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RESUME – Cet article compare deux approches déterministes et stochastiques pour le dimensionnement des micro-réseaux : 

un modèle White Box (WB) anticipatif qui optimise à la fois le dimensionnement et l’opération du micro-réseau sous l'hypothèse 

d'une prévision parfaite de la consommation et de la production des énergies renouvelables, et un modèle Black Box (BB) réactif 

qui optimise de manière heuristique le dimensionnement du micro-réseau avec une stratégie d’opération réaliste basée sur des 

règles dynamiques. Ce travail souligne l'importance d'optimiser le dimensionnement du micro-réseau avec la politique de 

gestion qui sera mise en œuvre et évalue les écarts technico-économiques par rapport à un dimensionnement basé sur 

l’hypothèse de connaissance parfaite du futur. Les résultats du cas d’étude montrent que le modèle BB est adapté au 

dimensionnement des micro-réseaux avec des temps de calcul inférieurs à ceux du modèle WB. 

ABSTRACT – This paper provides a comparison of two deterministic and stochastic approaches for microgrid sizing: an 

anticipative White Box (WB) model that optimizes both microgrid sizing and operation assuming a perfect forecasting of load 

and renewable energy production profiles, versus a responsive Black Box (BB) model that heuristically optimizes microgrid 

sizing with a realistic rule-based operation strategy. This work underlines the importance of optimizing microgrid design with 

the operating policy that will be implemented and assesses the techno-economic gaps compared to a sizing approach that 

assumes the perfect knowledge of the future. The case study results show that BB model is suitable for microgrid sizing with 

less computational requirements than the WB model. 

KEYWORDS – microgrid, optimal design, operating strategy, uncertainties, stochastic programming, linear programming. 

1.  Introduction  

Today's society is critically dependent on a secure energy supply. The increasing integration of intermittent renewable 

energy sources and electric vehicles into the conventional electric grid incites the transition from passive to active 

distribution networks. Thus, the implementation of radically new system concepts is incontrovertible. Microgrids, also 

known as the « building blocks of smart grids », are perhaps the most promising, novel network structure [1]. They are 

expected to become part of the next electric power system evolution, both in rural remote areas and in urban zones. As 

microgrids can lower the costs of energy supply and enhance the utility grid reliability and resilience, their planning and 

design must be optimized to ensure long-term stability. There are two key factors influencing the microgrid sizing: the 

operation strategy, which determines the power flows in the microgrid, and the uncertainties on the input data [2]. 

The stochastic nature of renewable power generation, the impossibility of predicting with total accuracy future energy 

prices, and the uncertainty of the long-term energy demand patterns and climate outlook, all highlight the importance of 

uncertainty considerations. To tackle this issue, Stochastic Programming (SP) is the most widely used approach to 

develop microgrid design models for decision-making under uncertainty [3].  

In terms of solutions, microgrid operation strategies can be divided into two types: rule-based and optimization-based 

operation strategies [2], [4]. In the rule-based operation strategies, a set of priority-rules determines, at each time step, 

the state (on/off) and the production level of the microgrid’s energy sources and storage units. As in HOMER Pro, a 

widely used software for microgrids sizing [5], there are two traditional strategies for scheduling: Load Following (LF) 

and Cycle Charging (CC). These rules prioritize renewable generation capacity, followed by storage units and finally 

fuel-fired generators. Each time a generator operates, it produces only enough power to meet the load when LF is used, 

while it operates at full output power when CC is used. In the optimization-based operation strategies, the operational 
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variables are optimized with perfect foresight over the entire operation horizon. The optimization methods can be further 

classified in two categories: Mathematical Programming (MP) techniques such as mixed-integer programming (MIP) and 

heuristic optimization methods such as Particle Swarm Optimization (PSO) which are suitable for solving non-linear and 

non-convex problems [6]. These two operation strategies mainly differ regarding their real-life implementation capability. 

A rule-based simulator has a realistic operation policy that accesses to past and current information. Conversely, an 

optimization-based control strategy is anticipative over a project’s lifetime and therefore unrealistic for real-time 

application, as it requires full access to past, current, and future information. Long-term look-ahead control strategy may 

differ from the one implemented in real life. 

