
DISCRETE AND CONTINUOUS doi:10.3934/dcdss.2022054
DYNAMICAL SYSTEMS SERIES S

COMPARISON OF SIMULATION-BASED ALGORITHMS FOR

PARAMETER ESTIMATION AND STATE RECONSTRUCTION

IN NONLINEAR STATE-SPACE MODELS

Thi Tuyet Trang Chau∗

Univ Rennes, IRMAR-UMR CNRS 6625, F-35000 Rennes, France

Pierre Ailliot

Univ Brest, CNRS UMR 6205, Laboratoire de Mathematiques de Bretagne Atlantique, France

Valérie Monbet

Univ Rennes, INRIA/SIMSMART, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France

Pierre Tandeo

IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France

Abstract. This study aims at comparing simulation-based approaches for

estimating both the state and unknown parameters in nonlinear state-space
models. Numerical results on different toy models show that the combination of

a Conditional Particle Filter (CPF) with Backward Simulation (BS) smoother

and a Stochastic Expectation-Maximization (SEM) algorithm is a promising
approach. The CPFBS smoother run with a small number of particles allows to

explore efficiently the state-space and simulate relevant trajectories of the state

conditionally to the observations. When combined with the SEM algorithm,
this algorithm provides accurate estimates of the state and the parameters in

nonlinear models, where the application of EM algorithms combined with a
standard particle smoother or an ensemble Kalman smoother is limited.

1. Introduction. State space models (SSMs) are used in many fields such as geo-
science, economics, statistics, computer science, neuroscience, and electrical engi-
neering since they provide a flexible and interpretable framework for analyzing many
signal and time series (see e.g., [21, 3, 2]). General SSMs are defined by the recursive
equation, {

xt =Mθ (xt−1, ηt)

yt = Hθ (xt, εt)
(1)

where xt denotes the latent (i.e., non observed) state and yt the observations at time
t. Mθ and Hθ describe respectively the dynamical evolution of the latent state {xt}
and the transformation between the latent state and the observations. {ηt} and {εt}
are independent white noise sequences with covariance matrices denoted respectively

2020 Mathematics Subject Classification. Primary: 62M05, 62F10, 62F15, 62F86.
Key words and phrases. EM algorithms, conditional particle filtering, backward simulation,

nonlinear models, statistical inference.
∗ Corresponding author: Thi Tuyet Trang Chau,

Present address: Laboratoire des Sciences du Climat et de l’Environnement (LSCE/ IPSL UMR
CEA-CNRS-UVSQ), F-91191 Gif-Sur-Yvette Cedex, France.

1

http://dx.doi.org/10.3934/dcdss.2022054

2 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

Q and R. They describe respectively the various sources of uncertainties present
in the dynamics of the state and observation errors. θ ∈ Θ denotes the vector of
unknown parameters. For instance, θ may contain parameters in the dynamical
model Mθ, observation operator Hθ, and error covariance matrices (Q,R).

When working with state-space models, a usual problem consists in reconstruct-
ing the latent state xt at time t given a sequence of observations y1:T = {y1, ...,yT }.
Filtering corresponds to the case where observations are available until the time t
(i.e., T = t) whereas smoothing to the case where observations are available after
time t (i.e., T > t). Another key question is to identify a reasonable value of the un-
known parameter θ. Actually, both questions are closely related. Indeed, incorrect
values of θ may lead to bad reconstructions of the latent space. This is illustrated
on Figure 1 using the Lorenz-63 model (see Section 3.3 for a formal definition).
Smoothing with true parameter value provides a good approximation of the true
state (left panel) whereas the trajectory obtained with wrong parameter value is
noisy and biased (right panel). This illustration emphasizes the role of parameter
estimation in SSMs (see also in [4]). Various methods have been proposed in the

x1

−20−15−10 −5 0 5 10 15

x 2
−20

−10
0

10
20

x 3

10

15

20

25

30

35

40

Smoothing with true error covariances (Q=0.01I3,R=2I3)
observation
true state
smoothed mean

x1

−20−15−10 −5 0 5 10 15

x 2
−20

−10
0

10
20

x 3

10

15

20

25

30

35

40

Smoothing with incorrect error covariances (Q= I3,R= I3)
observation
true state
smoothed mean

