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3Inria d’Université Côte d’Azur, 2004 route des Lucioles, B.P. 93, 06902, Sophia

Antipolis, France, (rima.khouja@inria.fr)
4Univ Le Havre, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France,

(ahmadou.sylla@univ-lehavre.fr)

Abstract

This report was done during the Semaine d’Études Mathématiques et Entreprises (SEME)
at the Institut de recherche mathématique de Rennes (IRMAR). The subject, proposed by the
research centers Cenearo and IRT Saint Exupéry, is about the characterization of optimization
problems which can only be tested under a black-box procedure. We propose some selection
criteria in order to categorize such problems.

1 Introduction

Optimization constitutes a large area of research in the context of modern applied mathematics,
through its unique connection with over fields of mathematics such as linear algebra [O’L00], alge-
braic geometry [BPT13], topology [SM13], numerical analysis [All07], partial differential equations
[Tr0], probability [Ste97] or statistics [Rus94], as well as its numerous applications in the contexts
of classical mechanics [Bro88], civil engineering [HK03], molecular modeling [FT15], economics and
finance [Dor69, Mal89, RW97], and so on.

∗Technical report, Semaine d’étude Maths-Entreprise, Centre Henri Lebesgue, Rennes, 2-6 May 2022, subject of
Cenaero and IRT Saint Exupery research centers.
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In the mathematical formalism, an optimization problem aims to find (or at least estimate)
a minimum x∗ of a continuous function f : Rn → R defined on the whole space Rn with n ∈ N∗,
namely

x∗ = min
x∈Rn

f(x),

under the following constraints:

• some bounded constraints
li ≤ xi ≤ ui

for i = 1, . . . , n and l = (l1, . . . , ln), u = (u1, . . . , un) ∈ Rn,

• some inequality constraints
gj(x) ≤ 0

for gj : Rn → R with j = 1, . . . , p and p ∈ N,

• some equality constraints
hk(x) ≤ 0

for hk : Rn → R with k = 1, . . . , q and q ∈ N.

In the following, we will assume that the variable x satisfies some bounded constraints in each
directions of the space Rn, and we will denote

Ω = {x ∈ Rn | ∀i ∈ J1, nK, li ≤ xi ≤ ui} .

Inequality and equality constraints then generate a subset of Ω, called feasible set,

C = {x ∈ Ω | g(x) ≤ 0 and h(x) = 0} .

As Ω defines a compact subset of Rn, the continuous function f well admits a global minimum x∗

on the feasible set C. Note that the unicity of the global minimum x∗ is not guaranteed under such
little assumptions, and would require additional properties such as convexity of the function f and
the feasible set C. We refer to the book [BV04] for an introduction to convex optimization.

In the literature, as C 6= Rn, our problem takes place in the field of constrained optimization, as
opposed to unconstrained optimization which focuses on the minimization of the objective function
on the whole space Rn (see [NW06] for a presentation of the most popular techniques to solve
this type of problem). At this stage, we can also mention the field of combinatorial optimization
[CCPS98], which deals with discrete functions or/and discrete feasible sets (contrary to continous
optimization), and stochastic optimization [SDR21], when the function f depends on some random
variables (otherwise we say that we have a deterministic optimization problem).

In our setting, the objective function f and the constraint g and h are unknown, and can only
be tested under a black-box procedure: we assume that we can only generates random points
on the feasible set C and the graph of f

Gf = f(Ω) = {y ∈ Ω | ∃x ∈ Ω, y = f(x)} ,

and that we can test if a random point x ∈ Ω belongs to one of those sets or not. Note that
generating random data points in a subset of Rn is an area of research on its own, and is covered
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by a large literature (see for instance [DHS13] and references within). Another important feature
of statistical learning is about corrupted data, where samples are perturbed by typically Gaussian
noise or outliers [BL94], hence efficient optimization algorithms in this black-box setting obviously
have to be robust with respect to noisy data.

Finding relevant and computable criteria in the context of black-box optimization, as well as
finding efficient methods in order to estimate these criteria, has been an important topic of statis-
tical optimization in the past few years, in particular with the recent development of data analysis
and machine learning, and the large demand coming from the industrial world. A particular focus
has been made on the implementation of criteria based on the objective function [Mal21], but we
can also cite [MOE15] for some criteria on the feasible set.

