
HAL Id: hal-03636958
https://hal.science/hal-03636958

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The epsilon-stable region analysis in dynamic downlink
cellular networks

Qiong Liu, Jean-Yves Baudais, Philippe Mary

To cite this version:
Qiong Liu, Jean-Yves Baudais, Philippe Mary. The epsilon-stable region analysis in dynamic downlink
cellular networks. IEEE Vehicular Technology Conference (VTC2022-Spring), Jun 2022, Helsinki,
Finland. �hal-03636958�

https://hal.science/hal-03636958
https://hal.archives-ouvertes.fr


The ε-stable region analysis in dynamic downlink
cellular networks

Qiong Liu∗, Jean-Yves Baudais†, Philippe Mary∗
∗Univ. Rennes, INSA, IETR, Rennes, France

†IETR, CNRS, Rennes, France
Email: qiong.liu@insa-rennes.fr

Abstract—In this work, we give a complete characterization
of the ε-stable region in dynamic downlink random cellular
networks. The ε-stable region is the set of arrival rates such
that the proportion of unstable queues in the network is not
larger than ε. We derive upper and lower bounds as well as
an approximation of the critical arrival rate, which delimits
the ε-stable region. The developed model is based on stochastic
geometry and queuing theory to handle the interaction between
the transmit success probability and the queuing state evolution.
Extensive numerical simulations are provided to confirm the
tightness of the approximation.

Index Terms—Stochastic geometry, queuing theory, ε-stable
region, Gil-Pelaez Theorem.

I. INTRODUCTION

Stochastic geometry provides a mathematical framework
to analyze the performance of large scale wireless networks
by capturing the spatial randomness intrinsic to the wireless
systems including fading, shadowing, and power control [1],
[2]. In the last decade, stochastic geometry has been combined
with various complex network models taking into account
frequency reuse, multiple antennas, multiple-tiers, or load-
aware protocols, to cite a few [2]–[5].

However, most of the literature relies on the assumption
that transmitters are backlogged, i.e., the transmitters always
have packets to transmit. This full load assumption leads
to pessimistic estimates of the system performance. Since
the real systems are subject to temporal traffic variations
and the signal sources generate packets according to some
stochastic process, the load-awareness is essential for real-
world performance assessment [3]. However, the interaction
between queues makes the problem mathematically rather
involved, because the state of each queue depends on the state
of all others queues.

A first attempt combining stochastic geometry and queueing
theory has been granted in [3], where the coverage probability
considering load is investigated. In case where each transmitter
provides a buffer for queueing, the primal consideration is
about queueing stability. For a point-to-point system with
random arrival and departure processes, the stable region
requires that the service rate be larger than the arrival rate
[6]. However, traffic conditions are more complicated in a
large-scale network with multiple queues since the service
rate depends on the state of all transmitters in the network.
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To address this issue, recent attempts have been made in
[7]–[10]. The stability of uplink random access networks
have been studied in [7]. However, a single cell network
has been considered in this work thereby ignoring the inter-
cell interference. A traffic-aware spatio-temporal model for a
uplink cellular network has been developed in [8] to study
the scalability and stability tradeoff, i.e., its ability to support
a large number of devices while the queue sizes are not
diverging. In [9], the network stable region in a downlink
cellular network has been investigated. The main drawback of
these results is that they only consider the average performance
based on the first statistical moment of useful metrics, e.g.
coverage probability.

To overcome this drawback, a more refined metric known as
ε-stable region has been proposed in [10]. Unlike the stability
region, that is based on the first moment measure, ε-stable
region relies on the moment generating function of the signal
to interference plus noise ratio (SINR). The characterization
of the ε-stable region relies on the meta distribution [11]. This
concept allows to answer the question "What is the set of
arrival rates such that the proportion of unstable queues in
the network is below ε at a required SINR?". A single letter
characterization of the ε-stable region is, however, far from
being trivial because of the interactions between the queues.
To overcome this problem, upper and lower bounds have been
proposed to analyze the ε-stable region, and to avoid the effect
of queue interaction [10]. However, the bounds are not very
tight especially under some network configurations.

