

## Sex Differences in Infective Endocarditis After Transcatheter Aortic Valve Replacement

Vassili Panagides, Mohamed Abdel-Wahab, Norman Mangner, Eric Durand, Nikolaj Ihlemann, Marina Urena, Costanza Pellegrini, Francesco Giannini, Piotr Scislo, Zenon Huczek, et al.

## ▶ To cite this version:

Vassili Panagides, Mohamed Abdel-Wahab, Norman Mangner, Eric Durand, Nikolaj Ihlemann, et al.. Sex Differences in Infective Endocarditis After Transcatheter Aortic Valve Replacement. Canadian Journal of Cardiology, 2022, 38 (9), pp.1418-1425. 10.1016/j.cjca.2022.07.002 . hal-03776230

## HAL Id: hal-03776230 https://univ-rennes.hal.science/hal-03776230v1

Submitted on 16 Sep 2022

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



## Sex Differences in Infective Endocarditis After Transcatheter Aortic Valve Replacement

Vassili Panagides, MD<sup>a</sup>; Mohamed Abdel-Wahab, MD<sup>b, c</sup>, Norman Mangner, MD<sup>b,d</sup>, Eric Durand, MD<sup>e</sup>, Nikolaj Ihlemann, MD<sup>f</sup>, Marina Urena, MD<sup>g</sup>, Costanza Pellegrini, MD<sup>h</sup>,
Francesco Giannini, MD<sup>i,j</sup>, Piotr Scislo, MD, PhD<sup>k</sup>, Zenon Huczek, MD, PhD<sup>k</sup>, Martin Landt, MD<sup>3</sup>, Vincent Auffret, MD<sup>1</sup>, Jan Malte Sinning, MD<sup>m</sup>, Asim N. Cheema, MD<sup>n, o</sup>, Luis Nombela-Franco, MD<sup>p</sup>, Chekrallah Chamandi, MD<sup>q</sup>, Francisco Campelo-Parada, MD<sup>r</sup>, Erika Munoz-Garcia, MD<sup>s</sup>, Howard C Herrmann, MD<sup>t</sup>, Luca Testa, MD<sup>u</sup>, Won-Keun Kim, MD<sup>v</sup>,
Helene Eltchaninoff, MD<sup>e</sup>, Lars Sondergaard, MD<sup>f</sup>, Dominique Himbert, MD<sup>g</sup>, Oliver Husser, MD<sup>h, w</sup>, Azeem Latib, MD<sup>i, x</sup>, Hervé Le Breton, MD<sup>l</sup>, Clement Servoz, MD<sup>r</sup>, Philippe Gervais, MD<sup>a</sup>; David del Val, MD<sup>a</sup>, Axel Linke, MD<sup>b,d</sup>, Lisa Crusius, MD<sup>b,d</sup>, Holger Thiele<sup>b</sup>, MD, David Holzhey, MD<sup>b</sup>, Josep Rodés-Cabau, MD<sup>a</sup>

<sup>a</sup>Quebec Heart & Lung Institute, Laval University, Quebec City, Quebec, Canada; <sup>b</sup>Heart Center, Leipzig University, Leipzig, Germany; <sup>c</sup>Heart Center, Segeberger Kliniken, Bad Segeberg, Germany; <sup>d</sup>Herzzentrum Dresden, Technische Universität Dresden, Germany; <sup>e</sup>Normandie Univ, UNIROUEN, U1096, CHU Rouen, Department of Cardiology, F-76000 Rouen, France; <sup>f</sup>Righospitalet, Copenhagen University Hospital, Denmark; <sup>g</sup>Bichat Hôpital, Paris, France; <sup>h</sup>Deutsches Herzzentrum München, Munich, Germany; <sup>i</sup>Maria Cecilia Hospital, GVM Care and Research, Cotignola RA, Italy <sup>j</sup>Ospedale San Raffaele, Milan, Italy; <sup>k</sup>Department of Cardiology, Medical University of Warsaw, Poland; <sup>1</sup>Univ Rennes, CHU Rennes, Inserm, LTSI - UMR1099, F 35000 Rennes, France; <sup>m</sup>Heart Center Bonn, Bonn, Germany; <sup>n</sup>St Michaels Hospital, Toronto, Canada; <sup>o</sup>Southlake Hospital, Newmarket, Ontario, Canada; <sup>p</sup>Cardiovascular Institute, Hospital Clínico San Carlos, IdISSC, Madrid, Spain; <sup>q</sup>Hôpital Européen Georges-Pompidou, Paris, France; 'Hôpital Rangueil, Toulouse, France;

### Journal Pre-proof

<sup>s</sup>Hospital Universitario Virgen de la Victoria, Malaga, Spain; <sup>t</sup>Hospital of the University of Pennsilvania, Philadelphia, USA; <sup>u</sup>IRCCS Pol. San Donato, Milan, Italy; <sup>v</sup>Kerckhoff Heart and Thorax Centre, Bad Nauheim, Germany; <sup>w</sup>Augustinum Klinik München, München, Germany; <sup>x</sup>Montefiore Medical Center, New York, NY, USA;

Short title: Sex differences in IE after TAVR

Total word count: 2757

## **Corresponding author:**

Josep Rodés-Cabau, MD.

Quebec Heart & Lung Institute, Laval University

Quebec City, Quebec, Canada

Phone: 418-6568711; Fax: 418-6564544

E-mail: josep.rodes@criucpq.ulaval.ca

### ABSTRACT

*Background*: Outcomes after transcatheter aortic valve replacement (TAVR) and infectious diseases may vary according to sex.

*Methods*: This multicenter study aimed to determine the sex differences in clinical characteristics, management, and outcomes of infective endocarditis (IE) after TAVR. A total of 579 patients (217 women, 37.5%) were included retrospectively from the Infectious Endocarditis after TAVR International Registry who had the diagnosis of definite IE following TAVR.