This report presents the results obtained during the Semaine d’Etude Mathématiques et En-
treprises (SEME), organized by the Agence pour les Mathématiques en Interaction avec l’Entreprise
(AMIES) and the Centre Henri Lesbesgue, which took place in Rennes from 2 to 6 May 2022. Our
subject, called ”Characterization of Optimization Problems”, was proposed by Paul Beaucaire from
the applied research center Cenearo and Benôıt Pauwels from the technological research institute
IRT Saint Exupéry. Note that the majority of the authors have never worked into the field of
statistical optimization before this week, so a reader familiar with the topics of this paper may
find our approach a bit naive, however, we hope we may have tackled some rather simple but still
interesting discussions and opened some meaningful perspectives.

This note is outlined as follows. Section 2 presents a criterion based on the Hessian matrix
of the cost function. In Section 3, we propose criterion based on the nature of the feasible set.
Perspectives about our criteria are given in Section 4.

2 Condition number of the Hessian matrix criterion

The Hessian matrix of the cost function that we aim to minimize is rich of valuable information
that can help us in the choice of a convenient algorithm to solve our optimization problem. In
particular, the conditioning of the Hessian matrix can tell us whether it is judicious or not to
choose a first or a second order optimization method. In fact, ill-conditioned Hessian matrix affects
directly the numerical performance of first and second order optimization methods. In this case
the contours of the basins of the cost function tend to be ellipsoids which imposes some difficulties
on the convergence of the descent direction in a first order method towards a local minimum, for
example, the descent gradient (since it has to follow a zigzag path towards the local minimum). On
the other hand, for a second order optimization method, the computation of the descent direction is
based on solving a linear system by taking the inverse of the Hessian matrix, hence ill-conditioned
Hessian matrix remains its inversion numerically unstable, to see this we can simply take the SVD
decomposition of the Hessian matrix UΣV t, if the Hessian is ill-conditioned the smallest singular
value is tend to be close to zero, then its inverse that appears in the inversion of the Hessian matrix
UΣ−1V t will blow up.

Hereafter, we present a simple test that can describe the conditioning of the Hessian matrix of
the cost function. Based on this criterion one can decide if it is gainful to apply one determinist order
one or two optimization algorithm. Roughly speaking, this could be the case when the objective
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function tends to have a few number of points such that the Hessian matrix is ill-conditioned. More
concretely, this is the case when the set of points of ill-conditioned Hessian matrix is not of large
volume. In the opposite case, i.e., the test shows that the aforementioned set is of large volume,
thus this can be a sign to move for instance to one of the stochastic search optimization algorithm
that does not rely necessarily on the derivatives of the objective function, and this to avoid the
weak numerical performance of first or second optimization method expected according to this test.

• Randomly sample k points in the search space according to an uniform distribution

• At each point construct a neighborhood that contains N random points according to a uniform
distribution

• Set ij = 0 for j ∈ {1, . . . , k}

• For each neighborhood, i.e., for each j ∈ {1, . . . , k} compute at each point the SVD of the
Hessian matrix. If the ratio of the largest singular value over the smallest singular value is
higher than a threshold α (for example 106) then ij = ij + 1

• Return I = (i1, . . . , ik), the mean and the standard deviation given by the k set.

3 Geometry and topology of the feasible set

It is readily intuitive that the geometry and topology of the feasible set C directly depend on the
nature of the constraints: bornitude and inequality constraints generate thick subsets, namely
sets of non-null volume with respect to the underlying Lebesgue measure dλ of the n-dimensional
box Ω, whereas equality constraints hk generate thin subsets, whose implicit dimension dk < n.
From a black-box point of view, it is crucial to effectively estimate the underlying dimension d of
the feasible set C, in order to apply the most effective algorithm to estimate x∗.

