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Abstract 20 

Olfactory communication plays an important role in the regulation of socio-sexual interactions 21 

in mammals. There is growing evidence that both human and non-human primates rely on odors 22 

to inform their mating decisions. Nevertheless, studies of primate chemical ecology remain 23 

scarce due to the difficulty of obtaining and analyzing samples. We analyzed 67 urine samples 24 

from 5 captive female Japanese macaques (Macaca fuscata) and 30 vaginal swabs from 3 of 25 

these females using gas chromatography–mass spectrometry and examined the relationship 26 

between odor (compounds identified, richness, intensity, and diversity) and female identity as 27 

well as cycle phase. We found a total of 36 urine compounds of which we identified 31, and 68 28 

vaginal compounds of which we identified 37. Our results suggest that urine and vaginal odor 29 

varied more between individuals than within cycle phases. However, we found that within a 30 

female cycle, urine samples from similar phases may cluster more than samples from different 31 

phases. Our results suggest that female odor may encode information about identity (vaginal 32 

and urine odor) and reproductive status (urine odor). The question of how conspecifics use 33 

female urine and vaginal odor remains open and could be tested using bioassays. Our results 34 

and their interpretation are constrained by our limited sample size and our study design. 35 

Nonetheless, our study provides insight into the potential signaling role of female odor in sexual 36 

communication in Japanese macaques and contributes to our understanding of how odors may 37 

influence mating strategies in primates. 38 

 39 
Keywords: olfactory communication, gas chromatography–mass spectrometry, sexual 40 

signaling, urine and vaginal odor, Macaca fuscata  41 
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Introduction 42 

Communication plays a crucial role in mating decisions. Individuals are expected to choose or 43 

avoid potential mates based on the costs (e.g., disease transmission, energy investment, sexual 44 

competition, parental investment) and benefits (e.g., good genes, social support, increased 45 

fitness) associated with mating (Beltran-Bech & Richard, 2014; Møller et al., 1999; Thrall et 46 

al., 2000; Trivers, 1972). As a result, individuals exchange information about their attributes, 47 

including social rank, genotype, health, and fertility (e.g., sexual maturity, reproductive status) 48 

(Candolin, 2003; Snowdon, 2004), directly and indirectly benefitting both emitters and 49 

receivers. Emitters may attract potential mates and enhance intra-sexual competition, thus 50 

simultaneously increasing their mating opportunities and chances of producing attractive and 51 

strong offspring (sexy-sons/daughters and good genes hypotheses R. A. Fisher, 1915; Hamilton 52 

& Zuk, 1982). Meanwhile, receivers may balance the cost of mating by focusing their mating 53 

effort on mates that are fertile and capable of dealing with the costs of reproduction and by 54 

using information about their rivals’ state to adjust their mating strategies to the level of 55 

competition. 56 

Like many other animals, primates communicate through multiple sensory channels. 57 

Females display multiple traits that are attractive to males and correlate with their fixed (e.g., 58 

social rank, age) or variable (e.g., reproductive status) attributes (Tables 1-2). Most studies of 59 

these traits have focused on female visual traits such as sexual swellings (enlargement of the 60 

anogenital area) and skin coloration in relation to fertility, probably because the sense of vision 61 

is particularly well developed in primates (Jacobs, 2008; Osorio & Vorobyev, 2005). Females 62 

can also inform conspecifics about their fertility through auditory (vocalizations or voice), 63 

behavioral (proceptive behaviors), and olfactory (odors) traits (Table 1).64 
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Table 1. Examples of the potential ovulatory signaling function of female behavioral, visual, auditory, and olfactory traits in primates. 65 

Species Female trait Reproductive status Evidence 

common 

marmosets, 

Callithrix jacchus 

Anogenital odor Correlates with the fertile phase. 
Encoded information and receivers’ response 

(Kücklich et al., 2019) 

pygmy marmosets, 

Cebuella pygmaea 

Anogenital gland or 

secretion odor 
Correlates with the fertile phase. Receivers’ response (Converse et al., 1995) 

tufted capuchins, 

Cebus apella 
Proceptive behaviors Correlate with the fertile phase. Encoded information (Carosi & Visalberghi, 2002) 

crested macaques, 

Macaca nigra 

Sexual swelling (size) 

Correlates with the fertile phase and 

conception1 and swellings are not 

expressed during pregnancy. 
Encoded information (Higham et al., 2012) 

Proceptive behaviors 
Correlate with the fertile phase and 

conception. 

Copulation calls Correlate with the fertile phase. 

Barbary macaques, 

Macaca sylvanus 

Sexual swelling (size) 

Correlates with the fertile phase and 

swellings are expressed during early 

pregnancy. 

 

Encoded information (Brauch et al., 2007; Möhle et al., 

2005; Young et al., 2013) 

Proceptive behaviors Not clear. 
Encoded information (Brauch et al., 2007; Young et al., 

2013) 

Copulation calls Do not correlate with the fertile phase. 

Encoded information (Pfefferle et al., 2008, 2011; 

Semple & McComb, 2000) 

Receivers’ response (Semple & McComb, 2000) 

stumptailed 

macaques, Macaca 

arctoides 

Vaginal secretions 
May indicate the periovulatory period 

and stimulate male sexual arousal 
Receivers’ response (Cerda-Molina et al., 2006) 
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long-tailed 

macaques, Macaca 

fascicularis 

Sexual swelling (size) 

Does not correlate with the fertile 

phase and swellings are expressed 

during early pregnancy. Encoded information (Engelhardt et al., 2005, 2007) 

Proceptive behaviors 
Correlate with the fertile phase and are 

expressed during the early pregnancy. 

Copulation calls Do not correlate with the fertile phase. Encoded information (Engelhardt et al., 2012) 

Japanese macaques, 

Macaca fuscata 

Red skin coloration 

(face and hindquarters) 

Correlates with the pregnancy period 

(face coloration) but not with the fertile 

phase or conception. 

