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Abstract—For years, Digital Right Management (DRM) sys-
tems have been used as the go-to solution for media content pro-
tection against piracy. With the growing consumption of content
using Over-the-Top platforms, such as Netflix or Prime Video,
DRMs have been deployed on numerous devices considered as
potential hostile environments. In this paper, we focus on the
most widespread solution, the closed-source Widevine DRM.

Installed on billions of devices, Widevine relies on crypto-
graphic operations to protect content. Our work presents a
study of Widevine internals on Android, mapping its distinct
components and bringing out its different cryptographic keys
involved in content decryption. We provide a structural view of
Widevine as a protocol with its complete key ladder. Based on our
insights, we develop WideXtractor, a tool based on Frida to trace
Widevine function calls and intercept messages for inspection.
Using this tool, we analyze Netflix usage of Widevine as a proof-
of-concept, and raised privacy concerns on user-tracking. In
addition, we leverage our knowledge to bypass the obfuscation of
Android Widevine software-only version, namely L3, and recover
its Root-of-Trust.

I. INTRODUCTION

Nowadays, people prefer media consumption on over-the-
top platforms (OTT), such as Netflix and Amazon Prime,
that distribute multimedia content over the Internet, allowing
users to play them whenever they wish. Such ease of viewing
the same videos across devices creates challenges for content
producers and owners. The main challenge remains piracy;
namely, platforms delivering media content would like to
ensure that the receiving devices offer enough security at the
level of hardware and software to prevent leakages. Indeed,
protection by authentication is not enough, as the OTT plat-
forms need to prevent free redistribution of copyright protected
content.

The de facto answer to these challenges is Digital Rights
Management. DRM is a technology that is designed to prevent
piracy of digital content. It protects the content owners by re-
stricting media consumption to authorized consumers. Despite
begin cried out, DRM systems got increasingly adopted on
users’ devices. The World Wide Web Consortium (W3C) has
recently published the Encrypted Media Extensions (EME) [1],
which is the first official Web standard for DRM, ignoring
all the expressed worries [2] about a web that should remain
open. One of the most popular DRM solutions is Google’s
Widevine [3], which is currently deployed on web browsers
(eg., Chrome and Firefox), Android OS on mobile devices
and smart TVs among others. Most popular OTT players

and video-streaming services, including Netflix and Disney+,
leverage Widevine to protect their content.

Widevine protects video streams at several levels. At the
heart of its protection is CENC (Common Encryption Pro-
tection Scheme) [4], specifying encryption standards and key
mapping methods that a DRM content decryption module
(CDM) should implement to decrypt media files. Nevertheless,
the actual key exchanges and protection mechanisms are not
documented, because of the proprietary nature of Widevine.

A. Motivation

Despite the widespread of Widevine, surprisingly, not much
attention has been given to its underlying protocol design
and security. The main reason behind such a lack of public
security analysis is that the DMCA’s 1201 clause makes it
illegal to study DRM systems. The result is that, under the
DMCA, researchers cannot investigate security vulnerabilities
if doing so requires reverse engineering. This law has already
been used against security researchers to censor their work,
as shown by Hewlett-Packard against Snosoft in 2002 [5].
Unfortunately, more cases have followed, and over fifty court-
cases have been launched against research as of 2016 [6].

Fortunately, restrictions have been partially lifted recently.
Indeed, in October 2018, the American Library of Congress
and the Copyright Office have expanded the exemptions to
the DMCA’s 1201 clause. Consequently, in theory, security
researchers can now freely investigate, correct and publish
security flaws on DRM solutions. However, such exemptions
did not stop Google that, in November 2020, took down
all Github repositories including secret keys of Widevine.
That does not mean that exploits compromising Widevine
have never been published before. Indeed, the MITRE CVE
database [7] lists 25 CVE records since 2014, explaining
different security issues within Widevine implementations.
Despite such a public record, there is not much literature
providing deep insights about Widevine security.

B. Our Contributions

Our work aims at pushing this topic forward, as we believe
that stakes are high regarding the Widevine protocol. Our
paper intends to fill this lack of public research by pro-
viding the first thorough analysis of the Widevine protocol.
Here, we overcome the restriction of signing a non-disclosure
agreement (NDA) to get the full description of the Widevine
protocol by performing a complete reverse engineering of



the Android Widevine modules. Moreover, we show that a
deep understanding of Widevine can allow attackers to easily
recover its internal secret parts without requiring to defeat the
applied obfuscation. This is worrisome for two reasons. First,
many streaming services rely on Widevine DRM to protect
content against piracy. Any harm to this technology can lead
to huge financial losses. For instance, in 2020, the OTT market
size was estimated at $13.9 billion and expected to reach
$139 billion by 2028 [8]. Second, zero-day vulnerabilities on
Widevine can be exploited to harm countless users [9], since
Widevine is estimated to be installed on more than 5 billion
devices around the world.

In this work, our approach was to begin with a manual
analysis to gain insights into the structure of the Widevine
protocol as well as its main cryptographic operations. Then,
we design a Frida-based tool to automatically extract details
about the Widevine workflow as it is leveraged by Android
OTT apps. Afterwards, we extend our tool to trace the
Widevine operations within web applications running in an
EME-supporting browser. Finally, we take a look at the
outcome of our analysis, and discuss its relevance regarding
the security of the Widevine module or the OTT app. We
emphasize that, throughout our work, we carefully play the
role of the security researchers who, as described by the
DMCA’s exemptions, act in good faith. Indeed, we timely
report all our findings to Google, Widevine and Netflix.
In addition, we gave up all the keys that we succeeded to
extract, so that they get revoked by the concerned parties.

Our contributions are the following:
• We reverse-engineer Widevine components on Android.

In particular, we thoroughly explore its different crypto-
graphic components from the root of trust, aka keybox,
until the key decrypting the media, aka Content Key, and
provide an implementation of this key ladder.1

• We uncover the structure of the Widevine protocol and
detail the contents of the exchanged messages between
Widevine and the different entities of the DRM ecosys-
tem. We also dissect Widevine internals during the ex-
ecution of an OTT app, and split them into three main
operations: provisioning of device-specific RSA key, pro-
visioning of content license keys, and content decryption.