The main contributions of this paper can be summarized
as follow. First, we provide the closed-form expression of the
upper and lower bounds of ε-stable region in the case of ran-
dom link distances, contrary to [10] where the communication
distance is fixed. Moreover, unlike our previous work in [9]
where only stable region was considered, in this paper we
focus on ε-stable region to characterize the probability that
a queue in the network be unstable is below ε. Second, we
propose an alternative definition of the ε-stable region and
derive accordingly a tight approximation of the critical arrival
rate that was unavailable in literature. In particular, a discrete
time Markov chain (DTMC) is used to handle the interaction
between the transmit success probability and the queue state
evolution to obtain the tight approximation of the critical
arrival rate, contrary to the bounds provided in literature where
the interaction between queues is not considered. Our result



reveals that the proposed approximation is tighter than the
bounds.

Throughout the paper, P(·) denotes the probability under the
underlying distribution, EX(·) denotes the expectation over the
random variable X , Im{·} represents the imaginary part of a
complex number. The indicator function is denoted as 1(A),
which takes values 1 when the proposition A is true and 0
otherwise. The Euclidean norm is denoted as ‖ · ‖.

II. SYSTEM MODEL

A. Network topology

A single-tier downlink cellular network is considered whose
base stations (BSs) lie in R2 following an independent and
homogeneous Poisson point process Φ, with intensity λ. User
equipment (UE) density is high enough such that every BS
has at least one UE associated with it. Besides, each UE is
associated to the closest BS. A single UE is randomly chosen
as the typical UE, and we further assume it is located at the
origin for the ease of analyses. Moreover, all BSs are assumed
to transmit in the same band, i.e., using a full frequency reuse
approach.

A block-fading propagation model is considered, where
the channels between any pair of transceivers are assumed
independent and identically distributed (i.i.d.) and quasi-static,
i.e., the channel is constant during one transmission slot, and
varies independently from slot to slot.

The arrival and departure traffic per BS are discrete stochas-
tic processes. The time is slotted in very short equal intervals in
which only one packet arrives or leaves from the BS queues in
the network. This model is widely used in literature [8], [12],
[13]. The packet arrival process at each transmitter is assumed
to be a Bernoulli process with a rate ξ ∈ [0, 1] expressed in
packet per slot and per BS. Without loss of generality, we
assume the packet size is fixed and it requires exactly one
time slot to be transmitted. Each BS maintains an independent
queue of infinite size to store the generated packets.

Contrarily to the arrival process, the departure process
cannot be fixed a priori. It is characterized according to the
time-dependent SIR distribution. If the received SIR exceeds a
predefined threshold θ, the packet is transmitted successfully,
and removed from the queue. Otherwise, the transmission fails
and the packet remains in the queue waiting for retransmission
in the next time slot until being successfully received. There is
no limit on the number of possible retransmissions. However
in practice, the number of needed retransmissions remains low
when the system is stable [12]. At each time slot, the BSs
with empty buffer remain silents to reduce power consumption
and inter-cell interference. Let Φt be the set of BSs that are
transmitting in the time slot t ∈ N. We have Φt ⊆ Φ, and
Φt = Φ when all BSs are active, at time t.

B. Signal-to-interference ratio

By applying Slivnyak’s theorem [14], it is sufficient to focus
on the SIR of a typical UE at the origin. With its tagged BS

located at x0, the received SIR experienced by the typical UE
at time slot t is

γt =
hx0,t ‖x0‖−α∑

x∈Φ\x0

hx,t ‖x‖−α 1(x ∈ Φt)
(1)

where hx0,t ∼ exp(1) is exponential channel gain between
the typical UE and its tagged BS, ‖x‖ is the distance from
the interfering BS at x to the origin, hx,t is the exponential
channel gain between the typical UE and the interfering BS
at position x and time slot t, with mean 1, and α is the path
loss exponent.

Moreover, we note qt the probability

qt = P1(x∈Φt)(1(x ∈ Φt) = 1) (2)

which can be seen as the fraction of active interfering BS at
time slot t, or equivalently the probability that a randomly
chosen BS is active at time slot t.

III. ε-STABLE REGION

The ε-stable region gives the maximum arrival rate beyond
which the probability for the queue at typical UE to be unstable
exceeds a threshold ε. A queue becomes unstable if the arrival
rate exceeds the average long-term departure rate. To illustrate
this issue, we first define the transmit success probability as
follows.

