGO∗14] and
picking the best performing algorithm [KSHG18]. Previous work,
though, generally considered scenarios in a global manner (e.g.,
an evacuation, a narrow corridor, or a complex pedestrian cross-
ing) and usually propose a unique technique for setting up a sim-
ulation (e.g., an algorithm and parameter values to best simulate a
scenario). However, the question of mixing multiple steering algo-
rithms and of dynamically adjusting parameters during simulation
has been quite unexplored.

The goal of this study is to determine the benefit of dynami-
cally adjusting characters’ steering policy (i.e., specific algorithm
with specific parameter values) so that characters adapt their mo-
tion to a region of a scenario that we call context. We consider a
simple abstract context definition, based on local density and the
flow direction (in a uniform region of the scenario). An example
of a changing abstract context could be being part of a dense flow
of people crossing another flow. Initially, we study the quality per-
formance of various steering algorithms on a diverse sample of the
context space. To measure this, we evaluate the simulated trajecto-
ries with a quality metric [CDMH∗21]. We demonstrate that quality
is further increased when characters periodically estimate their per-
agent local context and adapt their policy (i.e., their behaviour) to
their surroundings.

Our contributions are the following ones:

• We propose the definition of a local context for crowd simulation
agents based on density and main directions of local flows.
• We demonstrate that this context definition is enough to discrim-

inate the performance of various steering policies.
• We compute and provide a mapping from context to best per-

forming steering policy.
• We propose a mechanism to switch between different policies,

and demonstrate the benefit of using multiple policies in a single
simulation.

The remaining of our paper is organized as follows: Section 2
gives an overview of crowd steering algorithms, trajectory evalu-
ation techniques, and related topics. Then, Section 3 lays out the
theoretical basis for this work and introduces some concepts that
will be used throughout the paper. Section 4 is concerned with the
methodology used for this study. The findings of the research are
presented in Section 5, where the quantitative and qualitative results
are described and compared, and Section 6 discusses the results and
highlights some of their implications. We also analyse the trade-off
between quality improvement and computational overhead due to
context adaptation. Finally, some recommendations for future work
and suggestions can be read in Section 7.

2. State of the art

This paper proposes novel ways in which traditional crowd steer-
ing algorithms can be used to improve the resulting simulations. We
discuss here a number of relevant previous works related to tradi-
tional steering algorithms, the evaluation of trajectories created by

such algorithms, how this information can be used to refine crowd
simulations, etc.

2.1. Steering algorithms

The crowd simulation research field is concerned with under-
standing, predicting and reproducing the motion of real human
crowds. Crowd simulators are based on several classes of algo-
rithms which are designed to generate realistic trajectories of nu-
merous moving characters. Various approaches to this problem
have been proposed. Macroscopic approaches consider crowds
as a whole, modeling it as a single continuous moving mat-
ter [Hug03, TCP06]. Microscopic crowd simulation algorithms set
the principles by which agents move individually and global crowd
motion effects are expected to emerge from the interactions be-
tween agents. In Reynold’s [Rey87] seminal work each boid fol-
lowed the mean velocity field generated by neighbours. The num-
ber of categories of simulation algorithms rapidly grew with force-
based models [HM95, KSG14], velocity-based models [PPD07,
vMM08, KHBO09], vision-based models [OPOD10, DMCN∗17],
or data-driven models [LCL07, CC14]. These are few examples of
a large body of literature.

Existing state-of-the-art steering algorithms are difficult to test
and compare due to their very different strategies and implemen-
tations. To propose a standardisation for such algorithms, the au-
thors of [vTGG∗20] propose a holistic interpretation by transform-
ing them into parametric cost functions in velocity space. The be-
haviours obtained with the algorithms in velocity space are very
close to those obtained with the original algorithms. In this paper,
the steering algorithms use the implementation in [vTGG∗20].

There is a growing body of literature that recognises the dif-
ferent performance of steering algorithms in different scenarios
[vTP21, YLG∗20]. Numerous studies try to find the best param-
eters for existing steering algorithms, often comparing the results
using data-based performance metrics [GVDBL∗12]. The objective
of these works is to aid the selection of policies in order to improve
the trajectories resulting from simulation. Some authors have even
proposed strategies to profit from two steering strategies. For in-
stance, van Toll et al. [vTBSP20] combine agent-based (the Social
Forces model) and particle-based approaches (Smoothed Hydrody-
namic Particles) through abstraction layers in order to improve the
behaviour in high density scenarios.