Encoded information (Rigaill et al., 2015; Rigaill, 

MacIntosh, et al., 2017; Rigaill et al., 2019) 

Receivers’ response (Rigaill & Garcia, 2021) 

Proceptive behaviors 
Correlate with the pregnancy period 

but not with the fertile phase. Encoded information (Garcia et al., 2009; O’Neill et 

al., 2004; Rigaill et al., 2015) Copulation and 'estrus' 

calls 

Do not correlate with the fertile phase, 

and may correlate with pregnancy. 

Urine odor 
May not correlate with the fertile 

phase. 

Receivers’ response (Rigaill, Suda-Hashimoto, et al., 

2017) 

rhesus macaques, 

Macaca mulatta 

Red skin coloration 

(face) 
Correlates with the fertile phase. 

Encoded information (Dubuc et al., 2009; Higham et 

al., 2010) 

Receivers’ response (Higham et al., 2011) 

olive baboons, 

Papio anubis 

Sexual swelling (size 

or shape) 

Correlates with the fertile phase and 

pregnancy. 

Encoded information (Altmann, 1970; Higham, 

Heistermann, et al., 2008; Higham, MacLarnon, et al., 

2008; Rigaill et al., 2013) 

Red skin coloration 

(sexual swelling) 

Correlates with pregnancy status but 

not with the fertile phase. 

Encoded information (Higham, MacLarnon, et al., 

2008; Rigaill et al., 2013) 

Proceptive behaviors May correlate with the fertile phase. 
Encoded information (Higham et al., 2009; Rigaill et 

al., 2013) 

Vaginal secretions Correlate with the fertile phase 
Encoded information (Vaglio et al., 2021) 

Receivers’ response (Rigaill et al., 2013) 
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yellow baboons, 

Papio cynocephalus 
Copulation calls Do not correlate with the fertile phase. 

Encoded information and receivers’ response (Semple, 

2001; Semple et al., 2002) 

chacma baboons, 

Papio ursinus 
Vaginal odor Correlates with the fertile phase Receivers’ response (P. M. R. Clarke et al., 2009) 

mandrills, 

Mandrillus sphinx 

Sexual swelling (size 

or shape) 
May not correlate with conception. 

Encoded information (Huchard et al., 2009; Setchell & 

Wickings, 2004a, 2004b) 

Red skin coloration 

(sexual swelling) 
May not correlate with conception. 

Encoded information (Setchell, Charpentier, et al., 

2006; Setchell & Wickings, 2004a) 

Red skin coloration 

(face) 

Correlates with the pregnancy status, 

but not with the fertile phase or 

conception. 

Encoded information (Setchell et al., 2009; Setchell, 

Wickings, et al., 2006) 

sooty mangbeys, 

Cercocebus 

torquatus atys 

Sexual swelling (size) 
Correlates with the fertile phase but not 

with pregnancy. 
Encoded information (Gordon et al., 1991) 

howler monkeys, 

Alouatta pigra 
Proceptive behaviors Correlate with the fertile phase. Encoded information (Van Belle et al., 2009) 

bonobos, Pan 

paniscus 
Sexual swelling (size) 

Does not correlate with the fertile 

phase or pregnancy. 

Encoded information (Douglas et al., 2016; Furuichi, 

1987) 

chimpanzees, Pan 

troglodytes 

Sexual swelling (size) 
Correlates with the fertile phase but not 

with pregnancy. 

Encoded information (Deschner et al., 2003, 2004; 

Emery & Whitten, 2003; Wallis & Lemmon, 1986)  

Copulation calls Do not correlate of the fertile phase. Encoded information (Townsend et al., 2011) 

Vaginal secretions May correlate with the fertile phase Encoded information (Matsumoto-Oda et al., 2003) 

humans, Homo 

sapiens 

Red skin coloration 

(cheeks and lips) 

Does not correlate with the fertile 

phase. 

Encoded information (Burriss et al., 2015; Rigaill, 

2020) 

Proceptive behaviors Not clear. 
Encoded information (Gangestad et al., 2002; Haselton 

et al., 2007) 
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Voice pitch Correlates with the fertile phase. 

Encoded information and receivers’ response (Pipitone 

& Gallup, 2008, 2012; Pisanski et al., 2018; Shoup-

Knox et al., 2019) 

Body odor 
Pleasantness may correlate with the 

period of highest fertility.  

Receivers’ response (Gildersleeve et al., 2012; 

Haselton et al., 2007; Kuukasjärvi et al., 2004; Singh & 

Bronstad, 2001) but see (Mei et al., 2022) 
1 difference between conceptive and non-conceptive cycles. 66 
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In comparison to visual and auditory traits, little is known about the potential role of 67 

olfactory traits in primate sexual communication. This is probably because primates were long 68 

regarded as microsmatic (having a reduced sense of olfaction, Heymann, 2006; T. D. Smith & 69 

Bhatnagar, 2004). However, there is now good evidence that odors encode information about 70 

an individual’s state and may regulate primate social interactions (Table 2). Therefore, there is 71 

ample reason to suspect that odors also influence mating decisions in both human and non-72 

human primates. Indeed, males attend more to female odors during the period of highest fertility 73 

than at other times (Table 1).  74 

 75 
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Table 2. Examples of individual characteristics encoded by odors in primates. 76 

Species Olfactory traits Individual characteristics Evidence 

crowned lemurs, 

Eulemur coronatus 

Anogenital odor (males: 

scent marks, females: 

secretion) 

Correlates with sex. Encoded information (Elwell et al., 2021) 

ring-tailed lemurs, 

Lemur catta 

Labial and scrotal 

secretions 

Correlate with kinship, genetic 

compatibility and genetic 

quality. Are affected by health 

status. 

Encoded information (Boulet et al., 2009, 2010; 

Charpentier et al., 2008; Grogan et al., 2019) 

Receivers’ response (Charpentier et al., 2010; 

Grogan et al., 2019; Harris et al., 2018) 

emperor tamarins, 

Saguinus imperator  

Anogenital scent marks, 

scent gland secretions, 

and skin odor 

Correlate with sex and differ 

between reproductive and 

non-reproductive individuals. 