Definition 1. Given a SIR threshold θ and a given realization
of the PPP, the transmit success probability at the typical BS
x0 at time slot t is

µt = P

 hx0
‖x0‖−α∑

x∈Φ\x0

hx ‖x‖−α 1(x ∈ Φt)
≥ θ
∣∣∣∣Φ
 (3)

Lemma 1. The transmit success probability experienced by
the typical UE at time t is

µt =
∏

x∈Φ\x0

(
qt

1 + θ ‖x0‖α ‖x‖−α
+ 1− qt

)
(4)

Proof. See Appendix A.

Lemma 1 quantifies how the transmit success probability
behaves at a given time slot and depends on the traffic. The
queue states are affecting the transmit success probability via
the probability qt. As qt decreases, less interferers are active in
the network, and hence, the aggregate interference decreases
and µt increases at typical BS.

Definition 2 ( [10, Definition 1]). Let ξ be the arrival rate.
For any ε ∈ [0, 1], the ε-stability region Sε is defined as

Sε =

{
ξ ∈ [0, 1] : P

{
lim
T→∞

1

T

T∑
t=1

µt ≤ ξ

}
≤ ε

}
(5)

We define ξc as ξc = supSε. The network is ε-stable if
and only if ξ ≤ ξc. It is worth noting the similarity between



this definition and the one of ε-capacity, the latter gives the
maximum achievable rate at which the probability being in
outage is lower than ε.

1) Lower and upper bounds: Deriving the ε-stability region
Sε boils down to obtain the critical arrival rate ξc. It is non-
trivial to obtain the closed-form of (5) since the transmit
success probability is time dependent. Instead, the upper and
lower bound for ε-stable region are given by the following
lemma.

Lemma 2. Considering the dynamic downlink cellular net-
work introduced above, the critical arrival rate ξc can be
bounded as follows

ξlc ≤ ξc ≤ ξuc (6)

where

ξzc =sup

{
ξ ∈ [0, 1] :

1

2
− 1

π
×
∫ ∞

0

1

w
Im

{
ξ−iw

gz(θ)

}
dw≤ε

}
with z ∈ {l, u} and gl(θ) = 2F1(iw,− 2

α ; 1 − 2
α ;−θ) leading

to ξlc, and gu(θ) = 1+
∫∞

1

[
1−

(
1− ξθ

θ+vα/2

)iw]
dv leading

to ξuc .

Proof. See Appendix B.

The upper bound ξuc is obtained by defining a favorable
system where if the transmission of a packet fails, this packet
is dropped instead of being re-transmitted. The transmitters
only serve newly arrived packets at each time slot, if any, and
then are active with probability qt = ξ. In the favorable case,
the dropped packet does not lead to an unstable network. This
condition is not acceptable in practice, but is introduced here
only to derive the upper bound.

The lower bound ξlc is obtained when all BSs keep trans-
mitting all the time, i.e., qt = 1, ∀t ∈ N, which leads to the
highest interference and the lowest transmit success probability
in (3).

2) Approximation of ξc: A modified definition of the ε-
stable region, instead of (5), is given by

Sε =
{
ξ ∈ [0, 1] : P

{
lim
t→∞

µt ≤ ξ
}
≤ ε
}

(7)

Under this definition, we ignore the initial period of tran-
sient values of µt, and only characterize the ε-stable region
when time goes to infinity. The new region is simpler to handle
compared with (5). Before delving into the solution details, we
make the following assumption.

Assumption 1. The BSs are assumed to be activated inde-
pendently with probability q = limt→∞ qt when time goes
to infinity, and thus the stable transmit success probability is
µ = limt→∞ µt.

This assumption is reasonable because the effect of small
scale fading is independent with time and the positions of UEs
and BSs remain constant during the time evolution.

From the temporal perspective, a generic transmission link
can be abstracted to a queue with service rate given by µt

0 1 2 3 · · ·ξ̄

µtξ + µ̄ξ̄ µtξ + µ̄ξ̄ µtξ + µ̄ξ̄

ξ µ̄tξ µ̄tξ µ̄tξ

µtξ̄µtξ̄µtξ̄µtξ̄

Figure 1. DTMC model.

and arrival rate given by ξ. The traffic evolution at typical BS
x0 can be modeled as a DTMC in Fig. 1 with ξ̄ = 1 − ξ
and µ̄t = 1 − µt. The state space is made of the number of
packets in the queue and takes value in {0, 1, 2, · · · }. State 0
represents the empty buffer event. When the buffer is in this
state, the transmitter remains silent. When the queues evolve
up to the convergence, i.e., the DTMC reaches the stationary
distribution, the number of active transmitters stabilizes and
does not evolve with time. Note that q is the complementary
probability for the queue to be in state 0 when DTMC is
stationary.