2.2. Quality metrics

Crowd simulations result in large sets of individual animation tra-
jectories. Their quality depends on a number of rules by which
agents move (simulation models), as well as parameter values to
control the simulation. They are not intuitive nor easy to tune and
often depend on the scenario to be simulated. Our objective is
to propose a method to evaluate these simulation results, regard-
less of the method by which they are generated. We can distin-
guish various approaches to the evaluation of crowd simulations.
A group of approaches uses paths of real crowds, and evaluate the
ability of simulators to reproduce them. The question of compar-
ison metrics is central, and several solutions have been proposed
[GVDBL∗12, WJGO∗14, CKGC14]: these metrics consider crowd
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movement at different scales and take into account the variability
of behaviors. However, there are drawbacks associated with the use
of reference data, e.g., the ability of steering algorithms to repli-
cate some patterns existing in real trajectory data and the limited
amount of pedestrian trajectories available, which can lead to over-
fitted results.

Research on policy selection (per-scenario or per-character)
has been mostly restricted to limited comparisons between syn-
thetic trajectories and real data. A broader perspective has been
adopted by some authors that, instead of focusing on agent tra-
jectories, measure crowd motion characteristics such as the ra-
tio between the density and the average speed in different cul-
tures [JARLP12, CSC09, KWS∗11]. In this work, we use the per-
ceptually validated quality function proposed in [CDMH∗21] to
evaluate the simulation results. This metric abstracts from real data
by studying the distribution of a number of motion features and
then penalising character motions deviating from what is found to
be expected in real human pedestrian trajectories. By using the pro-
posed quality function we remove the need of directly relying in
real data to evaluate synthetic trajectories and we can evaluate pre-
viously unseen interaction types, always in the scope of ambient
crowds (groups of pedestrians that do not show any specific be-
haviour other than walking to their goal and avoidance maneuvers).
The benefit of this approach is that no real trajectory data needs to
be gathered in order to evaluate synthetic trajectories and the sim-
ulated trajectories do not need to resemble the ones found in the
original data-sets. Moreover, this metric takes into account differ-
ent characteristics of character motion that, once combined, lead to
a demonstrated correlation between the metric and non-expert per-
ception of trajectory quality, unlike, to the best of our knowledge,
other existing metrics.

2.3. Policy assignment

Closest to our approach is the work of Kapadia et al. [KSHG18],
which compares the performance of steering algorithms (using de-
fault parameters) in terms of distance-to-real-data in different sce-
narios. They compute how closely each steering algorithm is able to
replicate the real trajectory of that character. This gives an insight of
which algorithm (out of 6) works best in a type of scenario, e.g., a
medium density area when entering a bottleneck corridor. The main
difference with our approach is that they pick the best steering al-
gorithm for a previously unseen scenario by studying the initial po-
sitions of characters and predicting what type of scenario it is – out
of the data sets they use – and then selecting the steering algorithm
with higher likely accuracy. Instead, we identify the context of each
character at each time step and pick the optimal steering algorithm
for the context, obtaining better quality simulations. To evaluate
trajectories, the authors of [KSHG18] propose a simulation accu-
racy metric, based on the Entropy metric by [GVDBL∗12], that
measures the ability of a steering algorithm to create a trajectory
similar to that found in real data. Instead, we rely on the metric pro-
posed by Cabrero-Daniel et al. [CDMH∗21] that abstracts from real
data. Moreover, the characterisation of characters’ contexts, a key
point in this work, is different from that of [KSHG18]. Its authors
derive a compact and continuous representation of pedestrian in-
teractions directly from data based on per-agent minimal predicted

distances (MPD). Instead, we model the context as the description
of the dynamics in a neighbourhood of the agent, at each time, and
we expect to cover a wide variety of different local interactions.

3. Overview

The objective of this work is to propose and compare a number
of crowd simulation strategies, including a dynamic adaptation of
characters’ policy to their local context. We propose a policy adap-
tation technique to improve the overall quality of crowd trajectories
simulated with traditional steering algorithms. Through the rest of
this paper, we discuss and prove how the quality of simulations can
be improved by increasing the adaptability of the characters to their
surrounding environment.

We demonstrate the usefulness of our approach in the scope of
ambient crowds, which are defined as groups of pedestrians that do
not show any specific behaviour such as, e.g., queuing. The charac-
ters which compose the crowd are both homogeneous in the sense
that the crowd is composed of similar-sized adults, and heteroge-
neous because each agent has its own attributes and objectives.
Other types of contexts, for specific scenarios or applications, could
be defined and evaluated in a similar way, and is further discussed
in Section 6.

In this work, we analyse the performance of different navigation
strategies using an existing quality metric, QF by [CDMH∗21],
that evaluates the quality of trajectories (orange boxes in Figure 2).
Then, we propose an “abstract” context recogniser which allows
agents to adapt their navigation strategy depending on their local
context (blue loop in Figure 2).

With all this information, we evaluate the relative performance
of four crowd simulation strategies: (i) all characters in the crowd
sharing the steering policy (baseline); (ii) optimising the steering
policy for each character (to maximize the simulation quality);
(iii) dynamically adjusting the policy of each character to its cur-
rent context; and (iv) assigning policies, also according to context,
following a probability distribution.