**Results**: Women were older ( $80\pm8$  vs.  $78\pm8$  years, p=0.001) and exhibited a lower comorbidity burden. Clinical characteristics and microbiological profile were similar between men and women, but culture-negative IE was more frequent in women (9.9% vs. 4.3%, p=0.009). A high proportion of patients had a clinical indication for surgery (54.4% in both groups, p=0.99), but a surgical intervention was performed in a minority of patients (women: 15.2%, men: 20.3%, p=0.13). The mortality rate at index IE hospitalization was similar in both groups (women: 35.4%, men: 31.7%, p=0.373), but women exhibited a higher mortality rate at 2-year followup (63% vs. 52.1%, p=0.021). Female sex remained an independent risk factor for cumulative mortality in the multivariable analysis (HR<sub>adj</sub>: 1.28, 95% CI: 1.02-1.62, p=0.035). After adjustment for in-hospital events, surgery was not associated with better outcomes in women. *Conclusions*: There were no significant sex-related differences in the clinical characteristics and management of IE after TAVR. However, female sex was associated with increased twoyears mortality risk.

KEYWORDS: Infective endocarditis, TAVR, heart surgery, sex

## **BRIEF SUMMARY**

This study aimed to investigate differences between sexes in infective endocarditis (IE) after transcatheter valve replacement (TAVR). Clinical characteristics and microbiological profile of IE after TAVR were found to be similar between men and women. There were no major differences in the medical management. However, women have an impaired prognostic. Further research is required to better understand women's higher mortality.

## **ABBREVIATIONS LIST**

IE: infective endocarditis IQR: interquartile range PVE: prosthetic valve endocarditis TAVR: transcatheter aortic valve replacement THV: trans-catheter heart valve

### 1 INTRODUCTION

2 The clinical characteristics, management, and outcomes of different diseases vary 3 considerably between men and women, and the need for sex-specific research, reporting, and 4 guideline considerations has been increasingly recognized (1). Major sex-related differences 5 have been shown in multiple cardiovascular and infectious diseases (2,3). In the transcatheter 6 aortic valve replacement (TAVR) field, several studies have shown improved long-term 7 survival in women compared to men, despite a higher incidence of peri-procedural 8 complications (4–6). On the other hand, female sex has been associated with poorer early and 9 late outcomes in cases of non-TAVR infective endocarditis (IE) (7,8), and a potential sex-10 treatment bias including a lower likelihood of surgical intervention among women in this setting 11 has been suggested as an important factor to explain such differences (9).

12 IE after TAVR is an infrequent but life-threatening event, with specific clinical, 13 microbiological profile, and management characteristics along with very high early and late 14 mortality rates (10). However, no data exist on potential sex-related differences in the context 15 of IE after TAVR. A better knowledge of the clinical characteristics, treatment, and outcomes 16 of IE following TAVR according to sex would therefore be of high clinical relevance. The 17 objectives of this study were to evaluate sex-related differences in the clinical characteristics, 18 management, and outcomes of IE after TAVR.

19

#### 20 MATERIAL AND METHODS

### 21 Study population

Data were collected from The Infectious Endocarditis after TAVR International Registry. Details on the design of this observational, multicenter, international registry have been previously reported (11). At the time of this analysis, the registry included data from 579 patients with definite IE determined by the modified Duke criteria after TAVR from 59 centers

#### Journal Pre-proo

in 11 countries across Europe, North America, and South America between June 2005 and
November 2020.

28 Patients were identified by each center according to the modified Duke criteria (12). To 29 avoid duplicities, only the first episode of IE recorded for an individual patient was included in 30 the analysis. A dedicated uniform case report form (database) was used at all sites for data 31 collection including baseline and periprocedural TAVR features, as well as IE characteristics, 32 microbiological profile, management, and in-hospital and follow-up outcomes (191 variables). Among 604 patients with definite IE, only 579 were included in the analysis (exclusion of 25 33 34 patients with missing data on the clinical status or without a date of follow-up). Informed 35 consent was obtained from all patients before the procedure and the individual anonymized data 36 sharing was performed according to the local ethics committee of each participating center. The 37 research was performed without patient or public involvement.

38

## 39 Study definitions

40 The definition of definite IE was based on the modified Duke criteria (12). Transcatheter 41 heart valve (THV) type was divided into two groups: balloon-expandable (Edwards Sapien<sup>TM</sup>, Sapien XT<sup>TM</sup>, and Sapien 3<sup>TM</sup> valves systems; Edwards Lifesciences, Irvine, CA, USA) and 42 43 self- or mechanically- expandable valves (Medtronic CoreValve<sup>TM</sup> and Evolut R<sup>TM</sup> systems 44 (Medtronic, Minneapolis, MN), Lotus<sup>TM</sup> Valve System (Boston Scientific, Marlborough, MA, USA), Portico<sup>™</sup> valve (Abbott Vascular, Abbott Park, IL, USA), Acurate<sup>™</sup> valve system 45 46 (Symetis SA, a Boston Scientific company, Ecublens, Switzerland), Direct flow<sup>™</sup> (Direct Flow 47 Medical Inc. Santa Rosa, CA, USA), JenaValve™ (JenaValve Technology Inc. Irvine, CA, 48 USA), Medtronic Engager<sup>TM</sup>(Medtronic, Minneapolis, MN, USA) and Centera<sup>TM</sup> (Edwards 49 Lifesciences, Irvine, California, USA). Outcomes were defined according to the Valve Academic Research Consortium-2 criteria (13). Persistent bacteremia was defined as positive 50

#### Journal Pre-proot

51 blood cultures despite appropriate antibiotic therapy for > 7 days. IE complications with an 52 indication for surgery were defined according to the European guidelines (12) as follows : (i) 53 intra-hospital episode of heart failure attributed to a severe aortic or mitral valve dysfunction 54 (ii) locally uncontrolled perivalvular extension, and (iii) aortic or mitral vegetation > 10 mm.