• In order to automate Widevine inspection, we design
WideXtractor,2 which is a tool based on Frida to monitor
the inner working of Widevine during media playback
and dump exchange messages.

• We leverage our tool to study Netflix usage of Widevine,
in order to understand how it protects its media assets:
video, audio and subtitles. We find that Netflix mainly
establishes two Widevine sessions: one to receive pro-
tected media, and another one for obtaining the related
decryption keys. We spy on the first session using WideX-
tractor, and notice that Netflix, unlike other OTT apps,

1https://github.com/Avalonswanderer/widevine key ladder
2https://github.com/Avalonswanderer/wideXtractor

only protects the download URL of audio tracks, that
can be effortlessly downloaded in clear even without a
Netflix account. Indeed, the second session only concerns
the decryption key of video tracks.

• We discuss two issues raised by our analysis. The first
one is related to the use of a distinctive device identifier
by Widevine. This allows third-party servers to profile
users’ behavior during media consumption without their
consent. The second one concerns a methodology that we
define to efficiently recover Widevine Android software-
only root of trust despite the underlying obfuscation
hiding the critical parts of Widevine. We timely report
all findings to Google and Netflix and were assigned the
CVE-2021-0639. We were awarded by the bug bounty
program of Netflix and the Vulnerability Reward Program
of Google.

Roadmap. This paper is organized as follows: section II intro-
duces the necessary background for our research. Section III
offers an overview of the Android DRM and Widevine plugin
components interaction. The Widevine protocol is presented
in section IV with a special focus on its key ladder in sec-
tion V. Our reverse engineering efforts allow us to implement
WideXtractor that automatically inspects Widevine flow for
OTT apps. We present the design of our tool in section VI and
provide some insights gained by applying it on several OTT
apps. Section VII discusses the concerns and security issues
that emerge from our study. Related works are presented in
section VIII. We conclude in section IX.

II. BACKGROUND

A. Digital Right Management Systems

Digital Rights Management (DRM) system refers to tech-
nology that plays two roles. First, it offers the tools that
enable a content provider to encrypt their content. Second,
it builds an ecosystem, so that the content provider controls
who can decrypt and consume their content. To this end,
DRM systems define a set of business rules to be enforced.
In practice, DRM involves two parties: a Content Delivery
Network (CDN) supplying encrypted content and a License
Server providing the necessary keys to decrypt such content.
Only the DRM module on the user device can retrieve these
keys, which makes it possible to control media consumption.
The DRM module shall also protect the keys while using
them. For instance, Widevine relies on ARM TrustZone based
Trusted Execution Environment (TEE) when available for
strong security guarantee in many Android devices.

The DRM module performing sensitive operations, such
as decryption and license requests, is implemented separately
and called CDM or Content Decryption Module. Every DRM
scheme provides its own CDM that includes proprietary mech-
anisms for License Server communication, as well as rules
around local license storage and renewal. Of course, CDMs
are required not to leak license keys. By being closed-source,
CDMs mostly rely on security-by-obscurity.
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B. Google Widevine

Widevine is a DRM solution acquired by Google in 2010.
The earlier version of Widevine that had support in old
Android versions (up to Android 5.1) was called Widevine
Classic, working only with the proprietary .wmv format. The
current version of Widevine is called Widevine Modular,
and implements a different DRM and streaming standards,
including MPEG-DASH and CENC. Widevine Modular, or
henceforth simply Widevine, is supported on Android 4.4+.

Widevine defines three security levels: L1, L2 and L3,
where the L1 level is considered the most secure for playing
HD videos from OTT platforms. Widevine depends on the
TEE to implement L1 security. At L1, both cryptography and
video processing take place inside the TEE. It is worth noting
that applications inside the TEE are hardware dependent, and
therefore Widevine shall provide a different implementation
for each one. L2 and L3 are implemented where the TEE
is not an option, such as legacy phones or Widevine locked
ones due to device tampering. In Android, Widevine does not
propose L2 security. The L3 lets both cryptography and video
processing take place outside the TEE. They are considered
more vulnerable, given that the CDM is software-only. As for
users, L3 delivers sub-HD resolutions since Widevine supports
HD and ultra-HD content only for L1.

III. WARM UP: WIDEVINE IN ANDROID

In this section, we describe the integration of Widevine
into the Android ecosystem. In particular, we detail all the
components of which Widevine consists of and their interac-
tion. This will help us to better frame our reverse engineering
methodology by pointing out the relevant components to
analyze in order to uncover the internals of Widevine.

A. Android DRM API

In order to cope with the fragmented DRM ecosystem,
Android offers a unified API in Java/Kotlin for DRM systems.
Starting from API level 18, this is implemented by some
HAL (Hardware Abstraction Layer) module called Media
DRM Server that abstracts the actual running DRM from the
programming interface used by OTT apps. The Android DRM
API mainly consists of two modules: Media DRM and Media
Crypto. The Media DRM is used to communicate with License
Servers and to manage keys for a given media. As for Media
Crypto, it is used to perform decryption. The DRM APIs
support the ISO/IEC 23002-7: Common Encryption standard
(CENC) [4], but implement other encryption schemes.

Playing encrypted content when leveraging DASH (Dy-
namic Adaptive Streaming over HTTP) works as follows. First,
the app constructs a Media DRM object with a given DRM
through a unique identifier. Then, the app opens a new session
with the Media DRM object and gets some session identifier.
A Media Crypto object is then constructed and bound to
the opened session. Next, Media DRM retrieves keys (aka
licenses) from the License Server. To this end, a DRM-specific
request object is obtained from the Media DRM object, and
the server response is delivered to the Media DRM instance.

The obtained keys are only accessible through Media Crypto.
Indeed, the encrypted content is decrypted by a Media Codec
instance to which the Media Crypto object was registered.
Thus, the keys are not accessed directly. In addition to the
DASH mode, the DRM APIs provide the ability to establish
a secure session to protect arbitrary data.