Figure 2: Overview figure for context to policy mapping (orange),
policy distribution among characters, and the context-adaptation
loop (blue).

4. Learning context-specific policies

The following part of this paper describes in detail the creation a
context-to-model map through the evaluation of the resulting tra-
jectories. The analysis is made by studying the quality performance
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of steering algorithms in a variety of contexts (orange boxes in Fig-
ure 2). Section 4.1 presents the concept of context and details which
types of contexts will be used in the paper. A number of steering
algorithms is evaluated in each context of Figure 3. The experimen-
tal setup for this analysis is then presented in Section 4.2, together
with the results.

4.1. Contexts

Evidence from several studies suggests that the performance of dif-
ferent steering algorithms varies depending on the type of simula-
tion they are used for. Crowds can be simulated in a variety of 2D
scenarios, the latter being defined as a set of N agents together with
their initial positions and internal properties (e.g., comfort speed,
maximum acceleration, goal direction, radius, etc.). These scenar-
ios can be arbitrarily complex and include a wide range of charac-
ter interactions such as crossings, bottlenecks, etc. Within a given
scenario, different zones can exhibit different interaction features
at different points in time. Therefore, we could potentially identify
several different contexts within the same scenario at a given simu-
lation step. We define contexts as uniform spatial regions to which
we associate a characterization of its trajectories based on the local
density and the directions of the main flows of neighbouring agents.

To evaluate the performance of different algorithms in different
contexts, we discretize the continuous context space into a repre-
sentative subset of common pedestrian interactions. To this end, we
consider three classes of contexts: (i) crossing of two unidirectional
flows (F) of agents; (ii) crossing of two bidirectional flows (BF) of
agents, where each bidirectional flow contains agents going along
the flow in opposite directions; (iii) and unstructured contexts (FN).
The crossing contexts are characterized by a bearing angle, which
measures the angle at which the two flows cross each other. In order
to cover a variety of interaction types, we have defined a total of 6
bearing angles for unidirectional flows crossing (ranging from 0 to
170°), and 4 bearing angles for bidirectional flows crossing (rang-
ing from 0 to 90°). Moreover, we consider three levels of density of
agents (low, medium and high: 0.5, 1 and 2 p/m2, respectively) for
each context, making a total of 33 representative contexts (11 per
density level). The contexts for each level are shown in Figure 3.

4.2. Context to policy performance map

This section discusses the performance of the navigation policies
(i.e., a steering algorithm and its parameters) in each of the 33 dif-
ferent contexts considered in this work.

We decided to evaluate the performance of the following set of
representative crowd simulation algorithms for all the contexts de-
fined in the previous section. Each of these algorithms (in ascend-
ing order of computational complexity) is implemented in velocity
space [vTGG∗20], and will be tuned for each context based on the
procedure described in the next section:

• Universal Power Law (PL) [KSG14]
• Optimal Reciprocal Collision Avoidance (ORCA) [vdBGLM11]
• TtcaDca (TTCA), based on the vision-based algorithm

by [DMCN∗17]
• Social Forces (SF) [HM95]

• Moussaid (Mou) [MHT11]
• PLEdestrians (PLE) [GCC∗10]
• Reciprocal Velocity Obstacles (RVO) [vMM08]
• Karamouzas (Kar) [KO11]
• Paris (Par) [PPD07]

The best parameter setting for each of the considered steer-
ing algorithms and for each context is found by maximizing the
quality function QF through the iterative process described in
[CDMH∗21]. During this optimization process, the algorithm pa-
rameters are not constrained, meaning that we compare algorithms
at the “best of their abilities”. The performance of each algorithm
in each is stored and represented as “score maps” which are sum-
marised in Table 1. This map only needs to be computed once and
can easily be updated to introduce new steering algorithms. The
appropriate parameter values for each policy and context are pre-
sented in the Supplementary Material.

In order to learn the parameters for each algorithm, we simu-
lated crowds in toric worlds: finite planes where the movement is
“wrapped around” i.e. if a character leaves the plane on one side,
it appears on the other (and interactions in boundary areas are con-
trolled). We use toric worlds in order to simulate continuous flows
and uniform density crowds. In this work, we use 10x10 meter toric
world simulations, where the number of characters depends on the
density of the respective context (first column in Table 1). To find
the best parameters for a specific steering algorithm and a specific
context, a genetic algorithm is used. In the learning process, each
simulation run is initialized with some random variations in the
initial character positions, to provide some slight variations of the
simulated context. Moreover, the initial seconds of each simulation
are discarded in our measurements, as they might contain small ar-
tifacts which are not representative of the actual context, e.g., the
initial position of characters might lead to strange avoidance ma-
neuvers at the start of the simulation.