55

## 56 Statistical Analysis

57 Continuous variables were expressed as mean  $\pm$  standard deviation or median 58 (interquartile range) depending on the variable distribution, which was assessed using the 59 Kolmogorov-Smirnov test. Categorical variables were expressed as numbers (%). Comparisons 60 between groups were performed using the Student t-test or Wilcoxon rank-sum test for 61 continuous variables and  $\chi^2$  or Fisher exact test for categorical variables. Multivariable Cox 62 proportional hazard models were performed to determine the factors independently associated 63 with cumulative follow-up mortality. Likewise, the first model (whole population) included all significant (p<0.05) baseline variables considered a priori to contribute to two-year mortality 64 65 with the only exception of age that was forced in the model for its relevance. The second model (female population) included all significant variables from the IE-hospitalization with the only 66 67 exception of the IE management (surgery vs. medical treatment) that was forced in the model 68 due to its potential relevance. Surgery was included as a time-varying covariate in the Cox 69 models to control for immortal time bias. The multivariable models were built by backward 70 stepwise (likelihood ratio) selection. The Kaplan–Meier method was used to provide survival 71 estimates, which were assessed with a log-rank test. Differences in the incidence of mortality 72 were determined using the log-rank test. A 2-sided p-value of <0.05 was considered statistically 73 significant. Data analyses were performed using STATA 14.0 (StataCorp, College Station, TX, 74 USA).

### 76 **RESULTS**

A total of 579 patients with definite IE were included, 217 (37.5%) of them were women. The main baseline and TAVR peri-procedural characteristics are shown in **Table 1**. Women were older (80±8 vs. 78±8, p=0.001), and exhibited a lower rate of chronic obstructive pulmonary disease (21.7% vs. 30.7%, p=0.019), previous stroke (8.8 vs. 15.5%, p=0.020), and previous heart surgery (12.9% vs. 27.9%, p<0.001). There were no significant differences between women and men in TAVR procedural characteristics, periprocedural complications, and length of hospital stay.

84

## 85 Clinical presentation of IE episode and outcomes

The clinical characteristics and outcomes of the IE episode according to sex are 86 87 presented in Table 2. Initial symptoms, perivalvular extension, and vegetation size were similar 88 between the two sexes. IE involving the THV alone was more frequently observed in men 89 (53.6% vs. 41.5%, p=0.005). There were no significant differences in the identified causative 90 organism, but a higher proportion of culture-negative episodes were observed in women (9.9% 91 vs. 4.3%, p=0.009). Complications related to the IE episode were also similar and 54.4% of 92 both men and women had an indication for surgery. Up to 15.2% of women had a surgical 93 intervention at index IE episode (vs. 20.3% of men, p=0.125) after a median of 27 days IQR 94 [6-54] (vs. 14 days in men IQR [6-36] (p=0.161)). When there was an indication for surgery, 20.3% of women were operated on vs. 27.4% of men (p=0.188). Relapse of the IE episode 95 96 during follow-up was similar between groups (6.0% in women vs. 9.4% in men, p=0.147).

Despite similar in-hospital mortality rates (31.7% in men vs. 35.4% in women,
p=0.373), the 2-year mortality rate was higher in women compared to men (63% CI [56-69.8]
vs. 52.1% [46.5.9-57.9], p=0.021) (Figure 1). Female sex was an independent risk factor of

100 death after adjustment to significant baseline characteristics including age (HR<sub>adj</sub>: 1.28 [1.02101 1.62], p=0.035) (Table 3).

- 102
- 103 Clinical profile of operated women

104 A total of 32 women underwent surgery (15.2%) of the women cohort). The operated 105 patients were younger 77±9 years vs. 81±7 years (p=0.015), had less chronic kidney disease 106 (29.0% vs. 48.3%, p=0.047), a lower surgical risk (median Logistic EuroSCORE 9.8, IQR [6-107 18] vs. 15, IQR [10-23.6], p=0.01) and had TAVR less frequently through transfermoral 108 approach (78.1% vs. 92.7%, p=0.009). Ten out of 32 patients (31.3%) died during index 109 hospitalization after surgery (supplementary table S1). Two-year mortality rate similar in operated women compared to non-operated women (53.3% CI [35.9-72.9] vs. 63.2% [55.6-110 111 70.8], p=0.203) (figure 2).

112

## 113 **Risk factors of mortality in the female population**

After adjustment for in-hospital events during IE hospitalization, heart failure HR<sub>adj</sub>:1.66 CI [1.02-2.68], p=0.04, septic shock HRadj: 3.88 CI [2.43-6.22], p<0.001 and persistent bacteriemia HR<sub>adj</sub>: 2.09 CI [1.32-3.32], p=0.002 were associated with mortality and surgery was not found to be protective when adjusted to in-hospital events (**Table 4**). Risk factors associated with mortality in the male population is available in supplemental table S2.

119

## 120 DISCUSSION

121 The main results of this study providing the first detailed description on sex differences 122 in the clinical characteristics and outcomes of IE after TAVR can be summarized as follows: 123 (i) IE symptoms, presentation, and causative microorganisms are similar between men and 124 women after TAVR except for more culture-negative episodes among women; (ii) there were

#### Journal Pre-proof

no major differences in the medical management between sexes; (iii) early mortality was similar
between women and men, but women had an impaired two-years survival compared to men.

127 Numerous studies investigating outcomes between men and women after TAVR have 128 been published. In a meta-analysis including 17 studies, Saad et al. found that women were 129 older, but with fewer comorbidities than men (6). Moreover, despite having more in-hospital 130 complications (bleeding, major vascular events, and stroke), women had better long-term 131 prognosis after TAVR than men. These results were consistent with another study from the 132 TVT registry including 11 808 patients (5). In accordance with these previous studies, women 133 were older and exhibited a lower comorbidity burden. Therefore, baseline characteristics 134 between men and women in our study including only patients with definite IE parallel previous 135 TAVR reports.