A classical procedure in order to estimate the volume of a subset of Ω is the Monte Carlo
method: we generate a number of random samples X1, . . . , XN ∈ Ω with N ∈ N∗, and we compute
the estimator

VN =
1

N

N∑
i=1

1{Xi∈C},

which is an approximation of the volume V = Vol(C) with respect to the measure dλ from the law of
large numbers. The Monte Carlo method is for instance used in order to estimate the transcendent
number π, by simulation random points in a 2-dimensional box and calculating the ratio between
the number points that lied inside the centered circle of radius 1 and the total number of generated
points. This method is considered as pretty efficient, as it does not depend on the dimension n, and
it converges in O

(
N−1/2

)
from the Central Limit Theorem. Note that this simple Monte Carlo

procedure can be improve for better efficiency, and we refer to the recent survey [LMB+20] for
discussions on different refinements of the Monte Carlo method.

In our setting, we fix an infinitesimal threshold εV > 0, we perform a Monte Carlo procedure
on the feasible set C with a large number N of samples, and we infer:

• if VN ≥ εV , we consider that C is a thick set, and we are then interested in determining some
of its topological properties (see Section 3.1), such as connectedness, convexity, ect...
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• if VN < εV , then we consider that C is a thin set, and we seek some of its geometrical properties
such as its underlying dimension, if its fit an affine subset of Ω, or more generally if it can be
approximated by an algebraic curve or surface via a regression procedure (see Section 3.2).

3.1 Topology of a thick feasible subset

In this section we are interested in the study of the connected components of the feasible set C.
Some iterative optimization algorithms requires to stay in the feasible set at each iteration which
makes jumps from one connected component to another less likely and, therefore, restricts the
exploration to a few components. Thus, it appears that, a lot of connected components for C will
result in inefficiency for some of those optimization algorithms.

Suppose that C has a finite number of connected components denoted by C1 . . . , Ck. From the
previous discussion, it seems that estimating the number of connected components k is relevant.
Another interesting quantity to look at could be the following:

p :=

∑k
i=1 V

2
i(∑k

i=1 Vi

)2
where Vi is the volume of the component Ci (in the sense of the Lebesgue measure). It is important
that the feasible set has a positive volume in order to make sense of the quantity p. Intuitively, p
corresponds to the probability that an iterative algorithm initiates on the component containing
the global minimum of the objective function. Indeed, if we suppose that the global minimum x∗

and the starting point x0 of the algorithm are i.i.d random variables with uniform distribution on
C, then p is exactly the probability that x∗ and x0 belongs to the same connected component. A
small value for p implies that iterative algorithms restricted to the feasible set are less likely to find
the global minimum.

Description of the algorithm. In this paragrpah we describe an algorithm that estimates both
k and p. The algorithm starts by taking N i.i.d points X1, . . . , XN uniformly in C, where N is a
parameter of the algorithm to choose. To do so, one can simply take i.i.d points uniformly in a
big box containing C, keep the points in C and reject the points outside of C until N points fall in
C. Then, for each pair of points (Xi, Xj) with i < j we test if Xi and Xj are strongly connected,
meaning that the two following conditions are satisfied:

1. The distance between Xi and Xj is smaller than γN−1/d where d is the dimension of the
problem and γ is a parameter of the algorithm. (In our implementation we took the euclidean
distance but, one could take any distance, for instance, the distance associated with the L∞

norm which is easy to handle in a program).

2. All the points tXi+(1−t)Xj for t = 0, 1
K ,

2
K , . . . , 1 belongs to C where K is another parameter

of the algorithm.

Intuitively, two points Xi and Xj are strongly connected if they are close and the segment [Xi, Xj ]
”almost” belongs to C. If two points are strongly connected the algorithm considers that they are
in the same connected component. Of course the converse is false: two points could be in the same
connected component without being strongly connected. This is why the algorithm determines
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the transitive closure of this relation. To do so, the algorithm performs a depth first search on
the underlying graph where the nodes are the points X1, . . . , XN and edges are drawn between
points that are strongly connected. In the end, the algorithm returns the connected component of
this graph which approximates the sets of points that are in the same connected component of C.
Counting the proportion of points in each component, one can determine V1, . . . , Vk and therefore,
deduce the quantity p. See Figure 1 for a visualisation.