B. Widevine Components

In Android, Widevine comes as a dynamically loadable
HAL plugin within the mediadrmserver process. Similar
to other HAL plugins, Widevine is manufacturers-provided.
In addition, it is not open-source; only provided as binary
code and library files. To keep things secure, when a TEE is
available, the HAL plugin delegates all sensitive operations to
the Widevine component that runs inside the TEE. Roughly
speaking, the resulting architecture looks like this (other
components might exist depending on the Android version):

• Widevine library: this library is used by the
mediadrmserver process to translate Android DRM
API calls to Widevine CDM ones. The behavior of this
library changes depending on the Widevine security level.
In L1, it plays the role of a proxy and communicates
with the TEE through liboemcrypto.so. As for L3,
it contains the obfuscated CDM. Its name can change
depending on the version and SoC including but not
limited to: libwvdrmengine.so, libwvhidl.so,
libwvm.so, libdrmwvmplugin.so.

• liboemcrypto.so: this library performs marshalling and
unmarshalling of requests to the Widevine trustlet. All
communications with the TEE go through a specific TEE
driver (e.g., QSEEComAPI.so for QSEE).

• Widevine trustlet: it runs inside the TEE and implements
all the needed functionalities for L1.

C. Components Interaction

Android Widevine architecture is summarized in Figure 1.
In a top down architecture, components interact as follows.
DRM services start from the OTT application calling the An-
droid Media Framework API to interact with the MediaDRM
and MediaCrypto objects. All calls to the DRM API
go through some Java Native Interface (JNI) layer via the
libmedia_jni.so library. Calls are then forwarded to the
Media DRM Server instantiated by the mediadrmserver
process, which is the last module implemented by Android.
The Media DRM Server reaches the Widevine specific im-
plementation through the HAL APIs. Any communication
with Widevine first goes to its specific library such as
libwvdrmengine.so. In L3, no further component is
involved. As for L1, whenever CDM is required, this library
calls liboemcrypto.so that sends the related requests to
the Widevine TEE trustlet.

Of particular interest, the Widevine library does the trans-
lation between the HAL API to Widevine functions. Once
translated, if Widevine is in L1 mode the Widevine API
is used to call its equivalent in liboemcrypto.so. The
OEMCrypto library role is to forge a message for the TEE
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Fig. 1. Widevine Architecture in Android

trustlet containing the function arguments and command code.
For a given TEE, each Widevine function corresponds to a
specific command code used by the TEE driver in order to be
received by the Widevine command handler within the trustlet.

IV. WIDEVINE INTERNALS

A. Methodology

Given the Widevine component layout described in sec-
tion III, three main components of Widevine come to light:
the Widevine library, liboemcrypto.so, and the Widevine
trustlet running in the TEE. To study Widevine inner work-
ing, we have inspected both statically and dynamically these
components starting from the Widevine trustlet.

Analysis Environment. We examine four smartphones and
their respective factory images:

• Nexus 5: Android version 6.0.1, build hammerhead
m4b30z. Widevine L3 mode with version 3.1.0.

• Nexus 5X: Android version 8.1.0, build bullhead bhz32c.
Widevine L1 mode, version 5.1.0, security patch level 2.

• Pixel: Android version 10, build sailfish
qp1a.191005.007.a3. Widevine L1 mode version
14.

• Pixel 3: Android version 11, build blueline rq3a.210805.
Widevine L1 mode version 15.

All tested smartphones integrate the Qualcomm TEE (QSEE),
and therefore our analysis includes some QSEE-related details.
Henceforth, we will be careful to distinguish what is true for
Widevine as a protocol, and what is specific to QSEE.

Trustlet Extraction. The first step to reverse the proprietary
implementation of Widevine was to extract the binaries from
the file system either from a physical (rooted) mobile or by
downloading and extracting the phone factory images on the
Google website [10]). These binaries, including the trustlet,
can be found in the /vendor/ directory.

For Qualcomm SoC based phones, Widevine trustlet is
located in /vendor/firmware/ and is divided into several
.bXX files, where XX is a counter. To reconstruct the complete
trustlet, we can simply concatenate each of these files in order
to obtain a standard ELF binary with an additional hash table
section used for integrity verification.

Trustlet Analysis. The Widevine L3 CDM within the
Widevine library (e.g., libwvdrmengine.so) being obfus-
cated, we preferred to start with another implementation in
order to figure out how Widevine works. We notice that the L1
trustlet is not obfuscated at all. Worse still, it provides verbose
clear debugging strings in its internal code, thereby leading
to a better understanding of the overall structure and control
flow of the protocol. Leveraging tools such as Ghidra [11]
and Radare2 [12], we were able to retrieve function names
and cryptographic keys within the Widevine protocol. Relying
on our knowledge of the L1 trustlet, we then went back to
the library to discern the HAL calls to L1 and to analyze the
obfuscated L3 layer.

Libraries Analysis. Our reverse engineering of the trustlet
allowed us to map the Widevine protocol functions called
OEMCrypto with function symbols ( oeccXX for L1 and

lccXX for L3). The correspondence for Widevine Modular
L1 functions is summarized in section A. We also leveraged
the Frida toolkit [13] to trace the execution of these functions
in the mediadrmserver process, as both the Widevine
library and liboemcrypto.so are instantiated in the Media
DRM Server. This leads us to figure out the workflow of the
Widevine protocol regarding the called operations as well as
the related cryptographic keys.

B. Widevine Protocol

In section III, we present the components enabling protected
content playback within Android devices using Widevine.
Taking a look at the bigger picture to highlight the commu-
nications behind these elements, we can distinguish 7 agents:
a CDN (Content Delivery Network), a provisioning server, a
license server, an OTT application, the Android Media servers,
the Widevine library and Widevine CDM.

Indeed, when playing protected content using an OTT app
(e.g., Netflix), content decryption is managed by the Android
Media Servers that relies on the underlying DRM system,
here Widevine. All key requests for provision and license
servers are generated by Widevine components, especially the
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library, with the help of the CDM. Overall, the Widevine
protocol involving these actors is divided into three main
phases: Certificate Provisioning, License Provisioning and
Content Decryption. An illustration of the protocol can be seen
in Figure 2.

Certificate Provisioning. The provisioning phase is usually
done once to recover a cryptographic certificate and does not
need to be done for future media decryption. The private key
within this certificate protects the fresh session keys. A new
request is sent to the provisioning server when no certificate
can be found, the one installed is corrupted, or the OTT needs
to install a new certificate.

