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1 Introduction
Most of today’s Operating Systems (OSes) run several ap-

plications at the same time. An OS component, the scheduler,
decides what application’s thread to execute next on each
CPU core/thread. Traditional OSes, such as Linux, FreeBSD,
Darwin, and Windows implement an in kernel-space sched-
uler that may o�er one or more scheduling policies. For
instance, Linux comes with a few schedulers always built-in,
including the Completely Fair Scheduler (CFS) and the Real-
Time (RT), each supporting one or more scheduling policies,
e.g., RT supports First-In-First-Out (FIFO) or Round-Robin
(RR). The assortment of scheduling policies provided by tra-
ditional OSes is meant to provide acceptable performance for
most workloads on di�erent architectures, from embedded
devices to large multicore machines – achieving genericity.
What’s wrong with �xed policies? Yet, recent works [4,
6, 13, 20, 21, 24] have shown that such policies are subject
to performance bugs or exhibit suboptimal scheduling be-
haviours on some architectures and workloads. At the same
time, bespoken classes of application’s crave for custom poli-
cies due to a semantic gap between the application itself and
the scheduler, for example in hierarchical scheduling §2.
Patching the kernel. Patching the OS kernel scheduler may
solve suboptimal scheduling behaviours, as well as growing
the number of available scheduling policies. However, this is
outside reach for the average user, which is likely not famil-
iar with programming OS internals. Add to this, it is di�cult
or impossible to merge your own patches into the mainline
version of an OS kernel, especially when these patches are
workload-speci�c. Moreover, note that despite kernels of
most traditional OSes are extensible at runtime with kernel
modules or kernel extensions, such runtime extensions do
not allow extending the scheduler – which requires patching
and recompilation of the entire kernel.
User space scheduling. Although built-in kernel schedul-
ing policies are not reasonably modi�able, traditional OSes
provide a rich interface for applications in user-space to
change scheduling parameters and thread priorities, which
can be used to create ad-hoc policies. For instance, by us-
ing a multi-queue FIFO scheduler (in kernel-space), where
each queue is assigned a di�erent priority, and playing with

priorities (from user-space), other scheduling policies can
be implemented, such as Earliest Deadline First (EDF). How-
ever, there are two main issues with this approach: �rst, in
user-space, a scheduler has limited knowledge of the entire
system; and second, implementing a scheduler in user-space
may not be e�ective because of the additional overhead of
context switches. Indeed, in order to know about the state of
running applications and change their priorities, a scheduler
implemented in user-space (with su�cient privileges) needs
to invoke syscalls, which add considerable overhead to the
scheduling itself. On top of this, certain information such
as what thread holds which locks, may available in kernel-
space (e.g., Futex), but not easy to export to user-space on
traditional monolithic OSes.
Proposal. In this position paper we argue that it is time for
OS kernel-level schedulers to be user-programmable, from
at least a category of users, without any security related side-
e�ects. We introduce our preliminary design that borrows
the microkernels’ design principle [22] of dividing mecha-
nisms from policies, and applies that to monolithic OSes. All
scheduling related mechanisms are always built-in in the OS
kernel, while scheduling policies are modi�able, or de�nable,
at runtime by users’ applications (with speci�c privileges).

2 Motivation

Several recent papers [15, 16, 26] already highlighted the
importance of user-programmable schedulers for several use
case scenarios, including reducing network tail latency, re-
ducing overheads of high-threaded bespoken applications,
and improving the throughput of interdependent workloads.
Interdependent workloads are extensively deployed in sev-
eral scenarios, and increasingly in data-centers, including
microservices, I/O-bound applications, parallel multiprocess-
ing (e.g., MapReduce orMPIs) jobs, machine learning training
jobs, etc., and are deployed as PaaS, IaaS, and FaaS.
Adata-center scenario. Herein, we focus on FaaS-based mi-
croservices, which consist of several functions that are called
in sequence or graph [1, 18]. FaaS platforms mainly involve
the scheduling of code functions (e.g., Amazon Lambdas), be-
ing executed in functions’ runtimes, based on events. When
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faced with several sequences (or chains) of functions on a sin-
gle server, especially on an overcommitted server, scheduling
becomes tricky. We identi�ed that functions’ runtimes are
executed even if their hosted functions have no work to do –
i.e., there is no request to be handled,wasting CPU resources
and slowing down other functions, with VM or containers.
Experimental Setup. We deployed Amazon Firecracker[1]
on a1.metal servers on AWS EC2. We chose a chain of 5
microservices based on [10]. The chain performs 5 image
processing functions from ServerlessBench [33] to generate
a thumbnail. We launch the chain and record execution met-
rics, then repeat the experiment by increasing the number
of colocated chains (from 0 to 50). Input and output images
are read and store from-to AWS S3.
Experimental Results. On a single chain invocation, we
observe that the unit’s CPU idle time ratio ranges between
16% to 27% of the total CPU time used by the application.
These numbers worsen to reach 69.25% when we increase
the overcommitment ratio, thus undermining the execution
times of functions. Idle times are curtailed when running the
chains inside containers – since containers are processes, the
OS scheduler has more insight on what threads are doing.
We run our experiments a second time using Apache Open-
Whisk [27] in standalone mode (v1.0.0), an open source FaaS
platform that leverages Docker containers to run functions
and observe container idle time ratios ranging from 17.8%
to 31.6%, thus a lower CPU time waste ratio as compared to
micro-VMs but still the issue remains.
Takeaway. User-programmable schedulers can decide to
schedule function runtimes based on the knowledge of what
event a function is waiting for – which is known to the cloud
provider, to save CPU cycles.