(a) (b)

Figure 1: Application of our algorithm for two feasible sets in dimension 2. Here N = 1000,
K = 10 and γ =

√
10. Points that share the same colour are considered to be in the same

connected component by the algorithm. (a) The feasible set is composed of 2 rectangles and a
L shape box, the algorithm finds the 3 components and computes p = 0.35 (the real value being
p = 0.36). (b) The feasible set is composed of 25 rings, the algorithm finds the 25 components and
computes p = 0.041 (the real value being p = 0.4).

Complexity of the algorithm. Here we discuss the complexity of the algorithm we presented.
First, the rejection sampling is of complexity O(NV −1) where V = V1 + · · ·+Vk is the total volume
of C. Then, computing the adjacency matrix for the strongly connected relation is in O(N2 +KN).
If, as a definition of strongly connected, we took only the second condition, the complexity would
be O(KN2). Finally, the depth first search has a linear complexity O(N).

Extension to thin feasible sets. Our method heavily relies on the fact that the feasible set C
has a positive volume. If it is not the case, then the rejection sampling won’t work, because the
probability that a point falls in C is 0. However the study of connected components stay relevant
even if the feasible set is thin. To circumvent this difficulty, one could relax the constraints in order
to obtain a thick set. There are two drawbacks to this technique: first, even with a relaxation,
the volume of the feasible set could stay really small and the complexity of the rejection sampling
could be really high. Second, the algorithm will obviously be less precise since the relaxation will
probably modify the number and the shape of the connected component. Another solution would
be to be able to generate random points on the feasible set. This is not always possible, especially
if the analytic form of the constraints is unknown (which is our case here). However, if the only
constraint is of the type h(x) = 0 with h continuous such that both h−1(]−∞, 0[) and h−1(]0,+∞[)
have positive volume, then it is possible to generate random points on the feasible set h−1({0}). To
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do so, one could generate two random points X1 and X2 such that h(X1) < 0 and h(X2) > 0 with
a rejection sampling method. Then, with Newton’s method, one could find a zero of the function
H : t ∈ [0, 1] 7→ h(tX2 + (1 − t)X1). If the derivative of H is unknown, a simple discretisation of
the derivative could be considered. The zero of H, will then be our random generated point on the
feasible set. It should be noticed that the law of that random point has no reason to be uniform
on the feasible set. But this does not necessarily imply that our algorithm will fail.

3.2 Geometry of a thin feasible subset

3.2.1 Affine subspace : Principal Component Analysis (PCA)

We first assume that C is an affine subset of Ω, in the sense that there exist d + 1 vectors
v0, v1, . . . , vd ∈ Ω such that

C =

{
y ∈ Ω

∣∣∣∣∣ ∃(α1, . . . , αd) ∈ Rd, y = v0 +

d∑
i=1

αivi

}
, (1)

with the obvious inequality d < n. In order to obtain the dimension d of C, as well as the vectors
(vi)1≤i≤d, we compute from N random samples X = X1, . . . , XN ∈ C the empirical covariance
matrix

C = Cov(X,X) =
1

N − 1

N∑
i=1

(Xi −X)(Xi −X)T ,

where X denotes the sample mean

X =
1

N

N∑
i=1

Xi.

This matrix is a real symmetric matrix of dimension n, namely C ∈ Sn(R), and we denote by
λ1, . . . , λn its real positive eigenvalues sorted in decreasing order

λ1 ≥ λ2 ≥ . . . ≥ λn, (2)

and v1, . . . , vn the associated eigenvectors.

The idea of the PCA method is to determine an orthogonal linear change of basis in order to
reduce the dimension of the problem by projecting the data onto the first relevant components.
Mathematically speaking, it is a direct consequence of standard linear algebra theory: as the
covariance matrix C ∈ Sn(R), there exists a diagonal matrix D = diag(λ1, . . . , λn) satisfying (2)
and an orthogonal matrix P ∈ On(R) that can be written

P =

 v1 . . . vn

 ,

such that C = PDP−1. In practice, we then have to fix an infinitesimal threshold ελ > 0 (typically
ελ ∼ 10−15), so that the PCA method determines that eigenvectors associated to eigenvalues smaller
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than the threshold ελ do not constitute relevant directions for the sample data. In our setting, that
induces the existence of an integer dN < n such that

ελ ≥ λdN+1 ≥ . . . ≥ λn,

and we can consider that the feasible set is an affine space generated by the eigenvectors associated
to the first dN eigenvalues, namely C is of the form (1). Note that this method also works if C is a
substantial enough subset of an affine space. At the contrary, this method is considered to fail if it
sends back the value dN = n, as we have already assume that C generates no volume with respect
to dλ on Ω. It is also pretty robust to small perturbation of the data samples, and the threshold
ελ can be adapted with respect to the supposed noise of the data.