Concerning microgrid design, components sizing can be chosen from a set of discrete values or optimized using MP or 

heuristic methods. The paper [7] presents a comparison of two deterministic methods for rural mini-grid design: a mixed-

integer linear programming model that optimizes the mini-grid sizing and operation assuming perfect prediction of load 

and generation profiles, and a heuristic PSO method that implements classical dispatch strategies (LF, CC). Nevertheless, 

to the best of our knowledge, there are no existing studies that evaluate the gaps between the two models’ solutions and 

computation times when the number of decision variables is increased and when uncertainties are considered.  

Among all the possible combinations of sizing and operation co-optimization methods, we are interested in comparing 

two approaches. The first one, which we call White Box (WB), optimizes both the microgrid sizing and operation using 

MP. In the second one, which we call Black Box (BB), the sizing is optimized using heuristic optimization algorithm, 

and the operation is rule-based. We thus aim to study the impact on microgrid optimization when operating it in a non-

realistic manner and to compare the computation time of the two methods in both deterministic and stochastic cases.  

The paper is organized as follows. Section 2. describes the mathematical formulation of the WB model, while section 3. 

details the BB model. Then, section 4. presents the case study and results. Finally, conclusions are drawn in section 5.  

2.  White Box (WB) model 

2.1 Description 

The purpose of this section is to describe the mathematical formulation of the WB optimization problem to obtain the 

most cost-effective design of a microgrid composed of a photovoltaic plant (PV), battery storage, and a diesel generator. 

This WB model, illustrated in Figure 1.a, conjointly optimizes both the design and operation of the microgrid by means 

of Linear Programming (LP), a mathematical model represented by linear dependencies that can achieve the global 

optimum. The objective is to minimize the Levelized Cost of Energy (𝐿𝐶𝑂𝐸) of the system. 𝐿𝐶𝑂𝐸 accounts for both the 

investment and operating costs, and the energy served to the load. Operating charges are evaluated considering a typical 

year's simulation at an hourly resolution, which is a reasonable trade-off between problem tractability and results 

optimality. The model is written in YALMIP, a MATLAB toolbox for optimization modeling, and solved using the 

“linprog” solver from MATLAB optimization toolbox.  

 

Figure 1. Diagrams of White Box (a) and Black Box (b) models for microgrid design optimization. 

2.2 Mathematical formulation 

2.2.1 Deterministic case 

This subsection presents the deterministic WB model, where all parameters are known with absolute certainty. Model’s 

decision variables 𝑋 are both design and operation variables. The design variables are the size of the microgrid assets: 

maximum energy capacity of the battery 𝑁𝑏𝑎𝑡, and maximum power of PV 𝑁𝑝𝑣 and diesel generator 𝑁𝑔𝑒𝑛. The operation 

variables are the power flows or production of generation and storage units at every time step: charging 𝑃𝑏𝑎𝑡,𝑖𝑛 and 

discharging 𝑃𝑏𝑎𝑡,𝑜𝑢𝑡 power from the battery, state of charge of the battery 𝐸𝑏𝑎𝑡,𝑠𝑜𝑐, and hourly production of PV 𝑃𝑝𝑣 and 

diesel generator 𝑃𝑔𝑒𝑛.  
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𝑋 = {𝑁𝑏𝑎𝑡 , 𝑁𝑝𝑣 , 𝑁𝑔𝑒𝑛 , 𝑃𝑏𝑎𝑡,𝑖𝑛 , 𝑃𝑏𝑎𝑡,𝑜𝑢𝑡 , 𝐸𝑏𝑎𝑡,𝑠𝑜𝑐 , 𝑃𝑝𝑣 , 𝑃𝑔𝑒𝑛} (1) 

The objective is to minimize the 𝐿𝐶𝑂𝐸 of the system, shown in Eq. (2), which reflects the cost of consumed electrical 

energy. The 𝐿𝐶𝑂𝐸 is the ratio of the total annualized cost 𝐶𝑡𝑜𝑡 to the annual electricity delivered to the load 𝐸𝑠𝑒𝑟𝑣 . 𝐶𝑡𝑜𝑡 is 

the sum of all costs over the chosen period, including the annualized investment costs 𝐶𝑐𝑎𝑝 as well as the fixed and 

variable operation and maintenance (O&M) costs 𝐶𝑜𝑝.  