Lemma 3. [9] Under fixed arrival and departure rates, ξ and
µ respectively, the active probability at a randomly chosen BS
conditioned on Φ is

q =

{
ξ/µ, if µ > ξ,

1, if µ ≤ ξ.
(8)

According to the relative values of µ and ξ, a randomly
chosen BS has a probability of ξ/µ to be active if its arrival
rate is less than the departure rate, and is always active in the
opposite case. It is important to note when µ < ξ then q = 1
and all the queue lengths and average queue delays grow up
to infinity, corresponding to an unstable network.

Thanks to Assumption 1 and Lemma 3, we are ready
to present the approximation of ε-stable region in downlink
cellular networks.

Theorem 1. Considering the dynamic downlink cellular net-
work introduced above and definition in (7), the approximated
critical arrival rate of ε-stable region can be characterized as
follows

ξ̃c = sup

{
ξ ∈ [0, 1] :

1

2
− 1

π
×

∫ ∞
0

1

w
Im


ξ−iw

1+
∫∞

1

[
1−
(

1− kθ
θ+vα/2

)iw]
dv

dw≤ε
 (9)

where

k =

{
ξ

1−θξρ(θ,α) , if 1
1+θρ(θ,α) > ξ

1, if 1
1+θρ(θ,α) ≤ ξ

and ρ(α, θ) =
∫∞

1
[θ + u

α
2 ]−1du.

Proof. See appendix C.



The expression in (9) quantifies how the key features of
a dynamic network, i.e., interference, SIR receiving threshold
and traffic profile, affect the distribution of the ε-stable region.
Several remarks regarding Theorem 1 are in order.

Remark 1. The upper and lower bound of the critical arrival
rate in Lemma 2 corresponds to k = ξ and k = 1 in
Theorem 1, respectively.

Remark 2. When the SIR receiving threshold θ → 0, for all
ε ≥ 0, the critical arrival rate approaches to 1. Letting θ → 0
Theorem 1 becomes

lim
θ→0

ξ̃c = sup

{
ξ ∈ [0, 1] :

1

2
− 1

π

∫ ∞
0

1

w
Im
{
ξ−iw

}
dw≤ε

}
= sup

{
ξ ∈ [0, 1] :

1

2
+

1

π
× π

2
sgn(ln ξ) ≤ε

}
= 1 (10)

since sgn(ln ξ) = −1,∀ ξ ∈ (0, 1). Similar conclusion can be
drawn for the upper bound ξuc and lower bound ξlc. According
to the squeeze theorem [15], Remark 2 is obtained.

Remark 2 illuminated that a transmission attempt is almost
surely successful when θ → 0, thus the admissible critical
arrival rate approaches 1.

IV. NUMERICAL RESULTS

In this section, we validate the accuracy of our analysis
through simulations, and explore the impact of traffic condition
on network performance from several aspects. Unless other-
wise mentioned, the following parameters are used throughout
this section: path loss exponent α = 4, BS density λ = 0.25,
and packet arrival rate ξ ∈ [0, 1] packet/slot.

Three simulation scenarios are considered. (i) The original
system described in section II. For each network realization,
the queues are let to evolve up to the convergence, i.e., when
the number of active transmitters stabilizes and does not evolve
with time. Then a new network realization is drawn and the
process repeats; (ii) The full load case, where all BSs keep
transmitting all the time, leading to the lower bound described
in Lemma 2; (iii) The favorable system, where a randomly
chosen BS is active with probability ξ, leading to the upper
bound described in Lemma 2.

Fig. 2 plots the upper and lower bounds of the ε-stable
region w.r.t. ε and labeled on the SIR threshold θ, i.e.,
θ = −5 dB and θ = 10 dB. The figure shows a perfect match
between simulations and the analytical expressions obtained
in Lemma 2. The real critical arrival rate, i.e., the average rate
at which the probability to be unstable for a queue exceeds ε,
lies between these bounds. Next, we observe that the region
between upper and lower bounds reduces when ε increases,
i.e., the bounds converge to 1 when ε = 1 as mentioned in
Remark 2. Moreover, the critical arrival rate ξc decreases when
θ increases. Indeed, as θ increases, a transmission has a higher
chance to fail when scheduled. Hence, the possible arrival
rates, i.e., those for which the network is ε-stable, decrease.
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Figure 2. Upper and lower bounds of the ε-stable region.
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Figure 3. The approximation and bounds of the ε-stable region.