To measure the performance of a policy in a context, we study
the QF score of 300 seconds of trajectories simulated in each con-
text. Performances for each context and steering algorithm are sum-
marized in Table 1, which is one of the core contributions of this
work. In the event that two algorithms have similar average quality
for a given context, the algorithm with less computational com-
plexity is preferred. An example of this is a unidirectional flow
with low density where the Universal Power Law (PL) is preferred.
Similarly, ORCA is often chosen over RVO for being more time
efficient. Note that ORCA and RVO outperform other algorithms
in high density scenarios. On the other hand vision based mod-
els, like [MHT11], tend to work better in more complex scenarios,
like unstructured crossings. As shown in the following section, this
information can be used in a crowd simulation, to adapt the char-
acters’ policy mid-simulation and hence increase the quality of the
final result.

5. Application to Policy Selection

Our goal in this section is to demonstrate that it is possible to im-
prove the quality of crowd simulations in any scenario, i.e., beyond
one unique context. In Section 5.1, we propose a direct application
of the context-to-policy map for this. This technique is based on
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(a) F0 (b) F10 (c) F50 (d) F90 (e) F130 (f) F170 (g) BF0 (h) BF10 (i) BF50 (j) BF90 (k) FN

Figure 3: Representative contexts defined in this work, where a context is defined by the local density and the directions of the main flows of
neighbouring agents. Density increases with rows. F stands for Uniform Flow, BF for Bidirectional Flow, and FN for unstructured scenarios
(N directions).

automatically detecting the local agent context and assigning the
agent the respective optimal policy. Then, we study whether we
can further improve the results of the optimal policy per context
found in Table 1. To this end, instead of using a single policy for all
agents in a context, we assign the agents a mix of the two best poli-
cies found for each context (Section 5.2). The relative evaluation of
these strategies, over a set of benchmark scenarios, is discussed in
Section 5.3.

5.1. Dynamic context adaptation

When simulating a crowd in a given scenario, it is likely that sev-
eral different types of interactions between agents will emerge in
different sub-regions of the scenario and at different points in time.
Therefore, from the perspective of an agent, the context (i.e., the
other agents’ motion features in a sub-region around the agent) is
likely to be dynamic and to change several times during the simu-
lation. We will refer to the dynamic context around a specific char-
acter as local context. To illustrate this from the perspective of an
agent, let us focus, for example, on Figure 1. In this scenario we
have two flows crossing at a 90-degree angle and the characters’
“local context” changes from a single flow “context” to a crossing
flows at 90 degrees “context” and back to the single flow “con-
text”. This observation, coupled with the results presented in Ta-
ble 1 which show that the optimal policy is context-dependent, mo-
tivates our goal of detecting the agents’ context during the sim-
ulation and, subsequently, to use this information to dynamically
adapt the agents’ steering policy. Our approach to this problem is
described in the following sections.

5.1.1. Context detection

Our approach to the problem of run-time detection of the local con-
text around each agent is: (i) first, we detect the type of motion on a
small circular region around the agent of interest; (ii) then, we use
this information to map the local context to one of the 33 studied
contexts presented in Section 4. The relevant features required to
perform this mapping operation are the local density and the local
distribution of walking directions. The local density is computed
by defining a radius r around the current agent, and determining

the ratio between the number of agents inside that area and the
area of the circle. We have experimentally found that using r = 4m
leads to good results. The local distribution of walking directions
is determined by considering the walking direction of agents in-
side the circular area, filtered over a window of 1 second. Then we
extract the main flows resulting from this set of directions by an-
alytically studying the distribution of directions and extracting the
main modes. Once we obtain the main directions of the flows, we
classify the context depending on the number of flows present (e.g.,
1 for F0, 2 for other unidirectional flow crossings, and 4 for bidi-
rectional flow crossings). Then, in the case of unidirectional and
bidirectional flow crossing contexts, we compute the bearing angle
between the two flows. If only two main directions are found, the
difference between the bearing angles is used to classify the local
context into one of the flow crossing contexts. Otherwise, the con-
text is considered to be an unstructured scenario (NF). The density
and angle between character flows is used to classify the local con-
text into one of the previously defined context bins. One more step
is performed to select the policy to use in the current step, πs, us-
ing a simple voting system: after a character classifies its per-agent
local context into one of the studied contexts, it finds neighbours
within a radius. The more common context among those characters
is chosen as the character’s local context and is then used to select
the best policy for the local context of each character.

5.1.2. Smooth policy transition

Changing the policy of a character c, in the middle of the simula-
tion depending on its local context, lcc, is prone to cause artifacts.
This is because two steering algorithms, for very similar situations
in consecutive time steps, might compute very different next veloc-
ities, v′1 and v′2. This could lead to sharp changes in the direction
of characters when they enter a new context (related to flickering
in direction). In order to ease the transition between algorithms we
propose a transition strategy based on overlapping segments and
algorithm combination in cost space.