Encoded information (Poirier, Waterhouse, Dunn, et 

al., 2021; Poirier, Waterhouse, Watsa, et al., 2021) 

Weddell’s saddleback 

tamarins, Leontocebus 

weddelli 

Anogenital scent marks, 

scent gland secretions, 

and skin odor 

Correlate with sex and differ 

between reproductive and 

non-reproductive individuals. 

Encoded information (Poirier, Waterhouse, Dunn, et 

al., 2021; Poirier, Waterhouse, Watsa, et al., 2021) 

common marmosets, 

Callithrix jacchus 

Circumgenital scent 

marks 

Correlate with female 

familiarity, identity, age, and 

parity. 

Encoded information (T. E. Smith et al., 1997; T. E. 

Smith, 2006; Kücklich et al., 2019) 

Receivers’ response (Kücklich et al., 2019) 

owl monkeys, Aotus 

nancymaae 
Perianal gland secretions 

Correlate with sex, age, and 

kinship. 

Encoded information (Macdonald et al., 2008; 

Spence‐Aizenberg et al., 2018) 

rhesus macaques, 

Macaca mulatta  
Body odor (genital area) 

Correlates with familiarity or 

group membership. 
Receivers’ response (Henkel et al., 2015) 

mandrills, Mandrillus 

sphinx 

Sternal gland secretions 

and hairs 

Correlate with sex, age, social 

rank in males, group identity, 

individual genetic quality, 

genetic compatibility, and 

health 

Encoded information (Poirotte et al., 2017; Setchell 

et al., 2010, 2011; Vaglio et al., 2016) 

Receivers’ response (Poirotte et al., 2017) 
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 77 chimpanzees, Pan 

troglodytes 
Urine odor 

Correlates with group 

membership and kinship. 
Receivers’ response (Henkel & Setchell, 2018) 

humans, Homo sapiens Axillary or body odor 

Is affected by health but does 

not correlate with human 

leucocyte antigen genotype. 

Receivers’ response (Olsson et al., 2014; Probst et 

al., 2017) 
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Variation in the chemical composition of female odor, such as the presence or absence 78 

of compounds and their relative abundance, across and within individuals may inform 79 

conspecifics about a female’s fertility. For example, sex hormones can influence the 80 

composition of female odor (humans: Michael et al., 1974; rhesus macaques: Michael & 81 

Keverne, 1970). Across primate species, the chemical composition of female odor varies 82 

between mating and non-mating seasons (ring-tailed lemurs: Scordato & Drea, 2007; Greene 83 

& Drea, 2014; and potentially Milne-Edwards’ sifakas, Propithecus edwardsi: Morelli et al., 84 

2013), across cycle phases (common marmosets: Kücklich et al., 2019; olive baboons: Vaglio 85 

et al., 2021; but see for chimpanzees: Fox, 1982), and between reproductive and non-86 

reproductive individuals (tamarins: Poirier, Waterhouse, Dunn, et al., 2021; Poirier, 87 

Waterhouse, Watsa, et al., 2021; owl monkeys: Spence‐Aizenberg et al., 2018). However, only 88 

one study of naturally cycling female catarrhines (Afroeurasian monkeys and apes, including 89 

humans) has yet found evidence that fine-scale intra-cycle variation in vaginal odor intensity 90 

correlates with ovulation (Vaglio et al., 2021). This limits our understanding of whether and 91 

how female odors modulate male and female mating strategies across primates.  92 

Here, we aimed to determine the potential signaling function (i.e., encoded information) 93 

of female odor in relation to sexual communication in Japanese macaques (Macaca fuscata). In 94 

this seasonal species, female behaviors, vocalizations, and skin coloration vary with female 95 

reproductive status, both between cycle phases (Garcia et al., 2009; O’Neill et al., 2004; Rigaill 96 

et al., 2019), and from pre- to post-conception periods (Rigaill et al., 2015), but do not 97 

accurately signal ovulation (Rigaill & Garcia, 2021). It is not clear yet if males have access to 98 

other information about ovulation. Males biased their mating effort to the fertile phase in one 99 

study (Garcia et al., 2009) but not in others (O’Neill et al., 2004; Rigaill & Garcia, 2021). 100 

However, females exhibit a strong vaginal or urinary odor during the mating season and males 101 

frequently inspect females’ genital areas by sniffing or touching them (Garcia & Rigaill, 102 
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unpublished observations of Wakasa captive group housed at Kyoto University Primate 103 

Research Institute during the mating seasons in 2011-12 and 2015-16, and of Main Group of 104 

Kojima Island, Wildlife Research Center, Kyoto University during the mating season in 2013-105 

14). Female odor may thus vary between individuals and cycle phases, as shown in other 106 

primates (Table 1), and guide male mating behaviors.  107 

We aimed to determine if female odor contains information about a female’s timing of 108 

ovulation. Here, we describe female urine and vaginal odor in Japanese macaques, focusing on 109 

their chemical composition, complexity, intensity, and diversity, and examine how odor varies 110 

between individuals and cycles (i.e., with a female’s cycle) and within cycles (i.e., between pre-111 

fertile, fertile, and post-fertile phases). Our sample size is small (67 samples from 5 females for 112 

urine, 30 samples from 3 females for vaginal odor), due to the difficulty inherent in obtaining 113 

samples, but our study informs two hypotheses:  114 

1. Female vaginal or urine odor conveys information about individual characteristics. If 115 

so, we predict that the chemical composition, complexity, intensity, or diversity of 116 

female urine or vaginal odor will vary across individuals. We also predict greater 117 

variation across than within individuals. 118 

2. Female odor conveys information about the timing of ovulation. If so, we predict that 119 

the chemical composition, complexity, intensity, or diversity of vaginal and urine odor 120 

will vary between a given cycle’s cycle phases, particularly between the fertile phase 121 

and the pre- and post-fertile phases.  122 

 123 

Methods 124 

Study subjects 125 

We sampled 5 adult and naturally cycling female Japanese macaques (12.2 ± SD 3.0 years old, 126 

range = 8–16 years) housed at the Kyoto University Center for the Evolutionary Origins of 127 
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Human Behavior (EHUB, Inuyama, Japan; previously the Primate Research Institute). During 128 

the training period, females were housed in individual cages (W90 cm, D76 cm, H85 cm) in 129 

the same room (size: W4.0 m, D6.0 m, temperature: 27°C). Females were moved to a different 130 

room (individual cage size: W78 cm, D65 cm, H80 cm, temperature: 20°C, window to the 131 

external environment) for the data collection period. In both periods, females were housed with 132 