On request creation, the CDM generates a nonce to ensure
freshness. Then, it derives keys for certificate decryption and
integrity checks, based on the Widevine Root of Trust (RoT)
called the Device Key, and dynamically generated buffers.
These buffers are based on a token within the RoT structure
detailed later. Using OEMCrypto_GenerateSignature,
the request is HMAC-protected with the RoT derived client
key, and sent to the provisioning server.

The received response is passed to the CDM through
the OEMCrypto_RewrapDeviceRSAKey function. After
nonce check and integrity verification using the RoT derived
server key, the certificate is decrypted using the previously
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derived key and stored on the persistent storage of the device
after being rewrapped (i.e. re-encrypted) by a device-specific
key. This marks the end of the installation process of the
certificate private key called the Device RSA Key.

License Provisioning. The OTT receives all required in-
formation about the protected content from the CDN in
order to ask for the corresponding Content Keys, also known
as license keys. After loading the stored certificate using
OEMCrypto_LoadDeviceRSAKey, a request is forged us-
ing a generated request ID and various device specific info
concatenated within a device blob. This message is then signed
by the Device RSA Key and sent with a newly generated nonce
to the License Server.

The corresponding response will be received by the CDM
through OEMCrypto_DeriveKeyFromSessionKey that
will extract and decrypt a Session Key using the Device
RSA Key. The Session Key is then used to derive other
HMAC and encryption keys based on buffers containing
a dynamically generated device blob. These keys are later
used to verify the integrity of the response received by
OEMCrypto_LoadKeys and to decrypt the Content Keys.
Here, Content Keys are associated with a Key Control Block
(KCB), encrypted or not by its related content key. KCB
contains the previous nonce and various information that we
will detail in subsection V-C. It is important to note that,
once all Content Keys have been added to the CDM, the
nonce is cleared from memory. During key reception, the
License Server can provide a new Server Key protected by
the derived asset key. This key constitutes a new server mac
key for integrity verification of future response, such as in
OEMCrypto_RefreshKeys.

Content Decryption. Note that more than one Content
Keys can be loaded in the CDM memory at the same time.
Therefore, the right one for the media is selected using its key
ID in OEMCrypto_SelectKey before content decryption
within OEMCrypto_DecryptCENC.

V. WIDEVINE CRYPTO LADDER

In this section, following our reverse engineering analyses,
we succeed in depicting a complete picture of Widevine cryp-
tographic mechanisms. In particular, we uncover the Widevine
internal key ladder from its root of trust to the content
decryption key. An overview is summarized in Figure 3. Note
that our study holds for both L1 and L3. Moreover, we provide
an implementation of the key ladder in Python.3 For ethical
and legal purposes, we did not include the root keys. Thus,
nobody can use our project to actually pirate OTT contents.

A. Widevine Root of Trust: Keybox

Widevine, in [14], mentions that its RoT is established by a
factory-provisioned component called the keybox. While doing
our static analysis, we noticed that this keybox is mainly used
to secure the provisioning of certificates. We will discuss more
about this in subsection V-B. Now, let us focus on the nature
of this RoT and where it is stored.

3https://github.com/Avalonswanderer/widevine key ladder
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Fig. 3. Widevine Key Ladder

Keybox storage. While exploring the structure of the
Widevine trustlet, we looked at the Qualcomm Secure File
System (SFS) that allows trustlets to encrypt their sensi-
tive data before storage. On our setup, the SFS persis-
tently stores the encrypted files on /persist/data/sfs/.
Then, we continued our exploration and found the function
init_tzdrm_config_path initializing paths for several
elements. Here, the string names are explicit, and we think that
the keybox lvl1.dat file refers to the keybox for L1. We also
found the OEMCrypto_InstallKeybox function that can
be called from libwvdrmengine.so to re-install a factory
keybox supposed to exist in the /factory/wv.keys file.
Nevertheless, we have never found such a file. As for L3,
we noticed that the library libwvdrmengine.so loads
the keybox from the ay64.dat file that can be found in
/data/mediadrm/IDMXXXX/L3/.

Keybox structure. In order to figure out of what the
keybox consists, we looked deeper at the trustlet functions
that verify keybox integrity, because they display an explicit
error log message that clearly identifies the concerned field.
We began with OEMCrypto_isKeyBoxValid. Indeed, this
function shows us that the keybox structure is 128 bytes
long with two special fields at the end. The trustlet checks
the integrity of the decrypted keybox by verifying that the
last eight bytes are composed of a magic number “kbox”
followed by a 4-byte Cyclic Redundancy Check (CRC-32)
code. In this paper, we will not discuss the effectiveness of
this integrity verification despite being broken in other con-
texts [15]. We retrieved the remaining fields by looking at the
functions loading the keybox: OEMCrypto_GetKeyData,
OEMCrypto_GetDeviceID, and the internal function
OEMCrypto_GetDeviceKey. The Device ID is a 32-byte
unique device identifier for Widevine. The Key Data, or the
Provisioning Token as referred to by libwvdrmengine.so,
is 72 bytes long and is used wihtin provisioning requests. The

6
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TABLE I
WIDEVINE KEYBOX

Field Description Size (bits)
Device ID Internal Device ID 256

Device Key 128-bit AES key 128
Provisioning Token Used by provision requests 576

Magic Number “kbox” 32
CRC32 CRC32 validating the keybox integrity 32
Total 1024

remaining 16 bytes correspond to an AES key that is called,
according to the API, Device Key. This key is the real RoT.
We summarize the five fields of the keybox in Table I.

B. Device RSA Key

As explained in section IV, Widevine does not directly use
its RoT to protect licenses. Instead, it leverages an RSA key
pair that, unlike the keybox, can be installed dynamically on
the device through a process called certificate provisioning.
This process is protected by the Device Key that is derived into
several keys in OEMCrypto_GenerateDerivedKeys.
Upon reception, the OEMCrypto_RewrapDeviceRSAKey
function first verifies the integrity of the key pair by re-
computing an 256-bit HMAC tag. Then, it decrypts the key
pair, and re-encrypts it again with a device-unique (TEE-
specific in L1 or keybox-related in L3) 128-bit AES key.
These keys never leave the CDM. This function also checks
the key pair format after decryption and before re-encryption.
Indeed, the key pair, aka the Device RSA Key, is expected
to be an RSA certificate with PKCS#5 padding in PKCS#8
format as indicated by the qsee_secpkcs8_parse and
get_len_with_pkcs5_padding functions.

