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Abstract

Purpose: Deep brain stimulation (DBS) is an interventional treatment for some neurological
and neurodegenerative diseases. For example, in Parkinson’s disease, DBS electrodes are posi-
tioned at particular locations within the basal ganglia to alleviate the patient’s motor symptoms.
These interventions depend greatly on a preoperative planning stage in which potential targets
and electrode trajectories are identified in a preoperative MRI. Due to the small size and low
contrast of targets such as the subthalamic nucleus (STN), their segmentation is a difficult task.
Machine learning provides a potential avenue for development, but it has difficulty in segment-
ing such small structures in volumetric images due to additional problems such as segmentation
class imbalance.

Approach: We present a two-stage separable learning workflow for STN segmentation con-
sisting of a localization step that detects the STN and crops the image to a small region and a
segmentation step that delineates the structure within that region. The goal of this decoupling is
to improve accuracy and efficiency and to provide an intermediate representation that can be
easily corrected by a clinical user. This correction capability was then studied through a human–
computer interaction experiment with seven novice participants and one expert neurosurgeon.

Results: Our two-step segmentation significantly outperforms the comparative registration-
based method currently used in clinic and approaches the fundamental limit on variability due
to the image resolution. In addition, the human–computer interaction experiment shows that
the additional interaction mechanism allowed by separating STN segmentation into two steps
significantly improves the users’ ability to correct errors and further improves performance.

Conclusions: Our method shows that separable learning not only is feasible for fully automatic
STN segmentation but also leads to improved interactivity that can ease its translation into
clinical use.
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1 Introduction

Deep brain stimulation (DBS) is a common method for the treatment of Parkinson’s disease (PD)
as well as an increasingly used method for addressing the symptoms of other neurological dis-
orders such as epilepsy. The critical aspect of DBS is the accurate positioning of stimulation
electrodes at a particular anatomy of interest determined in a preoperative planning stage that
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combines imaging and symptomatology information.1 Due to the complexity of determining the
appropriate electrode trajectory, the anatomies of interest must be accurately segmented from
preoperative images.

For DBS preoperative planning, segmentation is predominantly determined via registration
of the patient images into an atlas-space in which the anatomy of interest, often the subthalamic
nuclei (STN), as well as other salient areas, have been presegmented.2,3 The use of a preseg-
mented atlas has several advantages. From a clinical point of view, it is possible to port a large
number of segmented regions from the atlas into the patient-space, simplifying the computa-
tional aspect of the workflow. From a research perspective, using an atlas, patient-specific infor-
mation from the patient images can be ported back into a common atlas co-ordinate system,
allowing for populationwise information to be discerned, which could help guide treatment.4

The main issue with this form of segmentation, however, is that the registration process must
be deformable but sensitive to the relatively low-contrast and small subcortical gray matter struc-
tures despite their proximity to the larger and more salient ventricles. In addition, deformable
registration is computationally intensive and sensitive to parameterization.

Thus, a deep learning approach that segments the left and right STNs would be highly
beneficial from a workflow point of view, rendering the segmentation more efficient and robust
to changes in the underlying image. Convolutional neural networks (CNNs) have become an
increasingly popular tool for many aspects of cranial MRI via deep learning, having a number
of desirable properties (such as translation invariance for its lowermost layers) and because of
the large variety of network structures that make use of them.5 However, directly segmenting the
STN from the full volumetric images is problematic as they are small with low salience com-
pared with “distractors,” which represent anatomy that is visually complex with higher contrast
(and thus may require more computational power to detect) but does not provide direct infor-
mation about the STN segmentation itself. (For example, cortical gray/white matter interfaces
could be visually similar to the boundary of the STN, but they do not provide any information
about it.) In addition, it is necessary to use relatively high-resolution images for segmentation,
requiring a large amount of memory for even basic CNNs, with the vast majority (well over 99%
of voxels) not being inside or even proximal to the STN.

The use of CNNs themselves is not new to STN segmentation. Previous work by Milletari
et al.6 investigated several different CNN architectures on this particular problem, using patch
voting to localize the STN. The networks were designed to be sufficiently lightweight that the
convolutional operators could be applied to whole images without overwhelming their computa-
tional resources. Although their two-dimensional (2D) methods experienced average accuracies
of under 20% Dice, their volumetric method substantially surpassed that to an average of 61.4%
Dice for correctly localized STNs. The downside of such a patch-based framework is that the
patch-voting procedure may spuriously identify the STN in other regions of the brain, an event
that Milletari et al. called a failure. In their method, a failure rate of between 5% and 10% in
terms of all subcortical structures was achieved. However, Milletari et al. did not separate this
result per structure, and the set of segmented structures included several larger and more salient
structures where one would intuitively expect a lower probability of failure, which suggests that
the failure rate may be even higher for the STN in particular.