𝐿𝐶𝑂𝐸 =
𝐶𝑡𝑜𝑡

𝐸𝑠𝑒𝑟𝑣

=
𝐶𝑐𝑎𝑝 + 𝐶𝑜𝑝

𝐸𝑠𝑒𝑟𝑣

 (2) 

𝐶𝑐𝑎𝑝 = 𝑁𝑔𝑒𝑛 × 𝑎𝑛𝑛𝑢𝑖𝑡𝑦𝑔𝑒𝑛 + 𝑁𝑝𝑣 × 𝑎𝑛𝑛𝑢𝑖𝑡𝑦𝑝𝑣 + 𝑁𝑏𝑎𝑡 × 𝑎𝑛𝑛𝑢𝑖𝑡𝑦𝑏𝑎𝑡  (3) 

𝑎𝑛𝑛𝑢𝑖𝑡𝑦𝑡𝑒𝑐 =
𝑟 × 𝑐𝑐𝑎𝑝,𝑡𝑒𝑐

1 − (1 + 𝑟)−𝑇𝑡𝑒𝑐
 (4) 

𝐶𝑜𝑝 = 𝑁𝑔𝑒𝑛 × 𝑓𝑂𝑀𝑔𝑒𝑛 + 𝑁𝑝𝑣 × 𝑓𝑂𝑀𝑝𝑣 + 𝑁𝑏𝑎𝑡 × 𝑓𝑂𝑀𝑏𝑎𝑡 + ∑ 𝑃𝑔𝑒𝑛,ℎ × 𝑣𝑂𝑀𝑔𝑒𝑛

ℎ

 
(5) 

𝑣𝑂𝑀𝑔𝑒𝑛 = 𝐹𝑠𝑙𝑜𝑝𝑒 × 𝑐𝑓𝑢𝑒𝑙  (6) 

Where 𝑎𝑛𝑛𝑢𝑖𝑡𝑦𝑔𝑒𝑛, 𝑎𝑛𝑛𝑢𝑖𝑡𝑦𝑝𝑣 and 𝑎𝑛𝑛𝑢𝑖𝑡𝑦𝑏𝑎𝑡  are the annualized investment costs of the generator, PV, and battery; 𝑟 

is the discount rate; 𝑇𝑡𝑒𝑐  is the technology (generator, PV, battery) lifetime and 𝑐𝑐𝑎𝑝,𝑡𝑒𝑐 is its capital cost; 𝑓𝑂𝑀𝑔𝑒𝑛, 𝑓𝑂𝑀𝑝𝑣 

and 𝑓𝑂𝑀𝑏𝑎𝑡 represent fixed O&M costs of the generator, PV and battery; 𝑃𝑔𝑒𝑛,ℎ is the generator production at hour ℎ; 

𝑣𝑂𝑀𝑔𝑒𝑛 represents variable O&M cost of the generator related to fuel consumption and is evaluated as the slope of fuel 

consumption curve 𝐹𝑠𝑙𝑜𝑝𝑒  multiplied by the fuel price 𝑐𝑓𝑢𝑒𝑙: the underlying assumption is that diesel efficiency is 

considered constant whatever the generator operating point. 

Eq. (7)-(14) are the model’s constraints required to describe the system’s energy balance and other operational and 

technical constraints. Eq. (7) guarantees that the operational decisions are made for balancing the energy production and 

demand at each time step ℎ. If enough electricity is generated to meet the demand, the excess can be stored in the battery 

or curtailed. 