Once re-encrypted, aka re-wrapped, the Device RSA Key is
stored on the standard file system by the Widevine library
in a cert.bin file on /data/mediadrm/IDMXXXX/.
Widevine distinguishes L1 from L3 by using different direc-
tories. This persistent data is later used in future instances of
the Widevine CDM to avoid making new provisioning. Here,
OEMCrypto_LoadDeviceRSAKey is used to recover the
stored certificate. We note that re-wrap is MAC-and-Encrypt,
as it also computes an 256-bit HMAC tag on the key pair.
Please note that a new provisioning process is performed
whenever the cert.bin file is deleted or corrupted.

C. Content Keys

Keys protection. As introduced previously, content keys,
or license keys, are obtained from provideKeyResponse.
Here, Widevine first calls DeriveKeysFromSessionKey
from OEMCrypto to decrypt a special field; Session Key,
using the Device RSA key. This key is later used to derive
a 128-bit AES key as well as two 256-bit HMAC keys. Then,
these keys are used in OEMCrypto_LoadKeys to decrypt
the license key and verify its integrity.

Key Control Block. Alongside the Session and Content
Keys, the response from the License Server also contains
additional 128-bit metadata called Key Control Block (KCB),
one for each license key in the response, and is encrypted by

its associated Content Key. The KCB is identified by the magic
number kctl or one of the form kcXX, where XX is related to
Widevine version. The Content Key is accepted only when the
associated KCB is checked by verifyKeyControlBlock.
This function helped us to understand the structure of KCB:
a nonce, time to live (TTL) of the key, and 32-bit of control
bits. These control bits define usage right (e.g., encryption,
MAC tag generation, etc.) and anti-rollback features. During
the lifetime of a Content Key, the KCB can be updated
through the OEMCrypto_RefreshKey function that, unlike
its name might indicate, cannot change the key or usage
rights but only its TTL. Such refresh requests work as li-
cense ones with the exception that the OEMCrypto function
GenerateSignature is used for integrity protection in-
stead of GenerateRSASignature.

Keys Usage. During loading in the CDM memory, Content
Keys are stored in a key table structure with an identifying
key ID for OEMCrypto_SelectKey. For media playback,
encrypted buffers are decrypted with the chosen key by
OEMCrypto_DecryptCENC implementing MPEG-CENC.

D. Nonces

The Widevine protocol mitigates replay attacks
and ensures message freshness using nonces. By
OEMCrypto_GenerateNonce, the Widevine library
can ask the CDM to generate up to 20 nonces per second
stored in a First In, First Out (FIFO) queue of 16 elements
within the CDM memory. These 32-bit nonces are generated
using a Pseudo Random Number Generator (PRNG) and used
at each request creation and response reception. If the nonce
is valid, it is removed from the queue and the message is
processed, otherwise the message is dropped. During Content
Keys loading in OEMCrypto_LoadKeys, a single nonce
can be used in multiple KCBs. In this case, the nonce is only
removed once all keys have been processed.

E. Summary of Cryptographic Algorithms

Widevine Generic Crypto API. In addition to media
decryption, the Widevine CDM allows applications to perform
arbitrary cryptographic operations within a dedicated session.
In Android, using the CryptoSession class of Media
DRM, an application can leverage the underlying DRM plugin
to protect data using the OEMCrypto_Generic_XXX family
of Encrypt, Decrypt Sign and Verify functions. Here,
each operation must have the appropriate key usage rights.

Key Derivation. Widevine never uses received or stored
keys directly. Instead, it relies on key derivation algorithms,
implemented in OEMCrypto_GenerateDerivedKeys
and OEMCrypto_DerivedKeyFromSessionKey, in or-
der to generate three different keys each time: a 128-bit Asset
key, a 256-bit MAC Client Key, and a 256-bit MAC Server
Key. The leveraged PRF (Pseudo-Random Function) is AES-
128-CMAC to generate the required 640 bits. In addition to
secret keys, the derivation algorithm uses two buffers, called
encryption context and mac context, that are created based
on device-unique information and used respectively for the
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Asset key and both MAC keys. For each chunk, the device
blob is appended to a string that begins with a string counter
and the word “ENCRYPTION” for encryption context or
“AUTHENTICATION” for the mac ones. Only one encryption
context with counter “1” is needed, while the mac context
includes four counters starting from 1.

Symmetric Cryptography. All CDM operations re-
lated to key decryption, generic encryption API (i.e.
Generic_Encrypt, Generic_Decrypt), and media
protection are performed using AES 128 bits. Both key decryp-
tion (e.g. OEMCrypto_LoadKeys) and encryption API im-
plement AES in CBC mode, while media decryption relies on
OEMCrypto_DecryptCENC which supports MPEG-CENC
(i.e. AES-128-CTR).

AES Initialization Vectors. Within key decryption func-
tions, IVs are being received alongside their respective
cyphertext in server responses. On Device RSA Key rewrap,
IV generation is handled by a PRNG algorithm with
OEMCrypto_GetRandom. For protected content, MPEG-
CENC standard is used to deal with IVs.

MAC Generation. The MAC Client Keys and Server Keys
respectively protect requests and responses to provisioning
and license servers using HMAC-SHA256. The same algo-
rithm is used by the OEMCrypto API Generic_Sign and
Generic_Verify using the currently loaded Content Key.

RSA Operations. The Device RSA Key includes a 2048-
bit private key that is used for both decryption and signature
during Session Key loading and license request creation. For
decryption, this key is used in the RSA-OAEP-SHA1 mode,
while RSASSA-PSS-SHA1 and RSASSA-PKCS1-v1 5 can
both be used for requests depending on function argument.

VI. WIDEXTRACTOR

Most OTT apps, including Netflix, Disney+ and Hulu, apply
anti-debugging mechanisms in order to prevent attackers from
easily intercepting and tracing calls to Widevine. In addition,
our reverse engineering shows that it is quite demanding to
untangle the Widevine interface between its different com-
ponents. This is due to the fact that dissecting the Widevine
workflow provides an important insight into its internals. Thus,
we implement WideXtractor; a tool tracing the Widevine calls
made by an OTT app. In this section, we present an overview
of the design and the implementation of this tool. Then, we
show the effectiveness of our tool by highlighting interesting
findings while analyzing the most downloaded OTT app on
Android, namely Netflix. Finally, we extend WideXtractor to
inspect Widevine as a plugin on Chrome.