These approaches tend to use a more traditional end-to-end learning approach in which a
singular learnable component (i.e., neural network) is constructed for a singular task, with other
tasks being largely accomplished by pre- or postprocessing. The advantage of this is largely its
simplicity, with any coupling between learned concepts being handled automatically within the
singular learned network. For example, in the method proposed by Milletari et al.,6 the network
must learn representations that encode not only information about whether or not an individual
voxel is within a structure but also more global information regarding the direction from the
voxel to the center of the structure, and it is left to the algorithm to determine how much com-
putational resources are dedicated to each task. This does have fundamental disadvantages
though as it often means larger amounts of data are necessary (the cited previous approaches
use databases consisting of one hundred or more annotated patient images) for the network to
understand this coupling unless the network itself (along with pre- and postprocessing) is
designed in some manner to assist with this distribution, conceptually moving toward separable
learning. The fundamental main difference between separable learning and this is the separation
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of training these structures, which itself is beneficial as training could be distributed more readily
across multiple resources and updated independently. In addition, this leads to less wasted train-
ing time if the concepts fundamentally rely on each other, that is, if the first learning component
fails, then the second must as well. Until sufficient training has occurred so thatthe first com-
ponent does not provide any meaningful, nonrandom predictions, the second component effec-
tively would experience a “garbage-in-garbage-out” scenario. Thus, separable learning saves on
this otherwise wasted effort by approximating the final prediction quality of earlier learned com-
ponents, rather than waiting for these components to reach this accuracy and then training the
downstream components separately using these approximations.

Leveraging 7 Tesla B0 field strength (i.e., 7T) images toward the more clinically available
3T ones was explored by Milchenko et al.7 and Kim et al.8 who used a collection of seven pre-
segmented 7T images as a multi-atlas. By having multiple users segment the 7T images, they were
also able to determine approximate inter-rater variabilities for STN segmentation (although at a
higher resolution and contrast than at 3T) of between 55% and 71% Dice coefficient, indicating
the difficulty of this problem and providing a rough benchmark for determining STN segmenta-
tion quality. This variability was highlighted by Duchin et al.9 on 7T images showing a high
patient variability in terms of the STN’s volume and extent. Both Milchenko et al. and Kim et al.
recognized the difficulty of directly segmenting 3T clinical images, hence the reliance on higher
contrast clinical atlases, which are problematic themselves due to high-field image distortion.
Although this distortion is more pronounced in cortical regions, Lau et al.10 found that the geo-
metric distortion between 3T and 7T MRI is on the order of 1 to 2 mm around the subthalamic
nucleus, rendering it more difficult to directly use 7T image registration given the lack of contrast
in the 3T image to correct for these local distortions. Zhao et al.11 combined the two approaches
and applied U-Nets to directly segmenting the STN on high-resolution susceptibility maps and
achieved an accuracy on the order of 78% Dice, although they only used healthy subjects.

1.1 Contributions

The goal of this paper is to develop an efficient deep learning approach to STN segmentation
using traditional CNN components. To overcome the issue of maintain resolution while limiting
the required computational memory required for training the network, the segmentation is split
into two separate pieces, each with a distinct focus. The first is a lightweight network designed to
work with the full volumetric image, but only to roughly estimate the location of the left and right
STNs. The second network then uses heavily cropped images centered at that location, segment-
ing the STN located within. As the cropped images are orders of magnitude smaller than the
full volumetric image, the problem of inherent class imbalance is highly mitigated and a larger
amount of computational power can be dedicated to it without overwhelming the computational
memory. To the best of the author’s knowledge, this is the first separable machine learning infra-
structure designed to segment specifically the STN in clinical quality MR images and thus the
first to investigate human–computer interaction (HCI) aspects in this particular context.

2 Materials and Methods

2.1 Images

Ten patients (F ¼ 4, M ¼ 6) were extracted from the pyDBS database2 with corresponding
T1-weighted (T1w) (Phillips Achieva 3T, GRE with TR ¼ 11, TE ¼ 4.6, FA ¼ 15) and T2-
weighted (T2w) (Phillips Achieva 3T, T2 TSE with TR ¼ 3035, TE ¼ 80, ETL ¼ 15, 2 aver-
ages) images both with isotropic 1 mm spacing. The collection and use of this data was approved
by the Institutional Research Ethics Board. The T2w images were resampled into their corre-
sponding T1w image space, with the T1w image space being consistently larger than that of the
T2w image. They were then stored in RAS orientation and symmetrically zero-padded to a size
of 256 × 256 × 192 voxels to maintain a consistent image size. The images, having been col-
lected at the same time and resampled into the same space, are considered to be coregistered,
and no registration errors were observed by the clinical expert.
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2.2 Registration Approach