In our test, N = 100 data samples X1, . . . , XN ∈ Ω = [0, 1]
3

are generated on a random plane.
We obtain a covariance matrix

C =

 0.072471 0.016504 0.033138
0.016504 0.085320 0.036600
0.033138 0.036600 0.025502

 ,

which have the following eigenvalues λ1 = 0, 12168, λ2 = 0, 061614 and λ3 = 4, 3514.10−18, associ-
ated with the eigenvectors

v1 =

 −0.543298
−0.705192
−0.455556

 , v2 =

 −0.770248
0.634557
−0.063683

 , and v3 =

 −0.333985
−0.316292
0.887927

 .

The PCA method then determines that the third eigenvalue is below the eigenvalue threshold,
namely λ3 < ελ = 10−15, so our algorithm establishes that the data samples are not correlated
under the direction v3, and that we can estimate the set

C = {y ∈ Ω | ∃α1, α2 ∈ R, y = α1v1 + α2v2} .

The algorithm also obviously estimate than the underlying dimension of the feasible set is dN = 2.
Figure 2 represents our simulation described above.

Some interesting generalization of the PCA method can be performed in the case where C is an
union of affine subspaces of Ω: these methods are called Generalized Princpal Component Analysis
(GPCA), and we refer to [VMS16, MYDF08] for an introduction to these methods in the case of
high-dimensional data. Note that these methods can be pretty robust to noisy data and outliers.

3.2.2 Algebraic variety: Multivariate Polynomial Regression (MPR)

Feasible set C being an affine subspace of Ω is of course a pretty strong assumption on the constraint
h. A lighter assumption would naturally consists in h being a polynomial function on Ω, which can
be written h ∈ R [x1, . . . , xn], so that the constraint h = 0 generates a feasible set contained in an
algebraic variety

C = {x = (x1, . . . , xn) ∈ Ω | h(x1, . . . , xn) = 0} .
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Figure 2: PCA method applied for data samples generated on a random plane of [0, 1]
3
.

We restrain our attention in the case where h is of degree 1 with respect to at least one of the
variable xi with 1 ≤ i ≤ n, so there exists a polynomial P ∈ R [x1, . . . , xi−1, xi+1, . . . , xn] such that

h(x1, . . . , xn) = 0⇔ xi = P (x1, . . . , xi−1, xi+1, . . . , xn).

The Multivariate Polynomial Regression is then a surface fitting algorithm based on the minimisa-
tion of the standard Mean-Square Error (MSE). Note that, denoting

P (x1, . . . , xn) =
∑
j∈J

cjx
j1
1 . . . xjnn

with cj ∈ R for all j ∈ J and

J = {j = (j1, . . . , jn) ∈ Nn | ji = 0 and |j| := j1 + . . .+ jn ≤ deg(P )} ,

the dimension of the curve then corresponds to the quantity

d = sup {|j| ∈ N | j ∈ J and cj 6= 0} .

In our test, in dimension n = 3, N = 100 data samples X1, . . . , XN ∈ Ω = [0, 1]
3

are randomly
generated on a cubic curve

C =

{
(x, y, z) ∈ Ω

∣∣∣∣ z =
1

8
(x+ y)3

}
⊂ Ω.

The aim of the MPR procedure is then to determine the algebraic equation

z = P (x, y) =
1

8
x3 +

3

8
x2y +

3

8
xy2 +

1

8
y3

by finding its coefficient in the basis (1, x, y, x2, xy, y2, x3, x2y, xy2, y3). In practice, denoting Xi =
(xi, yi, zi) for 1 ≤ i ≤ N , the algorithm solves the linear equation

Ac = z,
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where A is the N × 10 Vandermonde matrix

A =


1 x1 y1 x21 x1y1 y21 x31 x21y1 x1y

2
1 y31

1 x2 y2 x22 x2y2 y22 x32 x22y2 x2y
2
2 y32

...
...