The framework presented in [vTGG∗20] uses combinable cost
functions (in velocity space) to reproduce a number of steering al-
gorithms, including those listed in Section 4.2. This way, characters
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Steering Algorithm
Density Flow PL ORCA TTCA SF Mou PLE RVO Kar Par

0.5 F0 94 94 89 93 94 86 93 91 86
0.5 F10 92 92 89 91 92 85 92 93 86
0.5 F50 90 91 85 87 91 88 91 88 85
0.5 F90 91 90 89 90 91 87 92 89 85
0.5 F130 90 90 88 90 91 87 91 88 84
0.5 F170 90 90 86 88 91 87 90 87 82
0.5 BF0 91 92 88 88 91 88 93 88 85
0.5 BF10 87 89 83 84 90 85 88 85 81
0.5 BF50 84 86 79 78 87 81 85 82 76
0.5 BF90 88 87 82 90 88 85 88 83 82
0.5 FN 85 85 77 80 86 83 85 81 78
1.0 F0 90 92 80 79 91 87 93 86 81
1.0 F10 90 93 83 87 92 88 91 88 85
1.0 F50 88 89 75 82 89 86 88 90 84
1.0 F90 87 90 72 77 89 84 89 91 82
1.0 F130 87 88 76 81 88 85 88 89 83
1.0 F170 85 89 73 78 88 85 86 81 80
1.0 BF0 86 91 69 73 88 86 89 82 80
1.0 BF10 83 85 74 80 84 82 83 79 80
1.0 BF50 76 77 64 71 78 76 77 72 73
1.0 BF90 77 78 59 66 79 76 77 73 71
1.0 FN 79 82 72 71 81 78 80 76 76
2.0 F0 87 93 76 78 92 88 91 84 84
2.0 F10 82 91 71 70 90 84 92 81 76
2.0 F50 82 84 74 75 84 80 85 79 78
2.0 F90 77 81 68 66 80 76 79 74 72
2.0 F130 73 79 63 53 77 73 77 71 68
2.0 F170 76 78 67 70 77 74 76 72 71
2.0 BF0 76 81 66 64 80 76 79 73 71
2.0 BF10 69 73 61 49 73 67 74 68 64
2.0 BF50 62 70 64 72 71 68 70 64 54
2.0 BF90 61 64 71 72 61 66 69 58 53
2.0 FN 54 55 75 50 53 52 75 44 58

Table 1: Context to the performance of each steering algorithm with appropriate parameters. The best performing algorithm is used to map
each context to a steering policy. The score in each cell is computed using the quality function QF proposed in [CDMH∗21].

transitioning from one context to another can progressively use less
an algorithm and more another algorithm and compute the next ve-
locity, v′. The weights for this transition are given by:

ω(t) = (1+ e−kt)−1

v′← ω(t)π1 +(1−ω(t))π2
(1)

where t stands for the percentage of completion of the transition
(mapped from -0.5 to 0.5) and k is the steepness of the transition.
In our work, we experimentally found that k = 9 results in smooth
transitions between algorithms, as can be seen in the Supplemen-
tary Videos. The selected v′ for a character corresponds to an ad-
missible velocity that minimises the combined costs of the two al-
gorithms in velocity space.

Nevertheless, some steering algorithms might not be directly
compatible for they can return opposite next velocities for the same
character state, e.g., avoiding maneuvers turning right or left. A
typical example of this is combining a velocity-based model like

RVO with a force-based model like Social Forces. Figure 4 illus-
trates this problem, where colored areas represent a simplification
of the regions in velocity space where values of the costs functions
are minimal. In this example, combining the two policies directly,
would not necessarily make sense: the selected v′, optimal for both
algorithms (the v′ with lowest overall cost), could mean “not turn-
ing” (which could lead to a collision) or even reducing the walking
speed to a stop.

Instead of directly combining the steering algorithms, we study
the predicted next velocity for both algorithms separately and look
for inconsistencies in the outputs of the two algorithms (i.e., if the
angle between v1 and v2 is greater than a threshold, th). If the two
steering algorithms return opposing solutions, the next velocity is
selected among the two by studying whether they are consistent
with the previous motion and depending on the value of t. If no
inconsistencies are present, the velocities computed by the two al-
gorithms are combined using Eq. (1).
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Figure 4: Representation of the issues with selecting the next ve-
locity v′i for character ci when using motion combination in veloc-
ity space. The best region in velocity space for the first algorithm
(blue) slightly overlaps the best region in velocity space for the
second algorithm (orange). Nevertheless, the velocities lying in the
overlapping area (best for both steering algorithms at once) lead to
a collision with c j .