To contextualize the performance of the proposed framework, a comparative method is intro-
duced. The current clinical state-of-the-art method in DBS preoperative planning is the use of
deformable registration, porting the segmentation from a preannotated image to the current
patient image.2 The comparative approach uses the ParkMedAtlis atlas version 3,4 which is reg-
istered to the patient image using the Advanced Normalization Toolkit (ANTs).12

The first step is skull-stripping the image using BrainVisa13 to acquire the brain mask. The
initial rigid and then affine registration are acquired using mutual information within the brain
mask. This allows for an estimated subcortical region mask to be derived. This mask is then
used to update the affine registration using mutal information within the subcortical mask. The
final deformable portion used ANTs SyN12 using cross-correlation as the metric. The use of a
subcortical mask to refine the affine registration is required to ensure that the registration has
adequate performance for subcortical structures, rather than aligning the more salient, but more
variable, cortical ones and thus providing a better initialization for the deformable registration
step in the region surrounding the STN and other structures of interest.

2.3 Ground Truth Segmentation

To determine ground truth segmentations, a clinical expert modified the atlas-based segmenta-
tions to agree to salient edges in the T2w MRI using ITKSnap in which both the T1w and T2w
images could be readily visualized in tandem. The use of the atlas-based segmentations as an
initial guess at the ground truth allowed for the variability between manual segmentations to be
more controlled. For each patient, the T1-weighted image was deformably registered to the
version 3 of the ParkMedAtlis atlas4 as described in Sec. 2.2.

2.4 STN Localization

The network architecture is shown in Fig. 1. This architecture is designed to be multiresolution,
that is, to contain a series of levels that process the image information at a particular pixel size.
This is conceptually similar to networks such as U-Nets15 in that different levels address the
machine learning problem using information present at different granularities.

The crucial aspect of this network that makes it usable is the sampling operator that, at each
level, restricts the attention of the network to a smaller area in which it believes the STN is
located. This massively reduces the amount of memory needed as the region sampled is orders
of magnitude smaller in volume that the original image at the finest-resolved levels of the net-
work. However, this operator is highly nondifferentiable with respect to the co-ordinates of the
center of the region, meaning that the network cannot use the finest-resolution estimate as the
final estimate in training as the gradients would not be able to propagate to coarser-resolution
layers. To overcome this difficulty, the estimates are assigned a non-negative weight (that sum to
1) for each resolution level, allowing the error gradients to immediately flow to each resolution
level simultaneously.

For training, data augmentation including in-plane rotations (std. 10 deg) and three-dimensional
translations (std. 8.33 mm iso. or 5 mm in each direction) was applied to each dataset 50 times in
each epoch. The localization network was trained from scratch with a batch size of 16. The Adam
optimizer was used with a learning rate of 10−3 and an exponential decay rate of 0.05 per epoch.

The training was performed in a leave-one-out cross-validation style in which one dataset
was used for testing, one of the remaining datasets was randomly selected as the validation data-
set (to determine the number of training epochs), and the remainder were used for training the
network weights. The network with the best performance on the validation dataset was then
applied to the testing dataset and saved for further experiments.

2.5 STN Segmentation

Given the approximate locations from the previous network, the image can be cropped to two
single patches, ideally centered on each of the left and right STNs. The patch size chosen was
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24 × 24 × 24 voxels, which allows for ∼3σ error to occur in either direction while maintaining
the entirety of the STN within the volume. As with the previous system, dataset augmentation
(translation std. 3 mm in each dimension, rotation std. 10 deg) is used to increase the network’s
robustness both to the input image and to localization errors.

Because of the greatly reduced image size, a more traditional V-Net16 style architecture could
be used without overwhelming the memory capabilities of the learning system. There are three
principle differences between our network and the original V-Net:

1. The dense feature stacks are implemented not by concatenation but by maintaining a larger
number of independent convolutions that are added in-place followed by appending the
output to the list of inputs. This minimizes the amount of memory required by minimizing
the number of concatenation operators that duplicate the information in the tensors. The
difference between this memory-efficient dense layer and a regular dense layer is shown
in Fig. 2.

2. The pooling operators, instead of using strided convolution, use a “consolidation” con-
volution followed by max-pooling. This consolidation convolution is similar to the
memory-efficient dense layer, taking a list of inputs that have a kernel applied to each
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Fig. 1 Multiresolution network for the localization of the STN (replicated from Ref. 14).
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and then summimg, but instead of appending the result to the list, only the single resultant
image is returned. This simplifies the computational graph by ensuring that, before each
max-pool, the feature stack is transformed from a list of images into a single image.
Together, these act similarly to a strided convolution but with additional nonlinearity.

3. The contribution to the segmentation is directly computed at each level, rather than requir-
ing a final convolution operator to combine them. This again avoids the use of concat-
enation, allowing for deeper networks.