A. WideXtractor Design

We design WideXtractor to automatically trace the exe-
cution flow of Widevine on Android. Our goal is twofold.
First, researchers can easily and systematically study how OTT
apps leverage Widevine while displaying protected content.
Interesting findings can be revealed by analyzing the actual
calls and their parameters, as we demonstrate for Netflix in
the following subsection. Second, our insights about the used

operations make the tool uncover the secret keys that should
exist in the memory at a particular point of time, despite of
the applied obfuscation.

We implement WideXtractor using Frida to monitor all calls
to the OEMCrypto functions in the Media DRM Server.
Monitoring the mediadrmserver process has two advan-
tages: (1) it allows us to bypass anti-debug techniques at the
application level, such as SafetyNet [16], and (2) both L1 and
L3 workflow can be recovered.

Our monitoring traces any call to Widevine functions,
hence the underlying protocol outline, while dumping the
used arguments, such as buffers for requests and opaque
reply data. To this end, WideXtractor relies on a Frida server
running on the Android device with sys ptrace capability.
This can be achieved by running as the media group or a
system/root privileged user. Our script hooks the OEMCrypto
functions after attaching to the mediadrmserver process
instantiating DRM libraries.

Once launched and attached, WideXtractor logs every
method of the Widevine protocol and received buffers from
the Android OS. Our traces correspond to the library symbols
that we reverse engineered and summarized in section A. Our
tool allows attackers to inspect exchanged messages during
key reception and media decryption before opaque requests
and responses. WideXtractor can be found on our Github.4

B. Case Study: Netflix

Leveraging WideXtractor, we automatically monitor the use
of Widevine by the Netflix app, which is the most popular
OTT with 200 million subscribers around the world [17]. Our
analysis shows a large number of calls to the Widevine Generic
Crypto API compared to other OTT apps.

Following our observation, we dig deeper to understand
Netflix internals. We find that Netflix requires to manage
two Widevine sessions: one to get Content Keys and de-
crypt protected media, and one to exchange data using the
Widevine Generic Crypto API. Henceforth, we will call these
two sessions License Session and Generic Crypto Session
respectively. Both sessions are initialized in the same way until
OEMCrypto_LoadKeys.

Indeed, the License Session loads the Content Key that de-
crypts the displayed media, while the Generic Crypto Session
loads several keys for confidentiality and integrity protection
of arbitrary data. We note that Content Key can only be
accessed through the queueSecureInputBuffer method
from the MediaCodec class. Thus, only keys loaded within
the Generic Crypto Session can be used to decrypt arbitrary
data using the Android CryptoSession. Here, each key
has its own usage rights to perform specific cryptographic
operations. As explained in subsection V-E, Widevine asso-
ciates these functions to the following OEMCrypto ones:
Generic_Encrypt and Generic_Decrypt for AES op-
erations, and Generic_Sign with Generic_Verify for
HMAC tag computation and verification.

4https://github.com/Avalonswanderer/wideXtractor
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Our study shows that all communications with the Net-
flix CDN go through the Generic Crypto Session. Thus,
Netflix avoids relying solely on HTTPS to protect assets.
For instance, from the Android OS view, the app asks
the Widevine CDM to decrypt and verify the received
messages. The decrypted data are sent back to the app
without any particular protection. Therefore, by monitoring
OEMCrypto_Generic_Decrypt, we were able to inter-
cept all exchanged messages between the CDN and the
Netflix app. These messages contain download URLs for
timedtexttracks (for subtitles), video_tracks and
audio_tracks. Each of this category contains multiple
links corresponding to different languages for subtitles and
audio in addition to different qualities for video. Although the
downloaded videos are encrypted using the Widevine CDM,
both audio and subtitles can be obtained in clear. We perform
several experiments with the audio and subtitles URLs to
evaluate their validity. We find that they are accessible from
any platform (PC web browsers, smartphones, tablets), by
anyone (no need for Netflix account), from anywhere (no
location verification), and for a limited period of time (12
hours approximately). We also find that there is no limit of
simultaneous accessed devices.

Our learned lesson is that Netflix seemingly makes it harder
to spy on messages sent by the CDN by adding an extra
layer of protection provided by Widevine. Thus, attackers
might be clueless, since defeating Android certificate pinning
is not enough. However, WideXtractor easily allowed us to
identify the use of the Widevine Generic Crypto API. Thus, it
becomes even more straightforward to obtain the exchanged
messages in clear by just recovering the returned buffer of
OEMCrypto_Generic_Decrypt. The advantage of our
approach is that we no longer need to bypass certificate
pinning implemented by the OTT app. We were surprised that
Netflix does not protect audio tracks by a Content Key. During
our responsible disclosure, we discovered that Netflix was not
even aware of that, because they believed that non-Dash mode
was sufficient. We went further and analyzed six other popular
OTT apps: Disney+, Amazon Prime Video, Hulu, HBO Max,
Starz and Showtime. We find that, unlike Netflix, all of them
encrypt their audio tracks with the Content Key.

C. Widevine Over EME

Similar to the unified DRM API of Android, the World Wide
Web Consortium (W3C) defines the Encrypted Media Exten-
sions (EME) standard to provide a standardized API enabling
web applications to interact with the browser-supported DRM.
EME is designed to make the same web application to run on
any browser regardless of the DRM implementation. Despite
being optional, EME is supported in major browsers: Edge,
Firefox, Chrome, Safari, Opera, and their mobile versions [18].

The logic of the EME standard is quite similar to the
Android DRM system. Indeed, when the web application
attempts to play an encrypted video, it starts by creating
a MediaKeys, which is the object providing access to
the CDM. Then, it calls createSession to instantiate

MediaKeySession managing the lifetime of a DRM li-
cense. Next, the MediaKeySession object generates a
license request by calling generateRequest. This message
is sent to the license server to require the necessary decryption
keys. Once the response is received, MediaKeySession
calls the update method to parse the obtained license inside
the CDM. Now, we can decrypt the media using the keys
loaded from the license.

