Preliminary results, please do not share outside of workshop attendees

EXPERIMENTAL STUDIES OF VIBRATIONAL RELAXATION AND FORMATION OF WEAKLY BOUND COMPLEXES IN COLD UNIFORM SUPERSONIC FLOWS

<u>Alberto Macario</u>, Myriam Drissi, Omar Abdelkader Khedaoui, Théo Guillaume, Brian M. Hays, Divita Gupta, Ilsa R. Cooke and Ian R. Sims

Institut de Physique de Rennes (IPR) – UMR 6251 du CNRS, Université de Rennes 1, F-35000 Rennes, France

alberto.macario@univ-rennes1.fr

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

 \ll Vibrational Energy Transfer (VET) \rightarrow

Vibrationally excited products

Incomplete vibrational relaxation

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

 \rightarrow

Lindemann mechanism

≪ A-B weak non-covalent interaction

Complexation process

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

\ll Formic acid – CO₂ complex

Atmospheric aerosol growth, cloud evolution and environmental impact

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

~ Chirped-Pulse microwave spectroscopy in Uniform supersonic Flow (CPUF)

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

Experimental method

\sim Uniform supersonic Flows \rightarrow CRESU technique

Convergent-Divergent nozzle to create supersonic flow

$$C_{p}T_{res} = C_{p}T_{flow} + \underline{v_{flow}}^{2}$$

Frequent enough collisions

local thermodynamic equilibrium

a sufficient extent of chemical reaction to take place to follow the kinetics

Wall-less cooling reactorUniform supersonic flowLength =10 - 70 cmT = 10 - 220 K
$$\rho = 10^{16} - 10^{18}$$
 cm⁻³

Collisional excitation of astrophysical molecules and its applications

Chirped-Pulse microwave spectroscopy

High specificity

Distinguish **simultaneously** between different species

Conformers, isomers, vibrational excited states, isotopologues ...

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

Experimental method

Ka Band Spectrometer 24-40 GHz

T. S. Hearne et al. J. Chem Phys. 153 (2020) 084201

E Band Spectrometer 60-90 GHz

B. M. Hays *et al. J. Quant. Spectrosc. Radiat. Transf. 250 (2020) 107001*

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

 \sim Acquisition procedure \rightarrow Time dependence

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

Experimental method

 \sim Acquisition procedure \rightarrow Importance of the skimmer chamber

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

REACTION KINETICS

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

 \sim Formic acid homodimer formation \rightarrow Termolecular reaction

$$FA + FA + Ar \longrightarrow (FA)_{2} + Ar$$

$$k' = k [Ar]$$

$$-\frac{1}{2} \frac{d[FA]}{dt} = k [FA]^{2} [Ar] \longrightarrow \frac{d[FA]}{dt} = -2k' [FA]^{2}$$

$$\frac{1}{[FA]_{t}} - \frac{1}{[FA]_{t_{0}}} = 2k't \longrightarrow \frac{t = \frac{x + x_{0}}{v}}{[FA]_{x}} \longrightarrow \frac{1}{[FA]_{x_{0}}} = \frac{2k'x}{v}$$
Absolute density value

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

 \ll Formic acid homodimer formation \rightarrow Termolecular reaction

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

✓ Formic acid homodimer formation → Termolecular reaction $\frac{1}{[FA]_t} = \frac{1}{[FA]_{t_0}} = 2k't$

Determination of apparent rate constant of the formic acid dimer formation

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

 \sim Formic acid•••CO₂ formation \rightarrow Heterodimer formation reaction

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

0

10

15

20

[CO₂] / 10¹³ cm⁻³

25

 \sim Formic acid•••CO₂ formation \rightarrow Heterodimer formation reaction

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

 \sim Formic acid•••CO₂ formation \rightarrow Heterodimer formation reaction

« First direct determination of a weakly bound heterodimer formation rate constant

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

CONCLUSIONS AND NEXT STEPS

More measurements

✓ Change the temperature of the flow

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

PERSPECTIVES

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications

ACKNOWLEDGEMENTS

Ian Sims Myriam Drissi, Omar Abdelkader Khedaoui, Théo Guillaume, Brian M. Hays, Divita Gupta, Ilsa R. Cooke

✓ FundingCNRS INSU PCMIEU FEDERERC CRESUCHIRP

CNRS INSU PNP Rennes Métropole ANR Hydrides

Université de Rennes 1 Région de Bretagne

Alberto Macario Farto

Collisional excitation of astrophysical molecules and its applications