3 adult males with whom they had visual, auditory, and olfactory communication but no 133 

physical contact. Animals were fed twice daily (monkey pellets and sweet potatoes). Water was 134 

supplied ad libitum.  135 

Our research protocol was reviewed and approved by the EHUB Center for Human 136 

Evolution Modeling Research (research protocol 2014-082-10). Our methods comply with the 137 

Guidelines for the Care and Use of Nonhuman Primates of Kyoto University EHUB and with 138 

the American Society of Primatologists Principles for the Ethical Treatment of Non-Human 139 

Primates. 140 

 141 

Animal training 142 

We used positive reinforcement (Fernström et al., 2009) to train female macaques to present 143 

their anogenital area and allow us to collect vaginal swabs for odor sampling (methods 144 

developed by NSH for EHUB). We trained females for 26 weeks from May to October 2014. 145 

Each female was trained during a 2-min session between 10.30 and 11.30 AM, 3 to 5 times a 146 

week. One trainer (NSH or LR) conducted the training session with one observer (LR, NSH, or 147 

LD). We used 1 cm3 diced apples and peanuts as the primary reinforcer, and a clicker as a 148 

secondary reinforcer. We carried out training step by step following a predetermined order of 149 

defined behaviors (see supplementary material, Table S1 adapted from Fernström et al., 2009). 150 

One female failed to reach cooperation level 2 after 60 training sessions. We thus excluded her 151 

from our training protocol and replaced her with another cycling adult female. We conducted 152 
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429 training sessions in total (mean per female = 86.8 sessions, range = 28–103 sessions). 153 

Success rates varied across individuals. All females achieved anogenital presentation training 154 

level 1 but only 2 allowed vaginal sampling. These 2 females already had experience with 155 

positive reinforcement training for similar or other purposes at EHUB. For vaginal sampling, 156 

we sampled these 2 females along with a third female, who did not complete training, but 157 

spontaneously presented her hindquarters to the experimenter and accepted odor sampling 158 

during the data collection period. 159 

 160 

Collection of vaginal and urine samples 161 

We collected data during the 2014–2015 mating season, from early November to late January 162 

(85 days in total). One experimenter (LR) collected vaginal and urine samples between 08.30 163 

AM and 11.00 AM. We aimed to collect samples every 2 days starting from the end of the first 164 

observed menstruation, which we determined as the day when no fresh blood was observed on 165 

the female anogenital area. Mean menstrual cycle length is 27.3 ± SD 5.1 days in both wild and 166 

captive populations (Enomoto et al., 1979; Fooden & Aimi, 2005; Garcia et al., 2009; Nigi, 167 

1975; O’Neill et al., 2004). If the experimenter failed to collect a vaginal or urine sample on a 168 

designated day, they tried again the following day. The experimenter collected vaginal samples 169 

by gently rubbing a sterile cotton swab (Rikaken, Japan) 5 times on the vaginal walls (N = 3 170 

females). The experimenter started vaginal sample collection at least 10 min after entering the 171 

experimental room and after any observed micturition. The experimenter collected 172 

environmental controls by exposing sterile swabs to the air in the room to later identify volatiles 173 

that did not derive from the sampled females. To sample urine, the experimenter placed a plastic 174 

container, covered with mesh to prevent contamination from feces, under each female’s 175 

individual cage to collect urine samples (approximately 2 ml) directly after micturition (N = 5 176 

females). Our use of plastic containers to collect urine and the lack of matching controls such 177 
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as water collected from the same plastic containers to test for any effects of using plastic 178 

containers or vials on our urine results may affect subsequent chemical analyses (Drea et al., 179 

2013). 180 

We stored all samples in sterile sealed glass vials at -80 °C at EHUB to prevent chemical 181 

degradation of the volatile compounds (Drea et al., 2013). We used screw-capped clear glass 182 

vials of different diameters (D) and heights (H) (19x 10 ml vials of D 18 mm X H 50 mm, 94x 183 

20 ml vials D 25 mm X H 50 mm, 8x 50ml vials of D 30 mm X H 80 mm). We used different 184 

sizes of vial to store different types of sample. This may have affected our results because 185 

evaporation of samples depends on the available air space, and may be confounded with our 186 

predictor variables. In parallel, we kept a fraction of each urine sample at -20 °C for hormonal 187 

analyses to determine the female’s reproductive status. In total, we collected 35 vaginal samples 188 

(mean per female = 11.7 ± SD 4.5, N = 3 females), 169 urine samples (mean per female = 33.8 189 

± SD 6.7, N = 5 females), and 45 environmental control samples over two consecutive 190 

menstrual cycles for each female.  191 

 192 

Determination of ovulation periods 193 

We determined sex hormone concentrations in a subset of 157 urine samples selected to 194 

determine ovulation dates (2 consecutive menstrual cycles per female, 10 menstrual cycles in 195 

total, mean per female = 31.4 ± SD 5.9 samples). This sample is slightly smaller than the total 196 

because we excluded samples collected on consecutive days, and those collected just before or 197 

after menstruation. We analyzed urine samples for estrone conjugates (E1C) and pregnanediol-198 

3-glucuronide (PdG) using previously described and validated enzyme immunoassays (EIA) 199 