The goal of these modifications is to allow for more dense layers to be added to the network
without quickly exhausting the memory supply on the GPU. The overall architecture is shown in
Fig. 3. The loss function used in training is the unweighted combination of the Dice coefficient
(both foreground and background) and the mean binary cross-entropy. The binary cross-entropy
term allows the network to quickly converge to an approximately correct STN, whereas the two
Dice terms allow it to perform fine-tuning.

The segmentation network was also trained from scratch with a batch size of 32 for 100
epochs with 50 augmented versions of each image per epoch. The Adam optimizer was used
with a learning rate of 10−3. Again, the training was performed in a leave-one-out cross-
validation style in which one dataset was used for testing and the remainder were used for
training the network weights. To determine the accuracy of the segmentation networks, the
localization from the corresponding localization network (i.e., the one with the same testing
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dataset) was used to get an accurate representation of the localization error without introducing
data leakage.

2.6 Human–Computer Interaction Study

One of the primary motivations behind separable learning is to improve the interactive capabil-
ities of machine learning while still being fully automatic. For this framework, in particular,
having a separation between the localization and segmentation components of STN segmenta-
tion allows the user two opportunities to correct the algorithm. The first is to relocalize the STN,
that is, to replace the centroid that is automatically estimated by the network with their own. This
means that, in the case of extreme error on the part of the localization network, the user can
readily correct it by simply clicking on the STN in the image. The second interaction mechanism
is the most common: direct segmentation editing, that is, if the segmentation is largely correct,
the user can relabel individual voxels. Often, this is the only interaction mechanism provided to
clinicians, meaning that, in the case of very large segmentation errors, the correction process is,
in essence, manual segmentation.

To analyze this interaction mechanisms, we created an HCI experiment. In this experiment,
the participant is given an automatically generated segmentation of the left and right STNs using
the described method although the localization component is given a random isotropic Gaussian-
distributed error with a standard deviation of 8.66 mm before applying the segmentation com-
ponent. This allows the initial automatic segmentations to have Dice coefficients between 0%
and 85%. The participant can then correct the segmentation either by changing the localization,
i.e., the centroid location (referred to as interaction mechanism A), or by painting over the seg-
mentation, changing the label or voxels one at a time (referred to as interaction mechanism B).
Which mechanism is provided is told to the user via text before the interface is launched as well
as being encoded in the color of the interface (light red for interaction mechanism A and light
blue for interaction mechanism B), and the mechanism is randomly assigned using counter-
balancing to control for fatigue. Another interface (light green, shown in Fig. 4) was implemented
without editing capabilities. Interaction mechanisms A and B refer to different fundamental types
of interaction and thus could likely be seen as complementary in practice.18

Seven novice participants (M ¼ 4, F ¼ 3) were recruited and performed eight trials per
day for 4 to 10 days. Each of the eight trials used a different image. The ninth image and gold

Fig. 4 Interface used in the HCI study. The interface comes in three colors: light green indicating
no segmentation editing mechanism (used for habituating the participant to the task), light red
indicating relocalization as the sole editing mechanism, and light blue indicating painting as the
sole editing mechanism. The left and right STNs are shown in cyan and magenta, respectively.
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standard was shown to the participants at the beginning in the light green interface for the par-
ticipants to acclimate to navigating the interface (e.g., changing slides in the three 2D views,
zooming, and switching between T1w and T2w images) and to better understand the anatomy.
While the participant interacts with an interface, all of the actions are saved in a log file along
with their timestamps and Dice coefficients for the current segmentation. Immediately after inter-
acting with the interface, the participant is presented with an electronic NASATask Load Index
(TLX)19 form, which is a common tool for quantifying subjective aspects of usability, and these
results are also logged.

Our concrete hypotheses are as follows:

1. Interaction mechanism Awill result in higher postcorrection Dice coefficients than inter-
action mechanism B when the initial segmentation Dice coefficients are low, that is,
below 40%.

2. Interaction mechanism A will be interpreted as being more usable generally,
3. Response times using interaction mechanism Awill be faster than those using interaction

mechanism B when correction is required and will be equivalent when correction is not
required.

3 Results

3.1 STN Localization

Quantitative results for STN localization can be found in Table 1. Overall, the method came
within a few millimeteres of the centroid location, indicating that a sufficiently high level of
accuracy could be achieved for the purpose of restricting the image to a smaller region of interest
surrounding the STN. This method was also found to have statistically significantly better per-
formance than the use of deformable registration, along with being much faster to compute. This
improvement in performance verifies our hypothesis that a multiresolution CNN is well-suited
for this particular problem, allowing for coarser-resolution levels to roughly localize the STN
based on larger surrounding anatomy whereas finer-resolution levels can focus on the particular
intensity distribution of the STN, undistracted by the more salient proximal structures.