𝑃𝑔𝑒𝑛,ℎ + 𝑃𝑝𝑣,ℎ ≥ 𝑃𝑑𝑒𝑚𝑎𝑛𝑑,ℎ + 𝑃𝑏𝑎𝑡,𝑖𝑛,ℎ − 𝑃𝑏𝑎𝑡,𝑜𝑢𝑡,ℎ (7) 

According to Eq. (8), the energy stored by the battery at time ℎ + 1 is equal to the energy stored at time ℎ added to the 

difference between the incoming and outgoing energy of the battery at time ℎ, considering the round-trip conversion 

efficiency 𝜂𝑟𝑡 ∈ [0,1]. The cyclicity constraint given by Eq. (9) applies to the first hour of the year and states that the 

stored energy at the beginning of the year must be equal to the stored energy at the end of the year. This constraint is 

useful as we optimize only over one year and then extrapolate over the project lifetime by treating all years as identical. 

𝐸𝑏𝑎𝑡,𝑠𝑜𝑐,ℎ+1 = 𝐸𝑏𝑎𝑡,𝑠𝑜𝑐,ℎ + 𝑃𝑏𝑎𝑡,𝑖𝑛,ℎ × √𝜂𝑟𝑡 −
𝑃𝑏𝑎𝑡,𝑜𝑢𝑡,ℎ

√𝜂𝑟𝑡

 
(8) 

𝐸𝑏𝑎𝑡,𝑠𝑜𝑐,0 = 𝐸𝑏𝑎𝑡,𝑠𝑜𝑐,8759 + 𝑃𝑏𝑎𝑡,𝑖𝑛,8759 × √𝜂𝑟𝑡 −
𝑃𝑏𝑎𝑡,𝑜𝑢𝑡,8759

√𝜂𝑟𝑡

 
(9) 

As the time step selected for optimization is fixed to one hour, the relationship between hourly-production and installed 

capacity can be derived using Eq. (10)-(13), where 𝑃𝑏𝑎𝑡  is the battery storage capacity. Eq. (14) limits the available energy 

volume that can be stored by the battery.  

0 ≤ 𝑃𝑔𝑒𝑛 ≤ 𝑁𝑔𝑒𝑛 (10) 

0 ≤ 𝑃𝑝𝑣 ≤ 𝑁𝑝𝑣 (11) 

0 ≤ 𝑃𝑏𝑎𝑡,𝑖𝑛 ≤ 𝑃𝑏𝑎𝑡 (12) 

0 ≤ 𝑃𝑏𝑎𝑡,𝑜𝑢𝑡 ≤ 𝑃𝑏𝑎𝑡  (13) 

0 ≤ 𝐸𝑏𝑎𝑡,𝑠𝑜𝑐 ≤ 𝑁𝑏𝑎𝑡 (14) 
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2.2.2 Stochastic case 

When the input uncertainties are considered, the microgrid optimal design becomes an uncertain optimization problem. 

The decision-making structure involved in this issue can be captured in a two-stage SP model, which splits the decisions 

into first- and second-stage decisions, representing decisions that must be taken respectively before and after uncertainty 

is revealed [3],[8]. Our application of the two-stage SP for optimal microgrid design is a scenario-based approach, which 

assumes that the parameters’ uncertainty can be represented by a finite number of 𝑁𝑠 scenarios. Each scenario 𝑠 is assumed 

to have a probability 𝑝𝑠.  

The first stage involves design and operation variables 𝑋𝑠𝑡𝑎𝑔𝑒1
 with no information on the realization of uncertainty. The 

second stage involves also design and operation decisions 𝑋𝑠𝑡𝑎𝑔𝑒2
 that need to be made according to the actual realization 

of uncertain parameters, but also to the first-stage decisions. To show the dependency between both stages’ decisions, the 

second-stage decisions cannot discard the PV installed in the first stage, given that diesel and battery lifetimes are reached 

by the end of the first stage. One can only keep the PV or increase the installed power. It is worth noting that, in the 

deterministic WB model, single values are calculated for the design variables and single vectors holding time step values 

are calculated for the operation variables. In the stochastic case, the same procedure is applied in the first stage, generating 

a single 𝐿𝐶𝑂𝐸. While in the second stage, these variables must be computed for each individual uncertain scenario s, thus 

generating a 𝐿𝐶𝑂𝐸 for each scenario, noted 𝐿𝐶𝑂𝐸𝑠. Eventually, the number of decision variables is multiplied by 𝑁𝑠 + 1.  