136 Both women and men had a similar microbiological profile. Sex distribution of non-137 TAVR IE causative organisms is not consistent in the existing literature. While Sambola et al. 138 found no differences in the microbiological profile between men and women (9), Sevilla et al. 139 reported more Gram-negative bacilli and fewer Streptococcus viridians in women compared to 140 men (14), and Aksoy et al. described less coagulase-negative staphylococci in women (7). 141 Interestingly, we found a higher rate of culture-negative episodes among women. This finding 142 may be related to numerous factors: blood cultures sterilized by early antibacterial treatment, 143 IE related to fastidious pathogens (e.g., HACEK group bacteria), organism requiring a 144 serological diagnosis (e.g., Q fever, Bartonella infections), or non-infective endocarditis (auto-145 immune or marantic). The high relative proportion of culture-negative episodes found in 146 women (10%) highlights the importance of serological analysis, antinuclear antibodies 147 research, or valvular biopsies when available in this peculiar subpopulation (15).

It has been previously suggested that the impaired prognosis of women after IE in non-TAVR patients was related to the reduced likelihood to undergo surgery when indicated (9).

#### Journal Pre-proo

Moreover, it is known that women are less likely to receive cardiovascular therapies (16–18). This gap is likely related to numerous factors including differences in clinical presentation, socioeconomic disparities, or sex discrimination (1). Interestingly, the rate of surgery in our study was numerically lower in women compared to men (15.2% vs. 20.3%) without reaching a statistical difference. Therefore, the difference observed concerning outcomes is unlikely to be related to a major discrepancy in medical care.

156 Female sex was an independent predictor of mortality even after adjustment with age 157 and baseline characteristics of the population. This finding is of clinical importance and difficult 158 to explain. Sepsis prognosis may vary between males and females but largely depend on the 159 infection site; moreover, sex is not an independent factor of outcome when examining all 160 infections (19). In animal models, it has been found that hormones modulate the severity of sepsis, and castration of females worsens the septic lesions (3). The lack of hormonal protection 161 162 of our elderly population could partly explain our findings. Nevertheless, the observed mortality 163 is likely multifactorial and may not be solely related to the IE episode itself.

Surgery was not associated with better outcomes in women. Previous large studies of non-TAVR patients have shown higher in-hospital mortality in operated women after IE (despite a lower chance to be operated) (20,21). Further studies are required to precise the role of surgery in this context.

168

### 169 Perspectives

This study raises more questions than answers. The over mortality of women can be related to hormonal factors that can be further investigated using prespecified specific questionnaires and hormonal dosages. The high rate of culture negative episode is also of clinical interest and justify the realisation of a complete and exhaustive research of IE in women when the context is suggestive. Furthermore, this finding should justify research in the field to

#### Journal Pre-proot

better understand the exact causes of negative episodes in women. Unfortunately, the scarcity
of these episodes is detrimental to the elaboration of prospective studies that are needed to
answer these questions.

178

### 179 Limitations

Our study has some limitations. First, due to its retrospective observational design, some data were not available. Centers participated voluntarily and there was no external monitoring committee to verify the accuracy of data reported by each center. Lastly, due to its multicenter design, diagnosis and treatment modalities of patients may have been different between participating centers.

185

### 186 CONCLUSIONS

Women with IE after TAVR are older but present fewer comorbidities than men. The IE clinical presentation and microbiological profile are similar except for a higher rate of culture-negative episodes in women. This highlights the importance of starting antibiotic therapy and implementing multi-imaging modalities to rule out the diagnosis of IE in women with suggestive symptoms following TAVR. Also, women's two-years mortality was higher compared to men following the IE episode. Further studies are warranted.

193

- 195
- 196
- 197
- 198
- 199

| 0 | n | n |
|---|---|---|
| 4 | υ | U |

### 201

### 202 ACKNOWLEDGMENTS

- We would like to acknowledge the *Infectious Endocarditis after TAVR International Registry Investigators* for their substantial contribution to data collection and research (the
   list of investigators is available in the supplemental material).
- 206
- Dr Rodés-Cabau holds the Research Chair "*Fondation Famille Jacques Larivière*" for the
   Development of Structural Heart Disease Interventions.
- 209
- Dr. Panagides has received a research grant from the "*Mediterranean Academic Research and Studies in Cardiology*" association (MARS Cardio).
- 212

## 213 FUNDING SOURCES

- 214 There was no specific funding for this study.
- 215

## 216 **DISCLOSURES**

217 Josep Rodés-Cabau has received institutional research grants from Edwards Lifesciences, 218 Medtronic, and Boston Scientific. Vassili Panagides has received institutional research grants 219 from Medtronic, Boston Scientific, and Microport. H. Herrmann has received institutional 220 research grants from Abbott, Boston Scientific, Edwards Lifesciences, and Medtronic and 221 consulting fees from Edwards Lifesciences and Medtronic. Jan Malte Sinning reports speaker 222 honoraria from Abbott, Boston Scientific, Edwards Lifesciences, and Medtronic and research 223 grants from Boston Scientific, Edwards Lifesciences, and Medtronic, outside the submitted 224 work. Kim Won-Keun reports personal fees from Boston Scientific, Edwards Lifesciences, 225 Abbott, Medtronic, and Meril, outside the submitted work. Oliver Husser reports personal fees 226 from Boston Scientific and payments from Abbott. Norman Mangner reports personal fees from 227 Edwards Lifesciences, Medtronic, Biotronik, Novartis, Sanofi Genzyme, AstraZeneca, Pfizer, 228 and Bayer, outside the submitted work. Lars Sondergaard has received consultant fees and/or 229 institutional research grants from Abbott, Boston Scientific, Medtronic and SMT. All other 230 authors report no potential conflicts.