3.2 STN Segmentation

Qualitative results of the segmentation are shown in Fig. 5. Figure 6 shows the improvement in
segmentation accuracy resulting from changing from the deformable registration-based result to
the neural network constructed at various depths. The Dice improvement is shown rather than
the Dice coefficients directly to control for the variability introduced by the difficulty of the
particular patient dataset, thus only showing the variability that results from the neural network
itself. This also allows for paired Student’s t-tests to be performed across the two approaches,

Table 1 Quantitative results for estimating the STN centroid location.
The Δ column indicates the improvement (i.e., difference) of the pro-
posed multiresolution CNN method over the traditional deformable
registration method.

Multiresolution
CNN error

(mm)

Deformation
registration
error (mm) Δ (mm) p

RL 0.80� 0.64 1.21� 0.90 0.41� 0.86 —

AP 0.94� 0.66 1.99� 1.43 0.97� 0.32 —

SI 1.18� 1.02 1.87� 1.66 0.69� 0.64 —

Total 2.03� 0.81 3.39� 1.70 1.36� 0.63 0.29%
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noting that, with the exception of depth 10, all results are statistically significant after Holm–

Bonferroni correction.
To indicate an acceptable level of error, we can compare them against the Dice coefficients

generated by offsetting the manual segmentations by a small amount, specifically a 1 voxel
(1 mm) dilation and a 1 voxel shift in any of the cardinal directions to simulate potential var-
iabilities such as subvoxel coregistration error between the T1w and T2w images. (An example
of this is shown in Fig. 7). These errors are likely higher than the expected interoperator vari-
ability but indicate what Dice coefficients are globally subvoxel and can be computed directly
from the reference segmentations available in our dataset. The results of this evaluation are
given in Table 2. The proposed neural network significantly outperformed each of these offset

Fig. 5 Qualitative results are shown for two patients. The T1w MR images cropped to the STN
region displaying the proposed method overlapped with the manual segmentation are shown in
columns (a) and (b) for the left and right STNs, respectively. The same for the T2w images is
shown in columns (c) and (d) for the left and right STNs, respectively. For each image, the manual
segmentation is shown in magenta, the automatic segmentation in cyan, and the overlap in yellow.

Fig. 6 Improvement in Dice coefficients comparing the network with deformable registration (solid
black line, y -axis to the left). The curve shows a distinct double descent with an early peak at
a depth of 6, the worst performance at a depth of 10, but improved performance after that depth.
p-values determined by the student’s t -test are shown below (solid gray line, y -axis to the right)
with a dashed line marking the 5% level.
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segmentations, indicating that it is within a general accuracy of 1 voxel, which likely renders it
within the variability expected in the manual segmentation due to partial volume effects and
small patient motion. The registration approach was significantly better for some, but not all,
of these offsets, indicating that its performance is comparable to having a 1 voxel accuracy but is
less likely to be within the variability of the manual segmentation itself. Due to the very small
size of the STN, it is necessary to contextualize Dice accuracy in terms of the possible variability
of the reference segmentations. Previous results in the literature suggested that interoperator
variability for STN segmentation is 63% Dice, indicating this as the level of approximate human
performance for this task.20

3.3 Human–Computer Interaction Study

Figure 8 shows the relationship between the initial segmentation quality and the quality of the
corrected segmentation, both measured in Dice, for both interaction mechanism A (red) and
interaction mechanism B (blue). The black line is the 45 deg line, showing when the initial and
final segmentations were of the same quality, and the red and blue lines are the regression lines
for interaction mechanisms A and B, respectively. Notably, for many of the results in which the
initial quality had a high Dice coefficient (i.e., higher than 50%), the responses fall on this line,
principally due to the participant determining that the segmentation was “close enough” and
exiting the interface (which we call a skip).

From Fig. 8, it appears that interaction mechanism A tended to result in higher performing
segmentations than interaction mechanism B regardless of the initial segmentation quality. This
general observation was confirmed using a Wilcoxon rank-sum test with details shown in

(a) (b) (c)

Fig. 7 Example perturbation for shifting in the left (a) and superior (b) directions and for dilation.
For each, the manual segmentation is shown in magenta, the perturbation in cyan, and the overlap
in yellow.

Table 2 Quantitative results for segmenting the STN.

(n ¼ 20)
Dice

coefficient

p-value
versus
Prop.

p-value
versus
Reg.

Proposed CNN (depth 6) 61.9 ± 9.5% — —

Deformable registration-based 56.3 ± 9.7% 5.3 × 10−4 —

1 mm dilation 50.5 ± 2.8% 2.1 × 10−32 2.8 × 10−4

1 mm LR shift 54.2 ± 8.1% 5.4 × 10−6 8.1 × 10−2

1 mm AP shift 53.0 ± 6.8% 5.3 × 10−8 1.3 × 10−2

1 mm SI shift 55.0 ± 5.5% 2.0 × 10−7 7.7 × 10−2

The p-values are determined via a two-factor ANOVA test in which the STN
(patient as well as side) is one factor and the other is the type (i.e., proposed
method, registration-based, etc.). The p-value given is for the difference be-
tween the methods and statistically significant results (after Holm–Bonferroni
correction with a threshold of 5%) are shown in bold.
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Table 3. Notably, this confirms our original hypothesis, as well as a stronger version that inter-
action mechanism A also outperformed interaction mechanism B even when the initial segmen-
tation quality was high.