𝑋𝑠𝑡𝑎𝑔𝑒1
= {𝑁𝑏𝑎𝑡1

, 𝑁𝑝𝑣1
, 𝑁𝑔𝑒𝑛1

, 𝑃𝑏𝑎𝑡,𝑖𝑛1
, 𝑃𝑏𝑎𝑡,𝑜𝑢𝑡1

, 𝐸𝑏𝑎𝑡,𝑠𝑜𝑐1
, 𝑃𝑝𝑣1

, 𝑃𝑔𝑒𝑛1
} (15) 

𝑋𝑠𝑡𝑎𝑔𝑒2
= {𝑁𝑏𝑎𝑡2,𝑠

, 𝑁𝑝𝑣2,𝑠
, 𝑁𝑔𝑒𝑛2,𝑠

, 𝑃𝑏𝑎𝑡,𝑖𝑛2,𝑠
, 𝑃𝑏𝑎𝑡,𝑜𝑢𝑡2,𝑠

, 𝐸𝑏𝑎𝑡,𝑠𝑜𝑐2,𝑠
, 𝑃𝑝𝑣2,𝑠

, 𝑃𝑔𝑒𝑛2,𝑠
} (16) 

As it is commonly the case in two-stage SP, the final objective function, which is the 𝐿𝐶𝑂𝐸 in our model, is stated as the 

sum of the first-stage 𝐿𝐶𝑂𝐸 and the expected value of the second-stage 𝐿𝐶𝑂𝐸, as shown in Eq. (17). 

𝐿𝐶𝑂𝐸 = 𝐿𝐶𝑂𝐸𝑠𝑡𝑎𝑔𝑒1 + Εs[𝐿𝐶𝑂𝐸𝑠] = 𝐿𝐶𝑂𝐸𝑠𝑡𝑎𝑔𝑒1 + ∑(𝑝𝑠 × 𝐿𝐶𝑂𝐸𝑠)

𝑁𝑠

𝑠=1

  (17) 

Constraints that include only first-stage variables are expressed similarly to deterministic models Eq. (7)-(14). However, 

constraints that also contain second-stage variables are indexed per scenario 𝑠. Given the objective function and the 

constraints, the WB model simultaneously optimizes the first- and second-stage decision variables. 

3.  Black Box (BB) model 

3.1 Description 

The proposed BB model, illustrated in Figure 1.b, is a heuristic approach which, in our case, is based on a PSO algorithm. 

The objective function is identical to the WB one that minimizes the 𝐿𝐶𝑂𝐸. Unlike the WB, in which the operation 

variables are optimized assuming perfect forecasting of load and renewable profiles over the optimization period, the BB 

operation strategy is based on priority-rules. In this paper, we only consider the LF strategy, which is the most common 

operating strategy used in real-life applications owing to its modest hardware and computational requirements [7]. 

Thereafter, the PSO procedure iteratively generates multiple size configurations for the microgrid components. The rule-

based simulator simulates the system operation of each configuration for the entire year and subsequently evaluates the 

corresponding costs. Afterwards, the method calculates the 𝐿𝐶𝑂𝐸 of the system and other Key Performance Indicators 

(KPIs). Once the convergence criteria of the PSO are reached, the procedure stops, and the optimal components are 

evaluated.  

3.2 Mathematical formulation 

3.2.1 Deterministic case 

This subsection presents the deterministic BB model, in which the decision variables 𝑋 are only the design variables (size 

of the assets detailed in 2.2.1) of the microgrid. The objective function, shown in Eq. (19), is to minimize the 𝐿𝐶𝑂𝐸 of 

the system. To ensure energy balance, a penalty on load shedding is added to the objective function. Hence, the PSO 

algorithm will seek to find the design that minimizes the LCOE while ensuring a 100% load supply rate. 

𝑋 = {𝑁𝑏𝑎𝑡 , 𝑁𝑝𝑣 , 𝑁𝑔𝑒𝑛} (18) 

𝐿𝐶𝑂𝐸 =
𝐶𝑡𝑜𝑡

𝐸𝑠𝑒𝑟𝑣

 (19) 
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At each time step, a rule-based control strategy determines the operating variables without considering future load and 

PV production profiles. Hence, the BB model does not include the constraints presented in the WB (Eq. (7)-(14)).  