- 231
- 232

## 233 **REFERENCES**

- Vogel B, Acevedo M, Appelman Y, Bairey Merz CN, Chieffo A, Figtree GA, et al. The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. Lancet. 2021 Jun 19;397(10292):2385–438.
   Mosca L, Barrett-Connor E, Wenger NK. Sex/Gender Differences in Cardiovascular Disease Prevention What a Difference a Decade Makes. Circulation. 2011 Nov 8;124(19):2145–54.
- 3. Gay L, Melenotte C, Lakbar I, Mezouar S, Devaux C, Raoult D, et al. Sexual Dimorphism and Gender in Infectious Diseases. Frontiers in Immunology [Internet].
   2021 [cited 2022 Jan 31];12. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2021.698121
- 4. O'Connor SA, Morice M-C, Gilard M, Leon MB, Webb JG, Dvir D, et al. Revisiting
  Sex Equality With Transcatheter Aortic Valve Replacement Outcomes: A Collaborative,
  Patient-Level Meta-Analysis of 11,310 Patients. J Am Coll Cardiol. 2015 Jul
  247 21;66(3):221–8.
- 5. Chandrasekhar J, Dangas G, Yu J, Vemulapalli S, Suchindran S, Vora AN, et al. Sex-Based Differences in Outcomes With Transcatheter Aortic Valve Therapy: TVT
   Registry From 2011 to 2014. Journal of the American College of Cardiology. 2016 Dec 27;68(25):2733–44.
- Saad M, Nairooz R, Pothineni NVK, Almomani A, Kovelamudi S, Sardar P, et al. LongTerm Outcomes With Transcatheter Aortic Valve Replacement in Women Compared
  With Men: Evidence From a Meta-Analysis. JACC Cardiovasc Interv. 2018 Jan
  8;11(1):24–35.
- Aksoy O, Meyer LT, Cabell CH, Kourany WM, Pappas PA, Sexton DJ. Gender
   differences in infective endocarditis: Pre- and co-morbid conditions lead to different
   management and outcomes in female patients. Scandinavian Journal of Infectious
   Diseases. 2007 Jan 1;39(2):101–7.
- Sambola A, Fernández-Hidalgo N, Almirante B, Roca I, González-Alujas T, Serra B, et
   al. Sex Differences in Native-Valve Infective Endocarditis in a Single Tertiary-Care
   Hospital. American Journal of Cardiology. 2010 Jul 1;106(1):92–8.
- 263 9. Sambola A, Fernández-Hidalgo N, Almirante B, Roca I, González-Alujas T, Serra B, et
  264 al. Sex differences in native-valve infective endocarditis in a single tertiary-care
  265 hospital. Am J Cardiol. 2010 Jul 1;106(1):92–8.
- 266 10. Del Val D, Linke A, Abdel-Wahab M, Latib A, Ihlemann N, Urena M, et al. Long-Term
  267 Outcomes After Infective Endocarditis After Transcatheter Aortic Valve Replacement.
  268 Circulation. 2020 Oct 13;142(15):1497–9.

| 269 | <ol> <li>Regueiro A, Linke A, Latib A, Ihlemann N, Urena M, Walther T, et al. Association</li></ol>          |
|-----|--------------------------------------------------------------------------------------------------------------|
| 270 | Between Transcatheter Aortic Valve Replacement and Subsequent Infective                                      |
| 271 | Endocarditis and In-Hospital Death. JAMA. 2016 Sep 13;316(10):1083–92.                                       |
| 272 | <ol> <li>Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta J-P, Del Zotti F, et al. 2015</li></ol>   |
| 273 | ESC Guidelines for the management of infective endocarditisThe Task Force for the                            |
| 274 | Management of Infective Endocarditis of the European Society of Cardiology                                   |
| 275 | (ESC)Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the                              |
| 276 | European Association of Nuclear Medicine (EANM). Eur Heart J. 2015 Nov                                       |
| 277 | 21;36(44):3075–128.                                                                                          |
| 278 | <ol> <li>Kappetein AP, Head SJ, Généreux P, Piazza N, van Mieghem NM, Blackstone EH, et al.</li></ol>        |
| 279 | Updated standardized endpoint definitions for transcatheter aortic valve implantation:                       |
| 280 | the Valve Academic Research Consortium-2 consensus document. J Am Coll Cardiol.                              |
| 281 | 2012 Oct 9;60(15):1438–54.                                                                                   |
| 282 | <ol> <li>Sevilla T, Revilla A, López J, Vilacosta I, Sarriá C, Gómez I, et al. Influence of Sex on</li></ol> |
| 283 | Left-Sided Infective Endocarditis. Rev Esp Cardiol. 2010 Dec 1;63(12):1497–500.                              |
| 284 | <ol> <li>Fournier P-E, Thuny F, Richet H, Lepidi H, Casalta J-P, Arzouni J-P, et al.</li></ol>               |
| 285 | Comprehensive diagnostic strategy for blood culture-negative endocarditis: a                                 |
| 286 | prospective study of 819 new cases. Clin Infect Dis. 2010 Jul 15;51(2):131–40.                               |
| 287 | <ol> <li>Udell JA, Fonarow GC, Maddox TM, Cannon CP, Frank Peacock W, Laskey WK, et al.</li></ol>            |
| 288 | Sustained sex-based treatment differences in acute coronary syndrome care: Insights                          |
| 289 | from the American Heart Association Get With The Guidelines Coronary Artery Disease                          |
| 290 | Registry. Clin Cardiol. 2018 Jun;41(6):758–68.                                                               |
| 291 | <ol> <li>Nanna MG, Wang TY, Xiang Q, Goldberg AC, Robinson JG, Roger VL, et al. Sex</li></ol>                |
| 292 | Differences in the Use of Statins in Community Practice. Circ Cardiovasc Qual                                |
| 293 | Outcomes. 2019 Aug;12(8):e005562.                                                                            |
| 294 | 18. Redfors B, Angerås O, Råmunddal T, Petursson P, Haraldsson I, Dworeck C, et al.                          |
| 295 | Trends in Gender Differences in Cardiac Care and Outcome After Acute Myocardial                              |
| 296 | Infarction in Western Sweden: A Report From the Swedish Web System for                                       |
| 297 | Enhancement of Evidence-Based Care in Heart Disease Evaluated According to                                   |
| 298 | Recommended Therapies (SWEDEHEART). J Am Heart Assoc. 2015 Jul                                               |
| 299 | 14;4(7):e001995.                                                                                             |
| 300 | <ol> <li>Crabtree TD, Pelletier SJ, Gleason TG, Pruett TL, Sawyer RG. Gender-Dependent</li></ol>             |
| 301 | Differences in Outcome After the Treatment of Infection in Hospitalized Patients.                            |
| 302 | JAMA. 1999 Dec 8;282(22):2143–8.                                                                             |
| 303 | <ol> <li>Sousa C, Nogueira PJ, Pinto FJ. Gender Based Analysis of a Population Series of</li></ol>           |
| 304 | Patients Hospitalized with Infective Endocarditis in Portugal – How do Women and Men                         |
| 305 | Compare? Int J Cardiovasc Sci. 2021 Jul 12;34(4):347–55.                                                     |
| 306 | <ol> <li>Bansal A, Cremer PC, Jaber WA, Rampersad P, Menon V. Sex Differences in the</li></ol>               |
| 307 | Utilization and Outcomes of Cardiac Valve Replacement Surgery for Infective                                  |
| 308 | Endocarditis: Insights From the National Inpatient Sample. Journal of the American                           |
| 309 | Heart Association. 2021 Oct 19;10(20):e020095.                                                               |