In terms of time, Fig. 9 shows the amount of time taken for each interaction mechanism.
This is separated between when the user actively corrected the segmentation versus a skip.
The difference between the two methods when correction is applied is fairly clear (Wilcoxon
rank-sum test result, p ¼ 1.3 × 10−24) whereas the difference between the mechanisms for the
time taken to skip editing is only barely statistically significant prior to statistical correction
(Wilcoxon rank-sum test result, p ¼ 0.039) and is thus considered insignificant. This verifies
both aspects of our second hypothesis, i.e., that interaction mechanism A will lead to faster
segmentation editing than interaction mechanism B when such correction is deemed necessary
but will be equivalent otherwise. For interaction mechanism A, the proportion skipped was 10%,
whereas for interaction mechanism B it was 17%. This may suggest that the easier interaction
mechanism could encourage people to correct the segmentation (i.e., raising the bar for accept-
able accuracy), but this result is not statistically significant (χ2 test, p ¼ 0.059).

Figure 10 shows the distribution of NASATLX results for the two interaction mechanisms.
Again, the generally improved scores for interaction mechanism A over interaction mechanism
B is confirmed via Wilcoxon rank-sum tests shown in Table 4. This means that, across the
board, the use of the new interaction mechanism resulting from separable learning is easier than
the more traditional manual correction method. The distributions are also clearly different with
interaction mechanism A’s distributions being skewed toward lower values (i.e., more usable)
and interaction mechanism B’s distributions skewing toward middle or higher values with much
more heterogeneity.

Fig. 8 Scatter plot showing the relationship between the initial segmentation quality and final seg-
mentation quality. Red dots indicate trials performed using mechanism A and blue dots indicate
trials performed using mechanism B.

Table 3 Quantitative results for the final segmentation Dice coefficients.

Low initial Dice (<40%) High initial Dice (≥40%)

Mechanism A Mechanism B p-value Mechanism A Mechanism B p-value

58.6� 12.0% 45.4� 12.6% 3.3 × 10−6 65.1� 9.0% 59.2� 10.5% 1.8 × 10−11
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4 Discussion

4.1 Segmentation Method

One interesting aspect of our results is that, for the patch segmentation network, the deep double
descent phenomenon22 can be seen in Fig. 6. This may be largely explained by the structural
similarity between the segmentation network proposed and those investigated by Nakkiran

Fig. 9 Time taken in the interface for both trials where the segmentation is corrected and when
the correction is skipped.
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et al.:22 residual-style networks. Although our network uses a dense rather than residual archi-
tecture, the underlying characteristic is the same: that the “default state” for an additional layer is
centered around the output of the previous layer (i.e., identity) rather than zero, allowing for
additional layers to have a mitigated effect on the backpropagation dynamics until they become
“useful” for modeling more complex nonlinear behavior. What is particularly interesting about
this dataset exhibiting deep double descent behavior is its size, being composed of only 20 data-
sets (separating the left and right STN) rather than the thousands or millions normally associated
with other verifications of the deep double descent hypothesis. Thus, the deep double descent
behavior appears to be potentially an inherent property of these types of networks, rather than
one conditioned on exceeding a critical mass of data. As far as we can discern, this is the first

Table 4 Quantitative NASA TLX results. MD, mental demand; PD,
physical demand; TD, temporal demand; PP, perceived performance;
Fr, frustration; Ef, effort.

Mechanism A Mechanism B p-value

MD 2.85� 3.46% 8.58� 6.23% 2.9 × 10−15

PD 0.88� 1.45% 4.59� 5.45% 1.5 × 10−7

TD 1.86� 2.55% 6.60� 6.11% 1.2 × 10−11

PP 7.23� 4.06% 11.05� 3.80% 9.8 × 10−19

Fr 2.65� 3.00% 8.56� 6.22% 1.7 × 10−16

Ef 3.45� 4.18% 8.54� 6.15% 1.8 × 10−12

(a) (b)

(c) (d)

(e) (f)

Fig. 10 NASA TLX results for interaction mechanism a (red) and interaction mechanism b (blue).
Note that lower values are better for all metrics.
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observation of the double descent phenomenon in a medical imaging dataset, especially a small
one consisting of only 10 images.