...
...

...
...

...
...

...
...

1 xN yN x2N xNyN y2N x3N x2NyN xNy
2
N y3N

 ,

and

z =


z1
z2
...
zN

 .

Note that the number of samples N is usually larger than the number of coefficients of the poly-
nomial c, leading to an over-determined system, so the inverse matrix A−1 is to be understood in
the least square sense, such that it is the unique matrix in M10,N (R) such that

AA−1 = IdN,N and A−1A = Id10,10.

It is pretty straightforward to see that c minimizes the MSE, namely

c = min
c∈R10

N∑
i=1

(Ac− z)2

where the square notation as to be understand pointwisely. In our simulations, the algorithm do not
manage to fit the samples X1, . . . , XN in the case of an approximation by a polynomial of degree
2 in the 6-dimensional basis (1, x, y, x2, xy, y2) (cf Figure 3), as it send back the polynomial

P (2)(x, y) = 0.061575− 0.333735x− 0.270596y + 0.386687x2 + 0.747629xy + 0.329421y2,

but manages to fit the data with a polynomial of degree 3 (cf Figure 4), sending back the polynomial

P (3)(x, y) = 0.125x3 + 0.375x2y + 0.375xy2 + 0.125y3.

When dealing with polynomial regression, one have to care about overfitting phenomenon, ie
that increasing too much the polynomial degree would exhibits some oscillatory and unnatural
behavior between and outside the data sample points.

4 Perspectives

• We proposed to investigate the conditioning of the Hessian matrix of the objective function
at points in the feasible set by proposing a test that computes the condition number of this
matrix via SVD computation. A natural extension is to render this test more efficient in
term of complexity and to propose more precised method than the random one to choose
the points on which we look at the conditioning of the Hessian matrix. This can be done
using for instance methods based on statistics and probabilistic analysis which can make
the choice of the points more representative and then yields a more accurate study for the
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Figure 3: MPR method applied for data samples generated on a degree 3 surface of [0, 1]
3

by a
polynomial of degree 2.

conditioning of the Hessian matrix. Another important point to investigate is to study the
Hessian matrix of the functions that appear in the equality and inequality constraints. This
able us to understand for instance the curvature of the constraint set and then to have an
idea on how much the geometry of this set is complicated. This can offer a valuable criterion
that helps us in the selection algorithm process.

• A natural perspective of our work would be to implement a method which fits any alge-
braic curve from a number of sample data points. In fact, in optimization problems, natural
constraints can appear under the form of sphere

S =
{

(x, y, z) ∈ Ω
∣∣ x2 + y2 + z2 = 1

}
,

or more generally as ellipsoid, cylinder, circular paraboloid and so on. We can briefly mention
some works which goes into this direction. In [HOZM08, GG20], the authors tackle the case
of conics in R2 in the case of noisy data, taking advantages of their algebraic classification.
In a more general setting, [BKSW18] constitutes a pretty complete overview to this problem,
but lack some precise convergence estimate with respect to N . For an introduction to precise
statistical convergence rate, we refer to the preprint [AS21] and references within. We can
howver mention that in the case of k-times smooth manifold [AL19], the authors E. Aamari
and C. Levrard have shown a convergence rate in O(N−k/d) in the case of noiseless data,
where d is the intrinsic dimension of C and N is the number of samples, and also give a lower
bound in the framework of orthogonal noise models. The case of estimating singular varieties
however seems to currently remain an open problem to the best of the authors knowledge.
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Figure 4: MPR method applied for data samples generated on a degree 3 surface of [0, 1]
3

by a
polynomial of degree 3.
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[All07] Grégoire Allaire. Numerical analysis and optimization. Numerical Mathematics and
Scientific Computation. Oxford University Press, Oxford, 2007. An introduction to
mathematical modelling and numerical simulation, Translated from the French by Alan
Craig.

[AS21] Yariv Aizenbud and Barak Sober. Non-parametric estimation of manifolds from noisy
data, 2021.
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