The figure also reveals that the upper and lower bounds are
not tight when θ is high and ε is low.

Fig. 3 focuses on the approximation of the critical arrival
rate ξ̃c derived in Theorem 1. The critical arrival rate obtained
by simulation is based on Definition 2 and it is compared to
the expression in Theorem 1 which is based on (7). We can
observe that the critical rate lies between our upper and lower
bounds and Theorem 1 reveals to be a good approximation
of the true critical rate, as confirmed by the simulations.
This observation implies that the transient phase present in
Definition 5 but not in (7), has a negligible effect on the critical
arrival rate. Moreover, it is observed that the critical arrival
rate ξ̃c is close to the upper bound ξuc when θ is relatively
small, i.e., θ = −5 dB. This is because decreasing θ increases
the opportunity of a successful transmission. Thus the active
probability of the typical BS in the real case is much closer
to the active probability in the favorable system. Last but
not least, the numerical computation of (9) is far faster than



running Monte-Carlo simulations, i.e., few minutes compared
to several days of simulations.

V. CONCLUSION

In this work, we have proposed a full characterization of the
ε-stable region in a dynamic downlink cellular network. We
bound the critical arrival rate, i.e., the rate at which the queue
becomes unstable, and also present an approximation of this
rate. These results allow a quick assessment of the proportion
of queues that are in outage on average when the network
deployment is modeled with PPP and the network traffic is
modeled with DTMC.

In a real-world environment, the network dynamically ad-
justs its radio parameters, such as BS transmit power or
modulation and coding schemes, depending on the traffic
conditions. However, the characterization of ε-stable regions
under complex settings is quite challenging and requires the
introduction of Markov decision processes and reinforcement
learning strategies in the analysis. This opens new doors in
research associating stochastic geometry and machine learning
and is left for further works.

APPENDIX

A. Proof of Lemma 1
Given the typical UE received data at time slot t, its transmit

success probability is written as

µt = Px0

 hx0,t ‖x0‖−α∑
x∈Φ\x0

hx,t ‖x‖−α 1(x ∈ Φt)
> θ

∣∣∣∣Φ


= E{hx},1(x∈Φt)

[
exp

(
−s
∑

x∈Φ\x0

hx ‖x‖−α1(x ∈ Φt)
)∣∣∣∣Φ]

a
= E{hx},1(x∈Φt)

 ∏
x∈Φ\x0

exp
(
−shx ‖x‖−α 1(x ∈ Φt)

) ∣∣∣∣Φ


= E1(x∈Φt)

 ∏
x∈Φ\x0

1

1 + s ‖x‖−α 1(x ∈ Φt)

∣∣∣∣Φ


b
=

∏
x∈Φ\x0

(
qt

1 + θ ‖x0‖α ‖x‖−α
+ 1− qt

)
(11)

where (a) follows from the i.i.d. hypothesis of hx and further
independence from the point process Φ, and (b) follows from
the definition qt = P(1(x ∈ Φt) = 1).

B. Proof of Lemma 2
a) Lower bound ξlc: Let µl be the transmit success

probability experienced by the typical UE in the full load case,
it follows

µl = E{hx0},{hx}

P
 hx0

‖x0‖−α∑
x∈Φ\x0

hx ‖x‖−α
≥ θ
∣∣∣∣Φ



=
∏

x∈Φ\x0

(
1

1 + θ ‖x0‖α ‖x‖−α

)
(12)

Define Y l , ln(µl), then the moment generating function
of Y l is

ϕY l(s) = EΦ

 ∏
x∈Φ\x0

(
1

1 + θ ‖x0‖α ‖x‖−α

)s
a
= EΦ

[
exp

(
−λ
∫ ∞
‖x0‖

[
1−
(

1

1+θ ‖x0‖α‖x‖−α

)s]
d‖x‖

)]
b
=

[
1 +

∫ ∞
1

[
1−

(
1

1 + θv−
α
2

)s]
dv

]−1

c
=

[
− 2

α

∫ 1

0

[
1−

(
1

1 + θt

)s]
t−

2
α−1dt

]−1

d
=

(
2F1(s,− 2

α
; 1− 2

α
;−θ)