One of the primary motivations behind this work was to provide an intermediate represen-
tation of the STN segmentation problem that is simultaneously direct and intuitive but does not
place a large burden on the clinical user. This fundamentally separates our STN segmentation
process into two components, with the coarse localization of the STN being chosen as the inter-
mediate representation. This has the benefit of being (1) easily visualized as a point or glyph
could be placed on the image at that location, (2) easily modified by the user who could change it
potentially by dragging the glyph or by having a particular key-stroke combination to activate
placing it using the mouse, (3) intuitive as it represents the location of the target of interest, and
(4) low-burden as the point is not required to be in the STN but in the general vicinity of it. Thus,
it represents a much easier mechanism for interacting with the artificial intelligence than requir-
ing the clinical user to manually segment the image or to drag registration control points, which
might otherwise be necessary to correct errors in atlas-based segmentation.18 One important
element of future work is to consider and to investigate the human factor components of this
interaction mechanism, determining whether or not it is truly more intuitive than possible alter-
natives and whether clinical users would be amenable to correctable fully automated segmen-
tation methods.

The combination of localization and segmentation is clearly important for STN segmenta-
tion. Previous methods have tended to rely either on atlases to provide global context7,23 or semi-
automated methods in which the user-provided initialization encodes the STN’s general
position.24 Once localized, our method has a Dice overlap coefficient of ∼61.9%, which puts
it within the realm of interoperator variability.20 Given the availability of only a single manual
segmentation as a reference standard, it is impossible to gauge if the method has better-than-
human performance, although it still would still benefit from increased speed and consistency
while still giving the opportunity for correction to the clinical user.

In addition, the manual segmentations were initialized using the comparative deformable
atlas-based approach. Although this was done to conserve the time of the expert annotator,
it may lead to a slight bias in favor of the atlas-based results.

4.2 Comparison to Other Fully Automatic Segmentation Algorithms

Table 5 summarizes recent methods from the literature for fully automatic STN segmentation. As
the datasets used in these evaluations are different and the validation techniques used are differ-
ent, the precise Dice coefficients are not directly comparable; however, it does illustrate that both
the proposed method and the comparative atlas-based method fall within the range expected by

Table 5 Dice results for STN segmentation from whole clinical-strength MR images from the
literature.

Method Brief description
No. of
patients Dice (%)

7T registration21 Registration with regression forests 10 61� 12 (left)

56� 15 (right)

U-Net on high-resolution
susceptibility images11

Full images at multiple resolutions 75 77.7� 6.6

Hough-CNN6 Patch-based deep-learning 55 61.9 (left)

60.9 (right)

Brain-Lab elements20 Deformable registration based 30 54� 12

DISTAL Atlas20 Deformable registration based 30 59� 13

Horn electrophysiological atlas20 Deformable registration based 30 52� 14
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the literature. Of the methods in Table 5, the highest performing method, Hough-CNN, is also
the other one not to be evaluated against a manual segmentation, but rather a deformable atlas,
which may lead to elevated Dice values.

However, it should also be noted that none of the methods listed above lend themselves
to being computed in seconds or easily corrected by the user, a core strength of the proposed
approach.

4.3 Human–Computer Interaction

In terms of time and accuracy, the use of relocalization as an interaction mechanism showed
significant improvement over the more traditional correction method, which confirms our moti-
vation regarding the increased interactivity allowed by separable learning. The accuracy is also
relatively robust, being much higher than the 1 mm perturbations (Table 1) regardless of the
initial segmentation being a high or low quality, indicating that even novice users are perfectly
capable of determinining the STN location to within the threshold usable by the segmentation
network. In addition, the NASA TLX scores also generally indicated that the relocalization
mechanism was easy to use as evidenced by their distribution being heavily skewed toward
0 (i.e., the best value) for all metrics except perceived performance. For that metric, both methods
had a mode at 10, the middle of the scale and the default value in the online NASATLX form,
which possibly indicates some uncertainty in the novice population about how well they per-
formed, especially as no quantitative performance feedback was provided to them.

One of the limitations of our HCI study is the use of novices as participants as they are not full
experts in STN segmentation. The quality of their segmentations (both manual and automatic)
is close to that of expert variability as measured by Polanski et al.20 (63% Dice) when the initial
segmentation is of high quality. With a low Dice, the results of mechanism B do not approach
this value, indicating a difference between the novice population and the two experts from
Polanski et al.’s study. Our interface was designed in collaboration with an expert neurosurgeon
who found the relocalization tool to be extremely useful, although also pointing out the necessity
of providing both interaction mechanisms in a clinical interface to use relocalization to correct
for large errors and painting to correct for small differences.

The other limitation of our study is that it coupled interaction for both the left and right
STNs. This means that we measured accuracy results for each, but timing and NASA TLX
results for both were combined. This means that the timing and ease-of-use results could not
be split into high initial accuracy and low initial accuracy groups cleanly as the left STN may
have been segmented initially with high accuracy and the right STN with low accuracy or
vice versa.