# 312 313 Table 1 - Baseline characteristics, comparison between men and women

|                                                 | Women           | Men             | Unadjusted |
|-------------------------------------------------|-----------------|-----------------|------------|
|                                                 | (n=217)         | (n=362)         | p-value    |
| Baseline characteristics                        |                 |                 |            |
| Age, years $\pm$ SD                             | $80.0\pm7.5$    | $77.9\pm7.5$    | 0.001      |
| Body mass index (kg/m2)                         | $27.9\pm6.1$    | $28.0\pm5.7$    | 0.842      |
| Diabetes mellitus, n (%)                        | 71 (32.7)       | 145 (40.1)      | 0.077      |
| COPD, n (%)                                     | 47 (21.7)       | 111 (30.7)      | 0.019      |
| Atrial fibrillation, n (%)                      | 99 (45.6)       | 148 (41.0)      | 0.276      |
| Chronic kidney disease, n (%)                   | 98 (45.6)       | 150 (42.1)      | 0.421      |
| Previous Stroke, n (%)                          | 19 (8.8)        | 56 (15.5)       | 0.020      |
| Previous heart surgery, n (%)                   | 28 (12.9)       | 101 (27.9)      | <0.001     |
| Previous infective endocarditis, n (%)          | 4 (1.9)         | 2 (0.6)         | 0.134      |
| Logistic EuroSCORE, % (SD)                      | $17.4 \pm 12.2$ | $17.0 \pm 12.5$ | 0.774      |
| Left ventricular ejection fraction, $\% \pm SD$ | 57.7 ± 11.2     | $51.0\pm13.9$   | <0.001     |
| Mitral regurgitation $\geq$ 2, n (%)            | 58 (26.7)       | 84 (23.2)       | 0.340      |
| Mean transaortic gradient, mean $\pm$ SD, mmHg  | $48.2\pm16.1$   | $43.4\pm15.5$   | <0.001     |
| Periprocedural characteristics                  |                 |                 |            |
| Implantation site                               |                 |                 |            |
| Catheterization laboratory, n (%)               | 87 (40.1)       | 147 (40.6)      | -          |
| Operating hybrid room, n (%)                    | 16 (7.4)        | 20 (5.5)        | 0.670      |
| Hybrid room                                     | 114 (52.5)      | 195 (53.9)      | _          |

| Transfemoral                              | 197 (90.8)     | 311 (86.4)     | 0.115 |
|-------------------------------------------|----------------|----------------|-------|
| Prosthesis type                           |                |                |       |
| Balloon-expandable, n (%)                 | 111 (51.9)     | 187 (52.5)     | 0.879 |
| Self-expanding, n (%)                     | 103 (48.1)     | 169 (47.5)     | 0.879 |
| Antibiotic prophylaxis                    |                |                |       |
| B-Lactam alone, n (%)                     | 182 (93.8)     | 296 (93.7)     |       |
| Vancomycin alone or in combination, n     |                |                | 0.930 |
| (%)                                       | 8 (4.1)        | 12 (3.8)       |       |
| Other                                     | 4 (2.1)        | 8 (2.5)        |       |
| In-hospital Outcomes (TAVR)               |                | )              |       |
| Acute renal failure, n (%)                | 27 (12.7)      | 47 (13.3)      | 0.827 |
| Stroke, n (%)                             | 9 (4.2)        | 18 (5.1)       | 0.637 |
| Major vascular complication, n (%)        | 19 (8.9)       | 19 (5.4)       | 0.103 |
| Major bleeding, n (%)                     | 24 (11.3)      | 30 (8.5)       | 0.277 |
| Sepsis, n (%)                             | 23 (11.8)      | 33 (10.1)      | 0.543 |
| New pacemaker implantation, n (%)         | 43 (19.8)      | 62 (17.2)      | 0.434 |
| Residual aortic regurgitation $\geq 2$ at | (              |                |       |
| discharge, n (%)                          | 33 (15.6)      | 49 (13.9)      | 0.576 |
| Mean residual transaortic gradient, mean  |                |                |       |
| ± SD, mm Hg                               | $11.6 \pm 7.1$ | $10.9 \pm 5.6$ | 0.201 |
| Length of hospital stay, median (IQR),    |                |                |       |
| days                                      | 9.0 [6.0-15.0] | 9.0[6.0-14.0]  | 0.493 |
| 315                                       |                |                |       |
| 316                                       |                |                |       |
| 317                                       |                |                |       |
| 318                                       |                |                |       |
| 510                                       |                |                |       |