Algorithm 1: Policy adaptation algorithm for a given agent.
Input : P: context to policy map

π̂: policy in previous time window
p: agent position
r: radius of circular area defining local context
tw: number of simulation steps to be performed
ts: number of simulation steps for policy transition

1 A← getSubRegion(p,r)

2 for each agent n ∈ A do
3 An← getSubRegion(n,r)
4 cn← detectLocalConext(An)

5 end

6 C ← voteContext({c1, . . . ,cN})
7 π←P(C)
8 tt ← 1

9 if π 6= π̂ then
10 for t in [1, ts] do
11 v′← smoothVelocity(π̂,π, t)
12 simulate(t,v′)
13 end
14 tt ← tt + ts
15 end

16 for t in [tt , tw] do
17 v′← getVelocity(π, t)
18 simulate(t,v′)
19 end

5.1.3. Simulation loop

Our simulation loop with dynamic context-based policy adaptation
is shown in Algorithm 1. The time window (measured in simula-
tion steps) in which the same policy is applied is given by tw. The
algorithm starts by delimiting the circular areaA with radius r cen-
tered on the position p of the current agent (line 1). Then, in lines 2
to 5, the local context of the N agents within the areaA is detected,

based on the motion features of each area An centered on each of
the agents n. Note that this includes the current agent for which
we want to adapt the policy. A voting step follows, in which the
final local context C of the current agent is chosen based on the set
of contexts {c1, . . . ,cN} detected for all agents within the area A
(line 6). This context is then used to determine the new motion pol-
icy π (line 7), using the context to policy map P described in Sec-
tion 4. In lines 9 to 15, the transition between the previous policy π̂

and the new policy π is smoothed out during ts steps as explained
in Section 5.1.2, in case strong motion discrepancies are detected,
hence avoiding undesired discontinuities in the simulation. Finally,
the remaining simulation steps within the time window tw are per-
formed using the context-adapted policy π that is used to compute
the next velocity of the given agent at time t (lines 16 to 19). This
process is represented with blue boxes in Figure 2.

5.1.4. Results

To present the results of our approach, we first illustrate them with
the specific case of a two-flow crossing (from left to right and from
bottom to top), simulated either with PL, RVO, or our approach (see
Figure 1). In Figure 1a, we can see that the PL method struggles in
regions where the two flows cross, making the characters move di-
agonally. This is penalised by QF because characters deviate from
their desired direction for too long, even excessively moving away
from their goal. On the other hand, in Figure 1b using RVO we
can see that even if the flows are able to cross each other, charac-
ters tend to move apart too much from each other (larger spread of
characters across the two flows). Finally, Figure 1c shows an exam-
ple of our policy switching based on the “score map” presented in
Table 1, where PL is used in low density, unidirectional contexts,
and RVO is used in low density, 90 degrees crossings. Overall, Fig-
ure 1c shows that characters do not deviate too much from their
goal direction and switch back to PL as soon as they exit the cross-
ing area, as the majority of characters around them now lead to a
change in the distribution of directions (leading to a change of con-
text). This also enables characters to switch back to the less com-
putationally complex PL method, that works well for unidirectional
flows.

We can interpret policy adaptation in two ways: (i) changing
the steering policy to be able to deal with complex interactions or
(ii) “relaxing” the algorithm when the scenario does not require a
more time consuming algorithm to correctly solve the interactions.
In an extreme case, when distances between neighbours are accept-
able (an interaction range of 3.5 meters is commonly used in the
literature) and all agents have the same comfort speed one could
use a goal reaching force (without avoidance maneuvers) because
there would be no predicted collisions nor unreasonable values for
other features.

5.2. Mapping context to a distribution of policies

If the steering algorithm and its parameter values are not shared
among all characters, the crowd is heterogeneous and characters
exhibit different behaviours, typically leading to better simulation
results [WJGO∗14, GVDBL∗12]. The following sections are con-
cerned with producing heterogeneous crowds within each context
using the information contained in Table 1. In particular, Table 1
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can be used to map contexts to a distribution of policies, instead of
mapping a context to a single (optimal) policy as described in the
previous sections.

We propose and evaluate two strategies to assign different poli-
cies to agents in a context. In the first strategy, presented in Sec-
tion 5.2.1, we randomly assign each agent one of the two best poli-
cies learnt for each context. In the second strategy, presented in
Section 5.2.2, we replace the random assignment of policy to each
agent by an optimization process which determines to which par-
ticular agents should each of the two policies be assigned, so as to
maximize the QF score.

5.2.1. Random selection of agent policies

To determine to which extent it is beneficial to combine different
policies within the same context we have measured the simulation
quality per context using a combination of two policies: the optimal
policy p∗ for the context, and the second best policy p′∗ found for
the same context according to Table 1. Each agent randomly picks
one of these two policies following a probability distribution aimed
at keeping the ratio between p∗ and p′∗ at a desired level.

Figure 5 (blue) shows the average quality across all contexts of
crowd trajectories where characters randomly pick among p∗ and
p′∗. The results have been generated considering different desired
ratios between p∗ and p′∗, ranging from all agents choosing policy
p∗ to all agents choosing policy p′∗. The blue bars show that the
average QF score is higher when characters share the same policy,
compared to the case where characters with different policies co-
exist in the same context. Contrary to expectations, no significant
increase in the quality score, SQF , was found compared with using
a single policy optimised for a specific context.