(Rigaill, Suda-Hashimoto, et al., 2017). We estimated that ovulation (day 0) occurred the day 200 

following a urinary E1C peak associated with a continuous raise in PdG concentrations (Fujita 201 

et al., 2001). We labelled the day directly preceding the estimated ovulation day as day -1, the 202 
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day directly following it as day +1, and so on. We defined the fertile phase as the 5-day period 203 

covering day -2 to day +2 to account for the life span of sperm in the female tract (macaques: 204 

Behboodi et al., 1991). The pre-fertile and post-fertile phases covered the 5 days preceding (day 205 

-7 to day -3) and following (day +3 to day +7) the fertile phase. Hormonal profiles showed that 206 

one of the 5 females (female 1) had abnormal hormonal patterns after her first cycle, so we 207 

excluded her second cycle from the analyses. The cycle length of the 8 cycles for which we 208 

observed menstrual bleeding was 29.4 ± SD 6.9 days.  209 

 210 

Chemical analyses 211 

We used 67 urine samples (mean per female = 7.4 ± SD 0.7 samples, 2 consecutive cycles per 212 

female except for one female, Table 3) and 30 vaginal samples (mean per female = 7.5 ± SD 213 

0.6 samples, one menstrual cycle for two females and two consecutive menstrual cycles for the 214 

remaining female, Table 4) collected during the pre-fertile, fertile, and post-fertile phases for 215 

odor analyses, along with 24 corresponding environmental control samples collected on the 216 

same day as the test samples. We did not analyze the remaining 102 urine samples (mean per 217 

female = 21.4 ± SD 8.0 samples) and 5 vaginal samples (5 samples from female 1, second 218 

abnormal cycle) collected outside the 15-day period of interest.  219 

We carried out laboratory analyses of odor at the Laboratory for Analysis and Research 220 

in Environmental Chemistry - Italian National Research Council, Florence, Italy. We shipped 221 

samples via airmail, using dry ice to keep them cold (-30°C). We investigated the volatile 222 

compounds found in the Japanese macaque odor using solid-phase microextraction and gas 223 

chromatography-mass spectrometry, applying the same methods used in other work on primate 224 

odor signals (reviewed in Walker & Vaglio, 2021). 225 

We introduced a 65 μm polydimethylsiloxane/divinylbenzene solid-phase 226 

microextraction syringe needle through the vial septum and exposed the fiber to the headspace 227 
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above the sample in the vial for 15 minutes at 40°C. We analyzed the adsorbed volatile analytes 228 

using a 597 5C mass spectrometer (Agilent Technologies, Santa Clara, CA) EI, 70 eV, coupled 229 

directly to a 7890B gas chromatograph (Agilent Technologies) equipped with a fused silica 230 

HP5-MS UI capillary column (Agilent Technologies) 30 m x 0.25 mm crossbonded 5%-phenyl-231 

95%-dimethylpolysiloxane, film thickness 0.25μm. We maintained the injector temperature at 232 

270°C and transfer line temperature at 280°C. We made injections in spitless mode (purge valve 233 

opened after 1 minute) with a constant flow of helium carrier gas of 1 ml per minute. We started 234 

the oven temperature program at 45°C for 2 minutes, then raised it by 4°C per minute to 170 235 

°C and then by 20°C per minute to 300°C. 236 

We assessed potential contamination from the laboratory environment using blank 237 

analyses of an empty 10 ml vial (Supelco) following the same procedure used for the samples 238 

(laboratory controls). We conditioned the fiber at 260°C for 5 minutes pre-injection and 20 239 

minutes post-injection to avoid any possible carry-over effects. We conducted these 240 

conditioning steps every day before analyzing samples. 241 

 242 

Identification of compounds 243 

From visual inspection of chromatograms (see examples of typical chromatograms in the 244 

supplementary material, Figure S1), we detected 36 peaks from urine samples and 68 peaks 245 

from vaginal samples that were absent in both environmental and laboratory controls. We found 246 

25 compounds that did not derive from the animals and removed these from the swab results.  247 

We standardized peak retention times using an internal standard (alpha pinene). We integrated 248 

chromatograms to obtain retention time and peak area data using ChemStation software 249 

(Agilent Technologies). We tentatively identified the eluted compounds by comparing the 250 

experimental spectra with the spectra provided by the National Institute of Standards and 251 

Technology (NIST) mass spectral database, version MSDF.01.01.2317 (Agilent Technologies). 252 
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We considered the identification valid when the minimum matching factor exceeded 80%. If 253 

more than one compound was a good match for the same chromatographic peak, we compared 254 

Kovats’ retention index with values reported in the literature for the same chromatographic 255 

column type to minimize the chances of misidentification. We also checked whether more than 256 

one compound co-eluted below the same detected peak by checking the mass fragments using 257 

ChemStation software. 258 

 We determined the relative amounts of compounds by integrating the areas of the 259 

corresponding peaks in the total ion current profile and calculated percentages with respect to 260 

the total area. We retained peaks that comprised at least 0.05% of the total area of the 261 

chromatogram to avoid problems associated with unreliable quantification at very low relative 262 

amounts (i.e., to exclude the background noise), although this may mean that we missed trace 263 

chemicals (T. E. Smith et al., 2001). We analyzed all samples over a few days to minimize 264 

interassay variability.  265 

We describe the chemical composition of the 67 urine and 30 vaginal samples according 266 

to female identity as well as cycle phases, including the percentage of samples in each category 267 

that included each compound detected for urine (N = 36 compounds) and vaginal (N = 68 268 

compounds) samples (Tables 3-4). For the following analyses, we excluded all compounds that 269 

co-eluted as we cannot be sure about the measure of their contribution to the total ion current 270 

(Drea et al., 2013). Two urine samples only contained co-eluted compounds, this may be due 271 

to a mistake occurring at any step between data collection and chemical evaluation. We thus 272 

removed these samples from the data set. Overall, we excluded 1 of 36 (3%) urine compounds 273 