3.2.2 Stochastic case 

To include uncertainties in the microgrid design, the BB model employs the same scenario-based approach used in the 

WB model (2.2.2). Clearly, design variables are the only first- and second-stage variables. The BB technique is applied 

to the first stage and to each individual scenario 𝑠 in the second stage: the iterative routine between the PSO optimizer 

and the rule-based simulator is applied 𝑁𝑠 + 1 times in order to optimize 𝑋𝑠𝑡𝑎𝑔𝑒1
and 𝑋𝑠𝑡𝑎𝑔𝑒2

 and the corresponding 𝐿𝐶𝑂𝐸. 

Finally, the total objective function is calculated using Eq. (16). 

𝑋𝑠𝑡𝑎𝑔𝑒1
= {𝑁𝑏𝑎𝑡1

, 𝑁𝑝𝑣1
, 𝑁𝑔𝑒𝑛1

} (20) 

𝑋𝑠𝑡𝑎𝑔𝑒2
= {𝑁𝑏𝑎𝑡2,𝑠

, 𝑁𝑝𝑣2,𝑠
, 𝑁𝑔𝑒𝑛2,𝑠

} (21) 

4.  Case study 

4.1 Description 

The proposed WB and BB sizing methodologies are tested on a real microgrid composed of a PV, a battery, and a fuel-

fired generator. The demand and PV production profiles were estimated using real data, with a yearly peak demand of 

2084 kW. We assumed a 30-year time horizon with 5% discount rate. Also, we assumed linear specific costs: 1200 $/kWp 

for the PV, 350 $/kWh for the battery, and 400 $/kW for the generator. Maintenance costs are expressed as yearly values 

proportional to the size component: 20 $/kWp/y for the PV, 10 $/kWh/y for the battery, and 20 $/kW/y for the generator 

for an average of 1000 working hours per year and a cost of 0.02 $/kW/h. The components’ lifetimes are as follows: 30 

years for the PV, 15 years for the battery, and 15 years for the generator. The battery round-trip efficiency is considered 

90%. The fuel price is assumed to be 1 $/L and the fuel consumption curve slope is 0.24 L/kW. 

The same economic and technical parameters, load and renewable generation profiles were considered for both WB and 

BB models so that the two methods could be compared on equal basis. Calculation time step is one hour. The optimization 

period is the typical year based on which the multi-year behavior of the system is approximated.  

4.2 Results  

4.2.1 WB versus BB – Deterministic case  

The deterministic optimal microgrid design is first obtained with the LP WB model, and then with the PSO-based BB 

with a LF strategy. The resulting designs are included in the techno-economic comparison shown in Table 1, where 𝑁𝑃𝐶, 

𝜏𝑠ℎ𝑒𝑑𝑑 and 𝜏𝐸𝑛𝑅 are the Net Present Cost, the load shedding rate and the renewable energy share rate, respectively. It is 

worth noticing that the components sizing is quite different in the two models. The fuel generator in BB optimal design, 

equal to the yearly peak demand, is reduced using the WB model. Indeed, since WB scans the possible system behavior 

in advance, a smaller genset can be used and operated to charge a much larger battery. This also implies that the WB 

global optimum stands theoretically for the lowest value with respect to rule-based strategies: BB solution is 1.512% 

higher than WB solution in terms of LCOE. Yet, BB allows significant execution time reduction by a factor of 4.7.  

Besides, we calculated the LCOE in the case where the system is sized based on the WB operation strategy and then 

operated with the BB operation strategy. The simulation results depicted in Table 2 underline the drawbacks of using an 

anticipative operation strategy in the optimization phase different than the one actually used: a 0.81% increase in LCOE 

and 0.25% load shedding. Note that, in real life, 𝜏𝑠ℎ𝑒𝑑𝑑  could be higher due to the lack of switching equipment close to 

the users.  

Table 1. Optimal microgrid design with deterministic WB and BB models. 