5.2.2. Optimized selection of agent policies

Further statistical tests revealed that the average crowd trajectory
quality across contexts could be improved by distributing the poli-
cies among characters in an informed way. The goal of this learning
process is to maximise the quality of the resulting trajectories while
maintaining the proportion of characters using each of the two best
performing steering algorithms. The relation between the propor-
tion of characters using each of the two best performing steering
algorithms and the resulting average quality is represented in Fig-
ure 5 (orange colored bars). We can therefore conclude that, in con-
trast to a random assignment of steering algorithms, an informed
distribution of the two bests algorithms for each context leads to an
improvement in quality. The proportion of characters using a “com-
plimentary” steering algorithm for a particular scenario seems to
affect the resulting trajectories’ quality. An explanation for this im-
provement could be that the crowd simulator avoids some artifacts
by changing the steering policy of the affected characters.

We can therefore conclude that the quality of trajectories simu-
lated in a specific context can be further improved when different
characters use different policies, even if only a small percentage
of characters use a different steering algorithm. Nevertheless, the
small increase in SQF is likely to be related to the optimisation of
the policies per-context which is done in homogeneous contexts
where all agents shared the same policy. There is a risk that the

Figure 5: Average quality (mapped from 0 to 1, across all contexts)
depending on the proportion of characters using the best perform-
ing steering algorithm and the second best performing algorithm.

used policies are not well adapted to contexts where characters use
different steering strategies, such as in the experiments conducted
in this section. As discussed in Section 6, the quality might be fur-
ther improved if instead of using the policies tuned in Section 4.2,
a mixture-of-policies for each context was learnt instead.

5.3. Strategy comparison

To quantitatively assess the effectiveness of the different motion
strategies proposed in our paper we have evaluated their perfor-
mance in a variety of scenarios. This quantitative evaluation of re-
lies on QF , and on the following benchmark scenarios:

• Two groups of characters moving in opposite directions and
crossing in the center. When the groups overlap, the density in-
creases; after crossing, the density returns to the original value.
• Four groups of characters move towards the opposite side of the

world, passing through the center. In the crossing, the local con-
text of characters is a bidirectional flows crossing.
• Circle crossing: characters are disposed in a circle around the

center of the world; their goal is to reach the opposite side.
• Two unidirectional flows move in the same direction and overlap.

Characters in one of the flows have a higher desired speed.
• Random scenarios where every character in the crowd has its

own initial position, desired direction and comfort speed.

For each scenario, several evaluations with different initial agent
positions are made. The tested motion strategies are:

• S0, where all characters use the same policy during all the simu-
lation. This strategy should be seen as a baseline strategy;
• S1, where each character has its own policy which is kept con-

stant throughout the simulation; the algorithm and parameter val-
ues are optimised per character with QF as individual fitness
measurement.
• S2, which corresponds to the case where agents can dynamically

switch policies during the simulation based on the context to pol-
icy map, as described in Section 5.1 and Algorithm 1;
• S3, which corresponds to the case where agents can dynamically

switch policies during the simulation but, in contrast with S2,
each context is mapped to a distribution of policies (instead of
being mapped to a single policy), as described in Section 5.2.

The results for these four strategies are presented in Table 2. They
show that, compared to the baseline method (S0), the simulation
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Strategy Mean Variance
Policy sharing (S0) 61 9
Policy per-character (S1) 78 (+28%) 6
Switching algorithms (S2) 87 (+43%) 6
Switching distr. (S3) 89 (+46%) 13

Table 2: Average quality of the trajectories resulting from using
each of the studied strategies in multiple scenarios. The percent-
ages in-between brackets for S1, S2 and S3 show the improvement
brought by these strategies with respect to the base-line strategy S0.

quality can be improved by an average of 28% by simply tuning
the policy so as to fit the current scenario, even if all agents use
the same policy (S1). This is in-line with the findings reported by
previous works such as [WJGO∗14] or [KSHG18]. Moreover, Ta-
ble 2 also confirms the significant benefit brought by dynamically
adapting the agents’ policy based on their local context (S3 and S4).
Such strategy, which advances the state-of-the-art by exploring an
alternative way to describe the agents’ local context and using QF
to perform calibration, brings improvements of up to 46% in terms
of average simulation quality with respect to the base-line method.