(Table 3) and 10 of 68 (15%) vaginal compounds (Table 4).  274 

 275 

Data analyses 276 
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We carried out analyses using R software (version 4.0.3). We conducted our analyses on 35 277 

compounds detected across 65 urine and 58 compounds detected across 30 vaginal samples.  278 

We investigated the relationship between female odor and identity as well as cycle 279 

phase. Several quantitative or qualitative analytic tools can be used to investigate chemical data. 280 

The choice of one approach over another largely depends on the nature of the data (and the 281 

methods used for chemical analyses), the species (e.g., whether chemical profiles are composed 282 

of single or multiple compounds), the number of samples, and the research question (Drea et 283 

al., 2013). Some studies assess the presence/absence of one or few compounds or categories of 284 

compounds of interest (e.g., fatty acids or alcohols), while others reduce the dimensionality of 285 

the data set (Drea et al., 2013). However, these methods may underestimate or overestimate 286 

variance in chemical composition between samples by analyzing only a subset of the data (Drea 287 

et al., 2013). 288 

We opted for a conservative approach, keeping all compounds of the animal swab 289 

results in the analyses and avoiding subjective thresholds such as retaining compounds or 290 

variables based on a priori assumptions about these compounds’ roles or on mathematical 291 

rather than biological reasons. We used Nonmetric Multidimensional Scaling (NMDS), a rank-292 

based approach relying on distance or dissimilarity matrix, to represent pairwise dissimilarity 293 

between samples in a dimensional space.  294 

We tested for differences in both urine and vaginal samples according to female identity 295 

and cycle phases. We computed a distance matrix for the data with the Bray-Curtis dissimilarity 296 

index using the vegdist function in the vegan package (Oksanen et al., 2020). We then 297 

calculated the 2-dimentional NMDS coordinates from these Bray-Curtis indices using the 298 

metaMDS function in the vegan package and plotted the outcomes (Wickham, 2016). The stress 299 

factors, which roughly represent the goodness of fit, associated with the coordinates were 0.19 300 

for urine and 0.18 for vaginal data, and are thus considered fair (K. R. Clarke, 1993). We then 301 
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performed a permutational multivariate analysis of variance (PERMANOVA) using distance 302 

matrices by using the Adonis function in (vegan package). This analysis tests whether the 303 

centroids and dispersion of the groups tested as defined by measure space are equivalent for all 304 

groups (Anderson, 2017). Because females contributed the data for one or two consecutives 305 

menstrual cycles, we used “a female’s cycle” in our analyses as a proxy for both “menstrual 306 

cycle” and “female identity”. Here we thus tested the effect of the interaction between a 307 

female’s cycle and cycle phase (i.e., Are samples from the same cycle phase more or less similar 308 

than samples from another cycle phase within a female given cycle?).  309 

To facilitate comparison with other studies of similar research questions and substrates 310 

(e.g., vaginal secretions, Vaglio et al., 2021), we also calculated three diversity indexes to 311 

graphically investigate variation in sample richness (total number of detected peaks per 312 

sample), Shannon’s H (which accounts for the relative abundance of each compound within a 313 

sample) and odor intensity (total area of detected peaks per sample). Richness and Shannon H 314 

of both urine and vaginal samples followed a normal distribution while urine and vaginal 315 

intensity followed a lognormal distribution. We explored variation across females and cycle 316 

phases graphically by plotting urine and vaginal richness, Shannon H, and intensity against 317 

either female identity (categorical variable) or cycle phase (categorical variable).  318 

 319 

Data availability statement 320 

The data that support the findings of this study are openly available in figshare, 321 

doi:10.6084/m9.figshare.19649766. 322 

 323 

Results 324 

Identity of volatile compounds 325 
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We detected 36 volatile compounds from the analysis of 67 urine samples. We proposed a 326 

tentative identification for 31 of these compounds, including one that may result from chromatic 327 

co-elution (Table 3). We detected 68 volatile compounds from the analysis of 30 vaginal 328 

samples. We proposed a tentative identification for 37 of these vaginal compounds, with nine 329 

compounds that may result from chromatic co-elution (Table 4). Only five volatile compounds 330 

were found in both urine and vaginal samples (2-pentanone, 2-hexanone, dimethyl disulfide, 331 

toluene, 2-heptanone, Tables 3-4). This represents 5% (5/104) of all the compounds detected in 332 

urine and vaginal samples. 333 

 334 

Inter-individual variation in female odor 335 

Nineteen of 36 urine compounds (53%) were unique to one of the five females (Table 3). 336 

Although the two dimensions extracted from the NMDS did not clearly cluster samples per 337 

female identity (Fig. 1), the results of the PERMANOVA suggest that a female’s cycle explains 338 

25% of the variance in the data (Table 5). Urine richness, and odor intensity varied across 339 

females (Fig. 2), with lower richness values in female 2 (Fig. 2A) and higher odor intensity in 340 

female 1 (Fig. 2C). Shannon H index showed lower inter-individual variation (Fig. 2). 341 

Twenty-eight of 68 vaginal compounds (41%) appeared to be unique to one of the three 342 

females (Table 4). The two dimensions extracted from NMDS and the results of the 343 

PERMANOVA suggest that a female’s cycle explains 29% of the variance in the data and the 344 

grouping patterns of samples (Fig. 3, Table 5). Vaginal richness, Shannon’s H index, and odor 345 

intensity varied across females (Fig. 2). One female (female 1) showed lower vaginal richness, 346 

Shannon H, and intensity values than the two other females sampled (Fig. 2D, E, F). 347 

 348 

Intra-cycle variation in female odor 349 
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Ten urine compounds (28%) were only found during the fertile phase (Table 3). The cycle phase 350 

explained only 3% of the variance in urine data (Table 5). However, the interaction between a 351 

female’s cycle and cycle phase explained most of the variance in the data (27%, Table 5). Thus, 352 

within a given female cycle, samples from same phases may cluster more than samples from 353 

different phases. There was little intra-cycle variation in urine richness, Shannon H, or intensity 354 