In PC browsers, Widevine comes as a plugin in different
browsers, such as Firefox and Chrome, supporting the EME
standard. It is true that our work focuses mainly on Android
Widevine. In order to overcome this limitation, we study
the Widevine flow as it is implemented within the browsers
providing EME. Here, we note that the CDM software is
obfuscated and hides its symbols. Therefore, we follow a
different approach: instead of hooking the browser EME
functions, we implemented a browser plugin that intercepts
all EME related data. Then, we parse these data and compare
them with the ones obtained in Android Widevine. We notice
a big reciprocity between the Widevine messages in Android
and PC browsers. This confirms that the Widevine protocol
in Figure 2 works similarly in different systems. The main
difference that we noticed is that the Widevine RoT in browser
consists of a whitebox implementation of the Device RSA Key.

Thus, we extend WideXtractor to trace the Widevine flow by
merely looking into the EME received messages. Our approach
has the advantage of successfully following the Widevine flow
without regard to the applied obfuscation or the actual called
functions. Based on a Chrome EME logger plugin [19], as
in WideXtractor we log buffer values and use key usage info
from update calls to identify the message purpose within
the Widevine protocol. This allowed us to log additional
information to link EME calls to Widevine functions.

VII. DISCUSSION

Widevine enthusiastically pitches the virtue of their DRM
solution. Widevine being proprietary, there is no easy way to
verify the security claims of this piece of software running in
billions of devices. The goal of our reverse-engineering efforts
is to go beyond this market irrationality. In this section, we
show how our study conveniently helps in highlighting a gap
between what Widevine promises and their technical solution.
The raised issues concern not only OTT, but also final users.

A. Privacy Concerns

The Widevine protocol comes with privacy concerns for
users in the streaming ecosystem. These issues are due to
the need of Widevine to identify users’ devices for bailing
purposes. Indeed, Widevine collects device specific data, and
sends them to distant servers, such as the provisioning or
license ones. For instance, in Android these data includes the
Widevine Device ID within the Widevine keybox, and the
device blob containing several device-identifying fields, such
as the device architecture, phone model, CDM version, or build
info.
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Ironically, Widevine commits to respect users’ privacy. As a
matter of fact, Widevine claims to follow the EME standard.
Despite being non-normative, user-tracking issues are being
pointed out in the privacy section of the EME standard [18].
However, the usage of Distinctive Identifier or Distinctive
Permanent Identifier allows origins crossing information to
spot a single user based on these device-unique values. This
is harmful for privacy, since it allows third-party servers to
profile users’ behavior during media consumption. Moreover,
users never consent to such device tracking.

B. Recovering Widevine L3 RoT

Widevine presents their DRM for OTT platforms as a
solution to protect them from piracy. There exist several levels
of compromise; each one relates to some cryptographic keys
in the key ladder. Obviously, RoT recovery constitutes the
most severe compromise level, since attackers can derive all
keys allowing to decrypt any protected content. Widevine
distinguishes L1 RoT and L3 RoT, as it is more challenging
to compromise L1 compared to L3. Indeed, Widevine relies
on software-only protection mechanisms to hide L3 RoT. It is
true that such protection is brittle and doomed to be broken.
However, advanced obfuscation techniques might make the
compromise quite involving and resources demanding. Here,
we show how our understanding of the Widevine protocol may
allow attackers to get L3 RoT without specific knowledge of
the underlying obfuscation in an automated matter.

As explained in subsection V-A, the Widevine RoT is
encapsulated inside a keybox that is used to initiate the key
ladder in order to retrieve clear content. Starting by certificate
provisioning, the RoT is also used in L3 to protect the received
Device RSA Key for persistent storage (i.e. rewrap operation)
or using keybox related data in device blob. Accordingly, we
build the following approach to recover L3 RoT. We know
that, by design, the RoT must somehow be loaded during the
execution of the Widevine protocol, but the applied obfusca-
tion hides the loaded RoT. Here, we rely on WideXtractor
to better discern the moment, where the RoT is actually in
the memory in clear. At this point, we dynamically analyze
all memory regions used during obfuscated cryptographic
operations within the Widevine library. We search for the
keybox structure (e.g., magic number, device ID). Thus, we
were able to recover the L3 keybox on a Nexus 5, including
the 128-bit AES Device Key, due to an insecure storage of
sensitive information (CWE-922). Technical details can be
found in appendix B. Our method is efficient, since we limit
the spatial and temporal memory monitoring.

Responsible Disclosure. Our findings have been timely
reported to all concerned parties following their responsible
disclosure process. Netflix was quite responsive and we got
rewarded via their bug bounty program. Regarding Google
Widevine, our security report was assigned with the highest
priority within the Google Vulnerability Reward Program
(VRP). The Widevine security team investigated our findings
and issued a patch to mitigate our identified flaws. Google
assigned the CVE-2021-0639 for us, and acknowledged us in

the Google Hall of Fame and the Android Security Acknowl-
edgments. Our goal is to improve the knowledge about DRM,
and not to provide copyright infringement tools.

VIII. RELATED WORK

A. Closed Source Proprietary Protocol
Closed source protocols are often studied in the literature

to provide building grounds or to point out security flaws of
the analyzed protocol. For instance, Wouters et al. [20] show
that the proprietary autonomous car keyless protocol of Tesla
is vulnerable to key injection, which allows an attacker to
steal a car in a matter of minutes. Moreover, in their work
ARIstoteles, Kröll et al. [21] reverse engineered the Apple
Remote Invocation undocumented protocol on iOS and found
several vulnerabilities. Their work also includes the design of
a tool to foster future research on this topic.

B. Widevine Keys Recovery
In 2019, David Buchanan claimed to have broken L3

Widevine on Linux Chrome browsers in a tweet [22] being
the only available information about this attack. Buchanan
mentioned that L3 relies on AES-128 whitebox to protect me-
dia and was vulnerable to Differential Fault Analysis (DFA).
Buchanan has never provided any further detail.