## 

## 321 Table 2 - Main clinical characteristics, management, and outcomes of IE episode by sex

|                                           | Women         | Men           | Unadjusted      |
|-------------------------------------------|---------------|---------------|-----------------|
|                                           | N=217         | N=362         | <i>p</i> -value |
| Time from TAVR, median (IQR), days        | 158 [45-428]  | 204 [70-493]  | 0.113           |
| Initial symptoms                          |               |               |                 |
| Fever, n (%)                              | 161 (76.3)    | 283 (79.9)    | 0.308           |
| New-onset heart failure, n (%)            | 96 (45.5)     | 141 (40.1)    | 0.206           |
| Neurological, n (%)                       | 39 (18.7)     | 66 (18.7)     | 0.991           |
| Systemic embolism, n (%)                  | 28 (13.4)     | 45 (12.8)     | 0.825           |
| Skin lesions                              | 7 (3.4)       | 18 (5.1)      | 0.327           |
| Healthcare-associated infection, n (%)    | 92 (42.4)     | 158 (43.7)    | 0.769           |
| Echocardiographic findings, No./total (%) |               |               |                 |
| Perivalvular extension                    | 35 (16.1)     | 70 (19.3)     | 0.332           |
| Vegetation size [IQR], mm                 | 11 [6-15]     | 10 [6-15]     | 0.384           |
| Valve involved                            |               |               |                 |
| Mitral valve                              | 38 (17.5)     | 48 (13.3)     | 0.164           |
| Isolated THV                              | 90 (41.5)     | 194 (53.6)    | 0.005           |
| Right-sided                               | 13 (5.9)      | 19 (5.2)      | 0.711           |
| Multiple localizations                    | 76 (35.0)     | 101 (27.0)    | 0.077           |
| Causative microorganisms, No./total (%)   |               |               |                 |
| Staphylococcus aureus, n (%)              | 56/203 (27.6) | 81/350 (23.1) | 0.243           |
| Methicillin-resistant                     | 11/56 (19.6)  | 14/81 (17.3)  |                 |
| Coagulase-negative staphylococci, n (%)   | 32/203 (15.8) | 65/350 (18.6) | 0.403           |
| Methicillin-resistant                     | 9/32 (28.1)   | 19/65 (29.2)  |                 |

|       | Enterococci, n (%)                             | 52/203 (25.6)  | 91/350 (26.0)  | 0.921 |
|-------|------------------------------------------------|----------------|----------------|-------|
|       | Streptococci                                   |                |                |       |
|       | S. viridans, n (%)                             | 21/203 (10.3)  | 50/350 (14.3)  | 0.182 |
|       | S. gallolyticus (S. bovis), n (%)              | 7/203 (3.5)    | 19/350 (5.4)   | 0.289 |
|       | Others, n (%)                                  | 7/203 (3.5)    | 15/350 (4.3)   | 0.627 |
|       | Culture negative, n (%)                        | 20/203 (9.9)   | 15/350 (4.3)   | 0.009 |
| Presu | med source of entry, n (%)                     |                |                |       |
|       | Unknown, n (%)                                 | 80 (38.3)      | 126 (35.4)     |       |
|       | Procedural TAVR related, n (%)                 | 11 (5.3)       | 16 (4.5)       |       |
|       | Urological, n (%)                              | 21 (10.1)      | 30 (8.4)       |       |
|       | Odontological, n (%)                           | 3 (1.4)        | 16 (4.5)       |       |
|       | Pacemaker implantation, n (%)                  | 5 (2.4)        | 7 (2.0)        | N/A   |
|       | Skin/soft tissue infection, n (%)              | 5 (2.4)        | 14 (3.9)       |       |
|       | Digestive, n (%)                               | 6 (2.9)        | 32 (9.0)       |       |
|       | Cancer, n (%)                                  | 2 (1.0)        | 3 (0.8)        |       |
| Comp  | plications during IE hospitalization No./total |                |                |       |
| (%)   |                                                |                |                |       |
|       | Heart failure, n (%)                           | 92/203 (45.3)  | 143/348 (41.1) | 0.333 |
|       | Acute renal failure, n (%)                     | 72/189 (38.1)  | 142/324 (43.8) | 0.204 |
|       | Septic shock, n (%)                            | 62/202 (30.7)  | 93/346 (26.9)  | 0.339 |
|       | Stroke, n (%)                                  | 20/203 (9.9)   | 37/348 (10.6)  | 0.772 |
|       | Systemic embolization, n (%)                   | 22/202 (10.9)  | 36/347 (10.4)  | 0.849 |
|       | Persistent bacteremia, n (%)                   | 59/175 (33.7)  | 89/310 (28.7)  | 0.250 |
|       | Indication for surgery                         | 118 (54.4)     | 197 (54.4)     | 0.992 |
| Mana  | gement and Outcomes, No./Total (%)             |                |                |       |
|       | Antibiotic treatment alone, n (%)              | 179/211 (84.8) | 282/354 (79.7) | 0.125 |