)−1

(13)

where (a) follows from the probability generation functional
of the PPP; (b) is obtained by using the PDF of ‖x0‖,
which is f||x0||(r) = 2πλreπλr

2

dr and the change of variable
v

1
2 = ‖x‖

‖x0‖ ; (c) is obtained using the change of variable
v−

α
2 = t. The integral in (c) can be shown, after some

algebraic manipulations, to the Gauss hypergeometric function
in (d) [16, Section 9.11, pp 1005].

The CDF of Y l, denoted by P(Y l < y), follows from the
Gil-Pelaez’s Theorem as

P(Y l < ln(u)) =
1

2
− 1

π

∫ ∞
0

Im[u−iwϕYl(iw)]

w
dw (14)

The corresponding lower bound of ε-stability region is

Slε =

{
ξ ∈ [0, 1] :

1

2
− 1

π

∫ ∞
0

1

w
×

Im

{
ξ−iw

2F1(iw,−α2 ; 1− α
2 ;−θ)

}
dw ≤ ε

}
(15)

b) Upper bound ξuc : Let µu be the transmit success
probability experienced by the typical UE in the favorable
system, it follows

µu =E

exp

−θ ‖x0‖α
∑

x∈Φ\x0

hx1(x∈Φt) ‖x‖−α
∣∣∣∣Φ


=

∏
x∈Φ\x0

(
ξ

1 + θ ‖x0‖α ‖x‖−α
+ 1− ξ

)
(16)

We define Y u as Y u , ln(µu), and follow similar steps as in
(13), the moment generating function of Yu is

ϕY u(s) =

[
1 +

∫ ∞
1

[
1−

(
1− ξθ

θ + v
α
2

)s]
dv

]−1

(17)

According to the Gil-Pelaez’s Theorem, the probability of µu

be lower than the average arrival rate ξ is

P{µu < ξ} =
1

2
− 1

π

∫ ∞
0

1

w
Im{ξ−iwϕY u(iw)}dw (18)

The corresponding upper bound of ε-stable region is obtained
and leads to the result in Lemma 2.



C. Proof of Theorem 1

Based on Lemma 1 and assumption 1, the stable transmit
success probability has the expression

µ =
∏

x∈Φ\x0

(
q

1 + θ ‖x0‖α ‖x‖−α
+ 1− q

)
(19)

Defining Y , lnµ, the moment generating function of Y is

E [exp(sY )]

= EΦ

 ∏
x∈Φ\x0

(
q

1+θ ‖x0‖α‖x‖−α
+1−q

)s
a
= EΦ

[
exp

(
−λ
∫ ∞
‖x0‖

[
1−
(

q

1+θ ‖x0‖α‖x‖−α
+1−q

)s]
d‖x‖

)]
b
=

∫ ∞
0

2πλre−λπr
2

exp

(
−λπr2

∫ ∞
1

[
1−
(

q

1+θv−
α
2

)s]
dv

)
dr

=

[
1 +

∫ ∞
1

[
1−

(
1− qθ

θ + v
α
2

)s]
dv

]−1

(20)

where steps (a) and (b) are the same as those in (13).
Aforesaid Lemma 3, EΦ[q] = ξ/EΦ[µ],∀ EΦ[µ] > ξ. And

it can be noticed that EΦ[µ] is the particular case when s = 1
in (20). After straightforward algebraic manipulations, let k =
E[q], we have

k =

{
ξ

1−θξρ(θ,α) , if 1
1+θρ(θ,α) > ξ

1, if 1
1+θρ(θ,α) ≤ ξ

(21)

where ρ(α, θ) =
∫∞

1
[θ + u

α
2 ]−1du.

The CDF of Y , denoted by FY (u) = P[Y ≤ u], follows
from the Gil-Pelaez’s Theorem as

FY (u) = P(Y < ln(u))

=
1

2
− 1

π

∫ ∞
0

1

w
Im


u−iw

1+
∫∞

1

[
1−
(

1− kθ
θ+vα/2

)iw]
dv

dw
and the proof is complete.
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