(Fig. 4). Urine richness, but not Shannon H (Fig. 4B), values tended to decrease from pre- to 355 

post-fertile phase (Fig. 4A), while urine intensity increased slightly during the fertile phase 356 

compared to pre- and post-fertile phases (Fig. 4C).  357 

Six vaginal compounds (9%) were only found during the fertile phase (Table 4). The 358 

cycle phase or the interaction between a female’s cycle and cycle phase explained respectively 359 

6% and 17% of the variance in vaginal data (Table 5). Vaginal richness, Shannon H, or intensity 360 

did not appear to vary across the menstrual cycle (Fig. 4).  361 

Individual trajectories are presented in the supplementary materiel (Fig. S2-3). 362 

 363 

Table 3. The 36 chemical compounds retrieved from 65 urine samples, their tentative 364 

identification, their mean peak area, and their presence in all samples and in samples from the 365 

fertile phase. Data are presented for all females and for each female’s menstrual cycle. 366 

Compounds marked * co-eluted and are not included in graphical exploration of the data. 1 367 

Compounds often used as lab solvents (Drea et al., 2013) but kept in the analyses for 368 

comparison with previously published data set (Delbarco-Trillo et al., 2013; Vaglio et al., 369 

2021). 370 

(Table 4 is provided as a separate file as it didn’t fit in the manuscript) 371 

 372 

Table 4. The 68 chemical compounds retrieved from 30 vaginal samples, their tentative 373 

identification, their mean peak area, and their presence in all samples and in samples from the 374 
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fertile phase. Data are presented for all females and for each female’s menstrual cycle. 375 

Compounds marked * co-eluted and are not included in graphical exploration of the data. 1 376 

Compounds often used as lab solvents (Drea et al., 2013) but kept in the analyses for 377 

comparison with previously published data set (Vaglio et al., 2021). 378 

(Table 4 is provided as a separate file as it didn’t fit in the manuscript) 379 

 380 

Table 5. PERMANOVA results based on Bray-Curtis dissimilarities using abundance data for 381 

female odors from urine and vaginal samples 382 

 df Sum of Squares Mean of Squares F R2 

Urine samples      

Female's cycle 8 4.88 0.61 2.62 0.25 

Cycle phase 2 0.63 0.31 1.35 0.03 

Interaction 16 5.39 0.34 1.45 0.27 

Residuals 38 8.84 0.23  0.45 

Total 64 19.74   1.00 

Vaginal samples      
Female's cycle 3 3.15 1.05 3.59 0.29 

Cycle phase 2 0.62 0.31 1.06 0.06 

Interaction 6 1.90 0.32 1.08 0.17 

Residuals 18 5.27 0.29  0.48 

Total 29 10.94   1.00 

 383 

Discussion 384 

We analyzed inter-individual and intra-cycle variation in urine and vaginal samples in female 385 

Japanese macaques based on identified compounds, odor richness, diversity and intensity. We 386 

identified 31 urine and 37 vaginal compounds of potential semiochemical importance in this 387 

species that may be of interest for future work. Although our limited sample size restricts the 388 

interpretation of our results, our analyses suggest that urine and vaginal odors varied more 389 

between females than between cycle phases. However, we also found that, within a female’s 390 

cycle, urine samples from the same cycle phase may cluster more than samples from different 391 

phases.  392 
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We tentatively identified 31 (86%) of 36 volatile compounds found in urine samples 393 

and 37 (54%) of 68 volatile compounds detected in female vaginal secretions. Some of the 394 

volatile compounds we identified are known to play a role in plant or insect communication or 395 

metabolism (source: https://pubchem.ncbi.nlm.nih.gov). Some of the compounds we detected 396 

may be from the diced apples we used as a food reward during data collection (e.g., aldehydes: 397 

hexanal, nonanal, decanal, benzaldehyde; alcohols: ethanol, 1-butanol, 3-methyl-; esters: ethyl 398 

acetate, (Espino-Díaz et al., 2016)). However, it is also possible that these compounds are 399 

widespread across plant and animal species due to their role in both intra- and inter-species 400 

communication (e.g., pollination, alarm signals, mate attraction: (Das et al., 2013; Kelliher, 401 

2007; Leonhardt et al., 2016). Indeed, 16 (51%) and 13 (35%) of the volatile compounds we 402 

identified in urine and vaginal samples are found in female odor profiles (urine, vaginal 403 

secretions, glands, hairs) of other primate species, from strepsirrhines to hominins (Tables 3-404 

4). Despite these general similarities across species, vaginal secretions have very dissimilar 405 

odor profiles in Japanese macaques (Table 4) and olive baboons (Vaglio et al., 2021). This is 406 

consistent with the hypothesis that (dis)similarities in odor profiles across primates relate to 407 

socio-ecological and phylogenetic factors (Delbarco-Trillo et al., 2011; delBarco-Trillo & 408 

Drea, 2014; Heymann, 2006; Jänig et al., 2019; Ueno, 1994).  409 

We found that the relative abundance of compounds across urine and vaginal samples 410 

varied across individuals in female Japanese macaques. Urine is known to play a role in the 411 

individual recognition mechanisms of several species of mammals, including some platyrrhines 412 

(mice, Mus domesticus: J. L. Hurst et al., 2001; common marmosets: T. E. Smith, 2006). To 413 

our knowledge, our study is the first to show that urine odor, along with vaginal odor, may 414 

convey information about identity in a catarrhine species.  415 

Exchanging information about identity through odors may benefit Japanese macaques, 416 

a species that lives in large cohesive groups (Fooden & Aimi, 2005). As proposed by Henkel 417 

https://pubchem.ncbi.nlm.nih.gov/
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and colleagues for rhesus macaques (Henkel et al., 2015), the ability to identify individuals – 418 

and thus potentially kin, familiar, or higher-ranking conspecifics – may be crucial to coordinate 419 

movement and regulate social interactions. Males may pay particular attention to female odor 420 

during the mating season. Dominant or central males, which have a closer access to females, 421 

could use female anogenital (vaginal and urine) odor to follow and mate-guard fertile females 422 

during group movement and to frustrate females’ attempts to escape male monopolization. 423 