Antibiotic + Surgery during IE hospitalization,

| = (0/) |                                      | 32/211 (15.2)    | 72/354 (20.3)    |        |
|--------|--------------------------------------|------------------|------------------|--------|
| n (%)  |                                      |                  |                  |        |
|        | Time to surgery, median (IQR), days  | 27 [6-54]        | 14 [6-36]        | 0.161  |
|        | Transcatheter valve in valve, n (%)  | 2/85 (2.4)       | 1/157 (0.6)      | 0.249  |
|        | Isolated pacemaker extraction, n (%) | 4/86 (4.7)       | 4/157 (2.6)      | 0.380  |
|        | In-hospital mortality, n (%)         | 75/212 (35.4)    | 113/356 (31.7)   | 0.373  |
|        | Relapse during follow up             | 13 (6.0)         | 34 (9.39)        | 0.147  |
|        | 1-year mortality rate, (95% CI), %   | 53.3 [46.6-60.3] | 46.7 [41.4-52.3] | 0.065* |
|        | 2-year mortality rate, (95% CI), %   | 63.0 [56.0-69.8] | 52.1 [46.5-57.9] | 0.021* |
|        | Follow-up, median (IQR), months      | 5.0 [0.8-23.1]   | 5.3 [1.3-23.8]   | 0.263  |
| 322    |                                      | R                |                  |        |
| 323    | *By log-rank test                    |                  |                  |        |
| 324    |                                      |                  |                  |        |
| 325    |                                      |                  |                  |        |
| 326    |                                      |                  |                  |        |
|        |                                      |                  |                  |        |
| 327    |                                      |                  |                  |        |
| 328    |                                      |                  |                  |        |
| 220    |                                      |                  |                  |        |

## 337 Table 3 – Univariable and multivariable analysis of baseline characteristics associated

## 338 with mortality

339

|                                                 | Univariable Analysis     | Multivariable                 |                                      |                             |  |
|-------------------------------------------------|--------------------------|-------------------------------|--------------------------------------|-----------------------------|--|
|                                                 | Hazard Ratio (95%<br>CI) | Unadjusted<br><i>p</i> -value | Analysis<br>Hazard Ratio (95%<br>CI) | Adjusted<br><i>p</i> -value |  |
| Baseline characteristics                        |                          |                               | X                                    |                             |  |
| Age                                             | 1.00 [1.00-1.02]         | 0.742                         | 0,                                   |                             |  |
| Female sex                                      | 1.31 [1.04-1.65]         | 0.022                         | 1.28 [1.02-1.62]                     | 0.035                       |  |
| Body mass index                                 | 0.99 [0.97-1.02]         | 0.616                         |                                      |                             |  |
| Diabetes mellitus                               | 1.04 [0.82-0.75]         | 0.747                         |                                      |                             |  |
| COPD                                            | 0.89 [0.69-1.16]         | 0.409                         |                                      |                             |  |
| Atrial fibrillation                             | 1.05 [0.83-1.32]         | 0.675                         |                                      |                             |  |
| Chronic kidney disease                          | 1.63 [1.29-2.05]         | <0.001                        | 1.61 [1.28-2.03]                     | <0.001                      |  |
| Previous stroke                                 | 0.79 [0.55-1.13]         | 0.187                         |                                      |                             |  |
| Previous heart surgery                          | 1.03 [0.79-1.37]         | 0.799                         |                                      |                             |  |
| Previous infective endocarditis                 | 0.76 [0.24-2.37]         | 0.620                         |                                      |                             |  |
| Logistic EuroSCORE*                             | 1.01 [1.00-1.02]         | 0.002                         |                                      |                             |  |
| Left ventricular ejection fraction, $\% \pm SD$ | 0.99 [0.99-1.00]         | 0.217                         |                                      |                             |  |
| Mitral regurgitation $\geq$ 2, n (%)            | 1.15 [0.89-1.49]         | 0.302                         |                                      |                             |  |
| Mean transaortic gradient, mean<br>± SD, mmHg   | 0.99 [0.99-1.00]         | 0.178                         |                                      |                             |  |



341 \* Not included in the multivariable analysis because of collinearity

## 342 Table 4 – Univariable and multivariable analysis of IE hospitalization events associated

## 343 with mortality in women

|                                         | Univariable Analysis  | Unadjusted      | Multivariable Analysis | Adjusted        |
|-----------------------------------------|-----------------------|-----------------|------------------------|-----------------|
|                                         | Hazard Ratio (95% CI) | <i>p</i> -value | Hazard Ratio (95% CI)  | <i>p</i> -value |
| Complications during IE hospitalization | on                    |                 |                        |                 |
| Heart failure                           | 2.55 [1.75-3.72]      | < 0.001         | 1.66 [1.02-2.68]       | 0.040           |
| Acute renal failure                     | 2.33 [1.60-3.41]      | <0.001          | ~                      |                 |
| Septic shock                            | 6.31 [4.29-9.29]      | <0.001          | 3.88 [2.43-6.22]       | 0.002           |
| Stroke                                  | 2.11 [1.24-3.59]      | 0.012           |                        |                 |
| Systemic embolization                   | 1.92 [1.12-3.28]      | 0.027           |                        |                 |
| Persistent bacteriemia                  | 3.19 [2.10-4.85]      | <0.001          | 2.09 [1.32-3.32]       | < 0.001         |
| Management                              |                       |                 |                        |                 |
| Surgery                                 | 1.19 [0.65-2.18]      | 0.579           |                        |                 |
| 345                                     |                       |                 |                        |                 |
| 346                                     |                       |                 |                        |                 |
| 347                                     |                       |                 |                        |                 |
| 348                                     |                       |                 |                        |                 |
| 349                                     |                       |                 |                        |                 |
| 350                                     |                       |                 |                        |                 |
| 351                                     |                       |                 |                        |                 |
| 352                                     |                       |                 |                        |                 |
| 353                                     |                       |                 |                        |                 |
| 354                                     |                       |                 |                        |                 |
| 355                                     |                       |                 |                        |                 |
| 356                                     |                       |                 |                        |                 |

## 357 FIGURE TITLE AND CAPTIONS

- 358
- 359 Graphical Abstract: Sex differences in infective endocarditis after transcatheter valve360 replacement
- 361
- 362 **Figure 1:** Kaplan-Meier curves comparing survival stratified by sex. Test comparing the two
- 363 groups was based on the log-rank test
- 364
- 365 **Figure 2:** Kaplan-Meier curves comparing survival stratified by surgical status and sex. Test
- 366 comparing women with and without surgery was based on the log-rank test

ournal

Journal Proproof