Tomer Hadad released widevine-l3-decryptor on Github at
the end of 2020. This project is a Chrome extension on
Windows that contains a hard-coded value of an RSA key
pair used by Widevine L3. Hadad mentioned that he extracted
the RSA private key “by applying some mathematical tricks to
Arxan’s whitebox algorithm”, before releasing a full writeup
after Google’s patch. Unlike Buchanan, Hadad explained that
the L3 RoT in Chrome browsers is a whitebox of RSA, and not
AES. In November 2020, Google issued a DMCA takedown
request against widevine-l3-decryptor and all its forks [23],
proving that L3 security is still seen by Google as a serious
matter. In a BlackHat Asia talk, Zhao [24] explained how
he broke into Widevine L1 within the TEE to recover the
Widevine keybox of a Pixel 4. However, he did not show how
a recovered keybox can be used to decrypt protected contents.
In our work, we took this further step and implemented the
cryptographic mechanisms of Widevine.

IX. CONCLUSION

In this paper, we presented the undocumented closed-source
Widevine protocol with its cryptographic components. By
reverse engineering the Widevine CDM on Android, we ex-
tracted the logic behind its key ladder and provisioning phases.
Based on the gained insights, we design WideXtractor, a tool
analyzing the protocol workflow and all message exchanges
between clients and distant servers. We show the effectiveness
of WideXtractor by inspecting the use of Widevine by Netflix,
thereby uncovering interesting findings about Netflix asset
protection. Furthermore, we were able to trivially recover
the L3 RoT, which allows attackers to obtain any content
of sub-HD quality. Being widely deployed, DRM security
becomes critical. Our objective is to encourage and foster
further research about DRM-related technologies.
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APPENDIX A
OEM CRYPTO LIBRARY SYMBOLS EQUIVALENTS

Symbols OEMCrypto Functions Symbols OEMCrypto Functions
oecc01 Initialize oecc25 Generic Decrypt
oecc02 Terminate oecc26 Generic Sign
oecc03 InstallKeybox oecc27 Generic Verify
oecc04 GetKeyData oecc28 GetHDCPCapability
oecc05 IsKeyboxValid oecc29 SupportsUsageTable
oecc06 GetRandom oecc30 UpdateUsageTable
oecc07 GetDeviceID oecc31 DeactivateUsageEntry
oecc08 WrapKeybox oecc32 ReportUsage
oecc09 OpenSession oecc33 DeleteUsageEntry
oecc10 CloseSession oecc34 DeleteUsageTable
oecc11 DecryptCTR oecc35 LoadKeys*
oecc12 GenerateDerivedKeys oecc36 GenerateRSASignature*
oecc13 GenerateSignature oecc37 GetMaxNumberOfSessions
oecc14 GenerateNonce oecc38 GetNumberofOpenSessions
oecc15 LoadKeys* oecc39 isAntiRollbackHwPresent
oecc16 RefreshKeys oecc40 CopyBuffer
oecc17 SelectKey* oecc41 QueryKeyControl
oecc18 RewrapDeviceRSAKey oecc42 LoadTestKeybox
oecc19 LoadDeviceRSAKey oecc43 ForceDeleteUsageEntry
oecc20 GenerateRSASignature* oecc44 GetHDCPCapability
oecc21 DeriveKeysFromSessionKey oecc45 LoadTestRSAKey
oecc22 APIVersion oecc46 Security Patch Level
oecc23 GetSecurityLevel oecc47 LoadKeys*
oecc24 Generic Encrypt oecc48 DecryptCENC

* Duplicated entries differ in version.

APPENDIX B
L3 KEYBOX RECOVERY

Being the root of trust, we are motivated to recover the
keybox. Widevine maintains a different keybox for the differ-
ent levels of security. In subsection V-A, we explained that
L1 protection is TEE-dependent. In QSEE, it is based on the
Secure File System, whose security is outside the scope of
this paper. Here, we will focus on L3 keybox. Note that L3
implementations are diverse. Our analysis shows that Widevine
is as secure as the weakest one, since license keys for a given
media are shared among all L3 implementations. Therefore,
someone might take advantage of outdated implementations
to break into Widevine. Indeed, they can intentionally display
content on vulnerable smartphones, so that they can easily
recover protected media. This works as long as OTT platforms
keep support for old Android smartphones, as they target wide
audience. In this paper, we study the L3 of Google Nexus 5
that still runs many OTT apps.

By taking a closer look at libwvdrmengine.so, we
notice that OEMCrypto L3 functions are obfuscated. This
makes our analysis more complex, since the keybox is only
used within these functions. Moreover, we find that all ob-
fuscated functions apply anti-reverse transformations, such as
control flow flattening, that make static analysis less relevant.
In addition, memory regions are mapped with read and exe-
cute permissions. Because of ARM architecture blurring line
between code and data, we find it hard to tell if these mapped
regions are destined for data to load or code to execute.

The approach that we followed to recover the keybox was
not to directly break into the layer of obfuscation. This would
have made of our work technology-dependent, while we aim
for more long-term lessons. Instead, we stepped back and
monitored the unprotected functions calling the OEMCrypto
interface using WideXtractor. Indeed, we notice that most
functions of libwvdrmengine.so are not protected. Thus,
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we managed to collect a lot of memory data loaded during the
execution of the obfuscated functions. Of particular interest,
we were able to observe all memory unmapping that happens
through calls to munmap. We noticed that the OEMCrypto
functions load a significant amount of data though these calls
especially sensitive ones.

Thus, our next target is to look for a function requiring
the keybox for its operations. We recall that the keybox
is regularly used in OEMCrypto_LoadDeviceRSAKey to
decrypt the rewrapped Device RSA Key in L3 mode, but
also during device blob creation with OEMCrypto methods
like GetDeviceID or GetKeyData. Accordingly, these
functions map a proper region of memory for the keybox, loads
the keybox value inside it, and finally unmaps that region at
the end of the function. Because of the obfuscation, it is hard
to observe the loading step. However, these functions do not
clear the memory before unmapping. Therefore, we retrieved
the content of the unmapped regions. Then, relying on what
we know about the keybox, we filtered this content to keep the
regions of size 128 bytes including the keybox magic number.

It turns out that there is only one. We verify our finding
by checking the CRC-32 value. The keybox being recovered,
we can now decrypt the license keys, hence the video tracks
destined to L3. It is worth noting that this is particularly
interesting, especially that we did not even get to break into
the underlying obfuscation. In fact, our analyses were guided
by the conceptual structure of the Widevine protocol.
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