Subordinate or peripheral males may also use female odor to find mating opportunities. Urine 424 

odor may be of particular interest in this latter case: since the information can be decoupled 425 

from the emitters, receivers may follow such fingerprints in the environment to find receptive 426 

and fertile females. 427 

Our study provides some evidence that urine, but not vaginal, odor can be informative 428 

about a female’s reproductive status in Japanese macaques. This may explain why in a previous 429 

study, male Japanese macaques did not investigate (i.e., smell or taste) urine samples from the 430 

fertile phase more than samples from other phases, as they were exposed to unknown rather 431 

than familiar females’ odors (Rigaill, Suda-Hashimoto, et al., 2017). Across animals, urine is 432 

known to play a role in sexual signaling (Rothschild’s giraffes, Giraffa camelopardalis 433 

rothschildi: Bercovitch et al., 2006; common squirrel monkeys, Saimiri sciureus: Candland et 434 

al., 1980; woolly spider monkeys, Brachyteles arachnoides: Milton, 1985; capuchin monkeys, 435 

Cebus apella: Phillips et al., 2011; Asian elephants, Elephas maximus: Rasmussen et al., 1982; 436 

giant pandas, Ailuropoda melanoleuca: Swaisgood et al., 2002). Our results suggest that this 437 

communicative process through urine may also be present in catarrhines. To investigate this 438 

hypothesis further, studies should assess male response to familiar female urine odor across 439 

different cycle phases using bioassays. 440 

The fact that vaginal odor does not appear to encode information about the fertile period 441 

is surprising considering previous results in other primate species (Table 1 and Introduction). 442 
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It is possible that our small sample size prevented us from detecting any intra-cycle variation. 443 

Moreover, variation may occur within a few days of ovulation rather than across the broader 444 

cycle phases we studied. More and finer-scaled data are needed to better understand the 445 

relationship between vaginal odor and ovulatory signaling in Japanese macaques and other 446 

primate species. 447 

Exciting research questions remain to be tested. If female odor varies in relation to sex 448 

hormone concentrations, then does odor vary with reproductive status in the same individual: 449 

e.g., between mating and non-mating periods, from prepubescent to sexually mature, between 450 

cycling and non-cycling phases, and from pre- to post-conception phases? Do female age, 451 

genetic profile, and health status influence this relationship and how might this affect female 452 

reproductive capacity and success? And, finally, does female odor modulate socio-sexual 453 

interactions, especially in relation to the level of female-female competition, and if so, how? 454 

This last question is particularly interesting as, besides advertising their fertility, females would 455 

also benefit from receiving information about their rivals’ fertility status to increase their own 456 

mating success. They may intensify competition with other fertile females through agonistic 457 

interactions (Baniel et al., 2018; A. C. Hurst et al., 2017) or by exaggerating their own 458 

attractivity (e.g., behavioral or vocal solicitations (Fallon et al., 2016)). However, whether and 459 

how female odor modulates the level of intra-sexual competition is little studied in mammals, 460 

including primates (M. L. Fisher & Burch, 2021; Stockley et al., 2013). Investigating these 461 

research questions will provide valuable information about primate olfactory communication. 462 

However, doing so will be challenging in both captive and wild populations as such studies 463 

require longitudinal observations and data collection, a considerable budget for data storage 464 

and analyses, and may conflict with population management plans (e.g., use of contraceptives 465 

in breeding programs preclude analyses of female cycles).  466 
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In conclusion, our study identifies 31 volatile urine compounds and 37 volatile vaginal 467 

compounds of possible importance in olfactory communication in Japanese macaques. We 468 

found evidence for inter-individual (urine and vaginal samples) and intra-cycle (urine samples) 469 

differences in female odors. While we cannot draw clear conclusions about the role of female 470 

odors in Japanese macaque sexual communication, our results contribute to studies 471 

investigating how olfaction mediates socio-sexual interactions in human and non-human 472 

primates. To assess whether female odor has an adaptive sexual signaling function, further work 473 

is needed to increase sampling effort and determine if males and females can perceive inter-474 

individual and intra-cycle differences in female odors, and whether female odors modify the 475 

receiver’s behavior. 476 
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Fig 1. Nonmetric multidimensional scaling plots of similarity in urine sample chemical 492 

composition across cycles in relation to female identity and menstrual cycle phases.  493 

Fig 2. Variation in urine (A, B, C) and vaginal (D, E, F) richness (A, D), Shannon H (B, E), 494 

and intensity (C, F) across females. Plots show the median (black horizontal line), first and third 495 

quartiles (top and bottom of the box), and the range (upper and lower whiskers) values.  496 

Fig 3. Nonmetric multidimensional scaling plots of similarity in vaginal sample chemical 497 

composition in relation to female identity and menstrual cycle phases.  498 

Fig 4. Variation in urine (A, B, C) and vaginal (D, E, F) richness (A, D), Shannon H (B, E), 499 

and intensity (C, F) across cycle phases. Plots show the median (black horizontal line), the first 500 

and third quartiles (top and bottom of the box), and the range (upper and lower whiskers) values. 501 

 502 

Fig S1. Example of typical chromatographs from urine (A) and vaginal (B) samples during the 503 

fertile phase. 504 

Fig S2. Individual variation in urine richness (A), Shannon H (B), and intensity (C) across cycle 505 

phases. Plots show the median (black horizontal line), first and third quartiles (top and bottom 506 

of the box), and the range (upper and lower whiskers).  507 

Fig S3. Individual variation in vaginal richness (A), Shannon H (B), and intensity (C) across 508 

cycle phase. Plots show the median (black horizontal line), first and third quartiles (top and 509 

bottom of the box), and the range (upper and lower whiskers).  510 

 511 
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