6. Limitations and future work

Context. The motion of a crowd can always be decomposed into a
number of flows. Following this idea, we introduce a definition of
context which is based on few main properties of these flows: their
density and relative angle. Through the study of a discrete set of
contexts, we demonstrate that those properties indeed discriminate
various algorithms in their capacity of handling them correctly. We
however left for future work a number of other context features that
are likely to also influence simulation quality, such as flow rate or
non-uniform distributions of flows. We could also have considered
other features like the presence of groups or a higher heterogene-
ity in agents behaviors, etc. A new set of contexts, specifically de-
signed for group behaviour, or to provide a more diverse dataset
could also be added. This would allow creating additional bench-
marks, targeting different behaviors. Notwithstanding their rela-
tively simple characterisation, this work offers a proof of concept
for a dynamic adaptation of policies based on local context.

Trajectory Evaluation. Not using data (as is the case of our pro-
posed approach) has many advantages such as, for example, not
having to collect and process real trajectory data, or not risking
over-fitting to a particular data set. However the chosen trajectory
evaluation metric (QF [CDMH∗21]) limits the scope of evalua-
tion to ambient crowds. The approach that we propose might thus
be less suited for specific contexts or behaviours not considered
in [CDMH∗21]. The current QF , aimed at ambient crowds (no
queuing, no running, no grouping, etc.), could be replaced by a dif-
ferent loss that specifically targets, for instance, group behaviour.
Thanks to the modular architecture of the system, any of its com-
ponents could be easily replaced by another deemed more appropri-
ate, e.g., other evaluation techniques (already explored in previous
works or not) could be considered.

Algorithms. In this paper, we study a variety of crowd steering al-
gorithms. Some approaches, such as data-driven or reinforcement
learning, are not covered in this framework and were not consid-
ered. This type of approaches, that implicitly generate human-like
trajectories, do not follow similar parameter tuning and evaluation
procedure. Future work is required to adjust our method to these
categories of simulation techniques, however, our results offer an
insight for improving their design. For example, it may be useful to
decompose policies, training or data-sets according to contexts.

Parameter values. Simulation results are influenced by the adap-
tation time window (i.e., the frequency of the adaptations) and sim-
ulation time step (i.e., can affect the performance of some steering
algorithms). The examination of these features is interesting, but it
is beyond the scope of this paper. To be able to combine steering
algorithms and validate the approach, these values are fixed in our
experiments, which can limit the flexibility of specific algorithms;
nevertheless, adapting the system to a multi-time-step setting could
be an interesting direction for future work.

Policy combination. In this work, existing steering methods are
dynamically distributed across characters in a context. This appli-
cation is, to the best of our knowledge, the first work where im-
provements are reported using a context-based dynamic combina-
tion of crowd steering policies. The results in Figure 5 and Table 2
show little QF improvement from distributing the steering algo-
rithms across characters, though. Further studies will be needed to
to improve the results in policy-to-character assignment.

Simulation speed. Both policy switching and mixing have com-
putational overheads (process illustrated in Figure 2), which slows
down simulation. Nevertheless, this technique takes advantage of a
“relaxation” of the navigation strategy when the constraints allow
for it, e.g., using a simpler algorithm when the density is lower thus
reducing computational time while maintaining the overall simula-
tion quality. Further studies, which focus on context recognition
and assignation in a computationally light manner, will need to be
undertaken.

Policy switching. One could think about many techniques to
switch, or even mix, navigation policies. We here prove that a sim-
ple method to switch policies is already effective, but many more
could be explored, e.g. using multiple tuning policies at all times
and voting the next velocity, v′, for each character. Moreover, the
transition between policies are synchronized for they happen ev-
ery tw seconds. A strategy where characters would recognise the
context for every time step in the simulation would avoid potential
artifacts due to characters switching their policy simultaneously.

Policy optimisation. We optimized policies taking into account
contexts and we showed that mixing policies may further improve
results, though slightly. The natural following step would be to
jointly optimize a mixture of policies for each abstract context. It is
also possible that a new policy, found without real data by directly
maximising QF , could be derived so that it over-performs existing
methods. Moreover, a different evaluation function could be used
to take into account how real humans adjust their navigation to that
of their neighbours, e.g., being more careful among inattentive peo-
ple.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Cabrero-Daniel et al. / Dynamic Combination of Crowd Steering Policies Based on Context

7. Conclusion

In this paper, we have proposed a framework to dynamically
adapt the motion policy of characters when simulating large virtual
crowds. Our approach is based on a context to policy map which
shows for the agents’ local context to a set of optimized policies,
that are learnt once and for all in a previous step without requiring
any real motion data. To this end, we have proposed a discretiza-
tion of the full context space into a subset of 33 representative con-
texts and learned the optimal performing policies for each of the
contexts. During the simulation, the agents’ context is automati-
cally detected and mapped to an optimized policy, which results in
a crowd where characters dynamically adapt their motion strategy
depending on their situation. Our results demonstrate the benefits
of our approach for the crowd simulation quality, exhibiting a sig-
nificant crowd quality improvement both visually and in terms of a
quantitative perceptually-based quality function. Furthermore, the
data-independence of our approach opens the path to easily build
on and extend our framework to other contexts and policies, which
can potentially trigger future research.
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