4.4 Placement in Clinical Workflow

DBS involves a complex workflow with multiple steps notably including the pre- and intra-
operative identification/segmentation of the STN for surgical navigation and targeting, respec-
tively.25 These are conceptually separate problems, relying on different modalities and having
different constraints, goals, and requirements.26

Our work aims to address the delineation of the STN target at the preoperative stage, which
allows for an ideal electrode trajectory to be defined. Due to the small size of the target and the
large distance from the skull to the subcortical anatomy, highly accurate segmentation is neces-
sary to ensure that a trajectory that robustly passes through the STN is selected. However, there
are additional concerns aside from the overall accuracy of the method, notably the ability to
correct errors. Due to the large heterogeneity of the population receiving DBS treatment, there
is a high probability that any algorithm will fail for some patient. Thus, having a framework that
allows for the automatic segmentation to be quickly and almost effortlessly corrected would be
highly desirable for the patients.

Even with high preoperative segmentation accuracy, the presence of brain shift resulting from
the burr-hole craniotomy means that an interoperative data modality, such as test stimulation
and/or electrophysiological recording,26 is required to update the preoperative plan with an exact
location of the STN boundary, assuming the electrode trajectory passes through the boundary.
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Thus, the final positioning accuracy of the electrode depends on both the navigation (i.e., pre-
operative segmentation) and targeting (i.e., intraoperative identification).25,26

4.5 Future Directions

In terms of future directions, automatic localization and segmentation methods have now reached
a level in which subvoxel accuracy evaluation would be critical for further improving the state-
of-the-art methods. Both the proposed method and other CNN-based approaches6 (as well as
the manual segmentations that these methods use for evaluation) consider the voxel to be the
smallest unit, currently without the capability to determine subvoxel boundaries. Other, more
invasive methods such as the use of implanted microelectode recordings (often used during DBS
electrode implantations) could allow for finer spatial information to be collected,27 but these
would require a larger framework to register the spatial location of these electrodes into the
MRI-space, especially considering brain shift.3,28

Another future direction would be to extend the localization and segmentation networks to
multiple different subcortical anatomies to provide a more description patient-specific model
for DBS electrode implantation planning. With the localization networks, this may even allow
for the reversal of the registration-segmentation relationship: instead of using a registration
algorithm to perform segmentation, the centroid and directional information for the various
anatomies could be used as a series of corresponding points for simple point-based registration
procedures such as thin-plate-splines.29 This also raises some nuances in terms of HCI as par-
ticipants may be more or less likely (depending on the structure) to correct the segmentation if a
large number of structures are shown simultaneously, increasing the cognitive load.

Finally, we could in the future combine the feedback from the HCI experiment into the
training itself, often called “human-in-the-loop” training. The benefit of this approach is that
previously unannotated data could be used to further improve the network performance as users
would be able to quickly annotate it via the correction mechanisms A and B in tandem. If the
preannotated and unannotated datasets are tracked separately, there is a possibility that both an
HCI evaluation as well as human-in-the-loop training could be performed simultaneously,
although this may complicate the analysis of the former as the networks are not constant during
the experiment.

5 Conclusions

This paper presents a two-part method for segmenting the left and right STNs from paired T1w
and T2w MR images used for the pre-operative planning of DBS interventions. Each component
is designed using CNNs, allowing it to learn from a relatively small number of available labeled
datasets. The first part used a multiresolution CNN to determine an estimate of the STN location,
which is then used to heavily crop the input images to the much smaller region of interest. The
second network then directly segments these images using a U-Net style architecture. The ben-
efit of this separation is twofold: it allows for more efficient use of computational resources,
specifically memory allowing it to avoid patch processing and reconstruction;6 and it provides
an intermediate representation that a clinical user can easily correct, if needed. The localization
network has an error that is consistently less than 6 mm, meaning that it provides a good ini-
tialization for the second algorithm that takes image patches of size 24 × 24 × 24 mm, which can
thus be understood to contain the entire STN. The final accuracy of the STN segmentation is
61.9� 9.5% Dice, which is almost equal to previously measured inter-rater variabilities,20 a very
high accuracy considering that the translation of the gold standard by a single pixel in the LR,
AP, and SI directions results in Dice coefficients of 54.2� 8.1%, 53.0� 6.8%, and 55.0� 5.5%,
respectively.

This two-part algorithm also allows for additional interaction capabilities for clinicians
through relocalization. This additional interaction is particularly important as it gives clinicians
more autonomy and control over the segmentation problem while at the same time allowing for
full automaticity. Our HCI experiment on novice users shows that the new interaction mecha-
nism is highly usable and robust. This focus on designing machine learning methods with
user interactivity in mind gives an example of how methods in medical image segmentation,
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especially for small structures, should be implemented in the future, showing that the tradeoff
between automaticity and interactivity is not a necessary one, but that even machine learning
algorithms can be designed to be adaptable in real time.
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