Model Time [s] 𝑁𝑔𝑒𝑛[𝑘𝑊] 𝑁𝑝𝑣[𝑘𝑊𝑝] 𝑁𝑏𝑎𝑡[𝑘𝑊ℎ] 𝐿𝐶𝑂𝐸[$/𝑀𝑊ℎ] 𝑁𝑃𝐶[𝑘$] 𝜏𝑠ℎ𝑒𝑑𝑑[%] 𝜏𝐸𝑛𝑅[%] 

WB 33 1548 2643 2794 227.7 24553 0 32.3 

BB 7 2084 1828 89 231.1 24924 0 21.8 

Table 2. Simulation of the microgrid designed with an optimization-based strategy and operated with a rule-based one (LF). 

Simulation strategy Design obtained with 𝐿𝐶𝑂𝐸[$/𝑀𝑊ℎ] 𝑁𝑃𝐶 [𝑘$] 𝜏𝑠ℎ𝑒𝑑𝑑 [%] 𝜏𝐸𝑛𝑅  [%] 
BB WB 229.6 24690 0.25 32.5 
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4.2.2 WB versus BB – Stochastic case  

For a simplified stochastic case, we only consider fuel price uncertainty. Annual variations of fuel price were not 

considered in this study. The cost remains constant (1 $/L) until the 15th year, from that point it can either decrease by 

90%, remain constant or increase by 90% over the remaining 15 years of the project lifetime. These three realizations, 

corresponding to scenarios 𝑠1, 𝑠2 and 𝑠3, are taken as equiprobable. The results presented in Table 3 show the dependency 

between the first- and second-stage designs. In 𝑠3, a larger PV and battery are installed in both WB and BB to reduce the 

consumption of fuel whose price increases. Nevertheless, a large generator is still required to satisfy the peak load in the 

BB. As in the deterministic case, optimal component sizes are different between the two models with an overall LCOE 

of 1.502% higher in the BB than in the WB. Also, note that the WB is more time-consuming than BB by a factor of 3.5. 

Table 3. Optimal microgrid design with stochastic WB and BB models. 

Model Time [s] Stage 𝑁𝑔𝑒𝑛[𝑘𝑊] 𝑁𝑝𝑣[𝑘𝑊𝑝] 𝑁𝑏𝑎𝑡[𝑘𝑊ℎ] 𝐿𝐶𝑂𝐸[$/𝑀𝑊ℎ] 𝑁𝑃𝐶[𝑘$] 𝜏𝑠ℎ𝑒𝑑𝑑[%] 𝜏𝐸𝑛𝑅[%] 

WB 184 

1 1765 1758 1044 229.0 24691 0 23.4 

2-𝑠1 2084 1758 0 60.9 6565.8 0 21.2 

2-𝑠2 1548 2643 2794 227.7 24553 0 32.3 

2-𝑠3 1279 5472 7754 337.9 36432 0 54.4 

BB 

 1 2084 1491 0 231.7 24983 0 19.4 

52 2-𝑠1 2084 1491 0 57.6 6209.3 0 19.4 

 2-𝑠2 2084 1823 84 231.1 24924 0 21.8 

 2-𝑠3 2084 5357 7399 349.3 37667 0 53.8 

5.  Conclusion 

This paper compares two approaches for microgrid sizing. Firstly, we presented an anticipative LP WB model that 

conjointly optimizes microgrid sizing and operation assuming perfect knowledge of load and renewable patterns over the 

project lifespan. Then, we presented a responsive PSO-based BB model that heuristically optimizes the sizing of 

microgrid whose operation is controlled by a rule-based simulator that determines at each time step the optimal generation 

dispatch. The microgrid sizing and operation are obtained by solving the deterministic and two-stage stochastic forms of 

the two models. The case study results highlighted the importance of selecting a sizing method that copes with the actual 

operating strategy of the project to avoid design failures and costs increase. Furthermore, the results showed that BB 

outperformed the WB in terms of computational requirements. Among the avenues for future work, we would like to 

validate this comparison by studying other microgrid projects and by testing the sensitivity of the models’ computational 

requirements when the number of decision variables is expanded, and other uncertainties are considered.  
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