3 Historical Perspective on Extensibility
Unsafe OS Extensibility. Traditional OS kernels are based
on the monolithic OS design, including Linux and FreeBSD.
While several other designs have been proposed [2, 11, 23,
30], monolithic remains the design of choice mostly for per-
formance reasons. One of the main issues of monolithic ker-
nels was runtime extensibility. Following the publication of
several research works that targeted this issue [28, 29], OS
architects solved that problem by introducing kernel mod-
ules (e.g., Linux) or kernel extensions (e.g., Darwin) that
enable part of an OS, like a device driver, to be loaded while
the kernel is running. Note that microkernels allow exten-
sion as a fundamental design choice: numerous kernel ser-
vices run in user-space. Despite that, none of today’s tradi-
tional OS kernels allow runtime extensibility of the in-kernel
scheduler. Hence, notable projects in the realtime commu-
nity [5, 7, 8, 32] tried to provide such functionalities via
modules/extensions, but none made it to into the mainline.

SafeOSExtensiblity. An alternative andmore recentmethod
to enhance the functionality of an OS kernel at runtime, but
in a controlled way, is eBPF. eBPF [14] is the successor of
BPF [25], originally introduced for network packet �lter-
ing/statistics into the BSD OS kernel. eBPF is a restricted
ISA, which can be easily veri�ed for a set of properties and
translated into native code for execution in kernel-space.
eBPF code can only call a subset of functions, and access
speci�c areas of memory, such as its context, and memory
maps. eBPF code can be injected only by root or administra-
tor users. An increasing number of Linux kernel subsystems
are beginning to be extended with eBPF today [3, 12, 17, 31]
and recent research works leverage the latter to improve
kernel subsystems such as the network stack [15, 16].

4 User-programmable Schedulers

We believe that the time has come to make OS kernel
schedulers programmable at runtime, by a subset of users, in
a controlled and safe way.We propose injecting scheduling
algorithms in the kernel at runtime, in such a way that its
code can be checked for properties and access only the infor-
mation and the function calls in the kernel that it is allowed
to – since the code is exposed to sensitive data when it runs
inside the kernel. The core idea is to keep existent OS ker-
nel interfaces (syscalls), but extend them when necessary,
while introducing a set of new interfaces for the controlled
execution of the in-kernel scheduling algorithms.
Scheduling solely in-kernel. Our design targets traditional
monolithic OSes, but we believe the same design also applies
to other OS architectures, including microkernels and exok-
ernels [11]. We propose an architecture in which there is an
OS scheduler running solely in kernel-space, extendable at
runtime by a subset of users of the system – not exclusively
root, and extensions are moved into the kernel and compiled
in a format that can be checked to assure integrity and secu-
rity. In a virtualization setup we do not aim at substituting
the guest OS scheduler [9, 19], instead, we aim at sharing in-
formation between the guest and host schedulers to improve
scheduling.
Multiple algorithms and users. In our architecture, a core
OS scheduler infrastructure manages multiple scheduling
algorithms, ordered in a chain, similarly to Linux scheduling
classes, and enables users with speci�c capabilities to add
scheduling algorithms at runtime. A scheduling algorithm
is a collection of methods and �elds (variables), that can ma-
nipulate threads and/or process descriptors of an OS. We
believe that having only a root user being able to con�gure
the scheduler is too limited, but we do not want any user to
be capable of doing that either. Therefore, we propose to add
to the OS a set of capabilities related to scheduling.



Towards User-Programmable Schedulers
in the Operating System Kernel SPMA’22, April 5, Rennes, France

Scheduler’s sandbox. The scheduler is a core part of an OS,
and inserting a buggy scheduling algorithm may easily ren-
der the entire system unusable. Moreover, an in-kernel OS
scheduler may potentially access numerous user information,
if not all. We aim to solve these potential problems by enforc-
ing that the user moves its code into the kernel in a format
that can be syntactically checked for speci�c properties or
formally veri�ed, and by limiting the exposed available inter-
faces based on the capability of the user that adds the sched-
uler algorithm. Ultimately, a scheduler algorithm code can
be for example in an intermediate representation/bytecode
and interpreted or JITed, but potentially similar properties
can be guaranteed in another way (e.g., hardware-sandbox
execution, and proofs on machine instruction code).

5 Conclusion
We highlighted that traditional OS schedulers, developed

to support the general case, can be suboptimal, if not buggy,
for certainworkloads. Thus, users are looking for programmable
schedulers. We presented a design and details on a future
prototype to extend in-kernel OS schedulers at runtime with
new policies, in a safe and controlled manner, by a group of
users – not just root. Thus, usable also in cloud deployments.
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