Figure 1. Impact of parameter values on smoothing distribu-
tions for the Lorenz-63 model (20). The true state (black curve)
and observations (black points) have been simulated with θ∗ =
(Q,R) = (0.01I3, 2I3). The mean of the smoothing distribu-
tions (red curve) are computed using a standard particle smoother
[16] with 100 particles. Results obtained with the true parameter
value θ∗ = (0.01I3, 2I3) (left panel) and a wrong parameter value

θ̃ = (I3, I3) (right panel) are plotted.

literature to estimate the parameters of SSMs and recent reviews can be found in
[26, 45]. In this paper we focus on maximum likelihood estimation which is probably
the most usual approach. There are two main approaches in the statistical literature
to maximize numerically the likelihood in models with latent variables: Gradient
ascent and Expectation-Maximization (EM) algorithms. As stated in [26] gradient
ascent algorithms can be numerically unstable as they require to scale carefully the
components of the score vector and thence the EM approach is generally favored
when considering models with latent components. Since the seminal work of [14],
various variants of the EM algorithm have been proposed in the literature (see e.g.
[10, 26, 32, 39, 42, 45] and references therein). The common idea of these algorithms

ESTIMATION IN STATE-SPACE MODELS 3

is to run an iterative procedure where an auxiliary quantity which depends on the
smoothing distribution is maximized at each iteration, until a convergence criterion
is reached.

Within the EM machinery, the more challenging issue is generally to compute
the smoothing distribution. For linear Gaussian SSMs, the Kalman smoother (KS)
[43] provides an exact solution to this problem. The difficulty arises when the model
is nonlinear and the state does not take its values in a finite state-space. In such
situation the smoothing distribution is intractable. To tackle this issue, simulation-
based methods were proposed. The ensemble Kalman smoother (EnKS) [9, 22, 23]
and its variants [6, 5, 7] are the most favorite choices for geophysical applications.
They are based on a best linear unbiased estimate strategy and they allow to com-
pute an approximation of the smoothing distribution using a relatively low number
of simulations of the dynamical model. Unfortunately, for nonlinear state-space
models, the approximations based on Kalman recursions generally do not converge
to the smoothing distribution when the number of members increases [30]. Par-
ticle smoothers have been proposed as an alternative in [8, 16, 17, 24]. However,
a large amount of particles and thus simulations of the dynamical model is typ-
ically required to get good approximations of the smoothing distribution. Since
2010, conditional particle filters (CPFs) [34, 36, 33, 44] pioneered by [1] have been
developed as an alternative strategy to approximate smoothing distributions at a
lower computational cost. Contrary to the more usual particle smoothing algo-
rithms discussed above, CPFs simulate samples of the smoothing distribution using
an iterative algorithm. At each iteration, one conditioning trajectory is plugged in
a standard particle smoothing scheme. It helps the algorithm to explore interesting
parts of the state space with only few particles. After a sufficient number of iter-
ations, the algorithm provides samples approximately distributed according to the
joint smoothing distribution.

In [32], the author proposes to use a smoothing algorithm based on CPF, named
Conditional particle filtering-Ancestor sampling (CPFAS), within a Stochastic
Expectation-Maximization (SEM) algorithm (CPFAS-SEM algorithm). The au-
thors showed using numerical simulations of univariate toy models that the algo-
rithm can estimate the variances Q and R using only a few particles. However,
CPFAS suffers from degeneracy (see [33]) and consequently the estimators obtained
with CPFAS-SEM may be biased and/or have large variance.

In order to avoid the above-mentioned degeneracy issue, we propose in the present
paper to combine CPF with the Backward Simulation (BS) algorithm originally
proposed in [24] and the SEM algorithm (CPFBS-SEM algorithm). The main con-
tribution of this paper is to show, using numerical simulations, that the proposed
algorithm outperforms other EM algorithms which have been proposed in the lit-
erature in terms of parameter estimation, state reconstruction, and computational
cost. We also provide an open-source Python library of all mentioned algorithms
which is available on-line at https://github.com/tchau218/parEMDA.

The paper is organized as follows. In Section 2, we first remind sequential smooth-
ing methods in an incremental way which permits to highlight the differences from
one algorithm to the other. It starts from the usual particle filter/smoother and
ends with the conditional particle smoother referred to as CPFBS. Then, the com-
bination of CPFBS and the SEM algorithms is described. The performances of the
different algorithms are compared in Section 3 using numerical experiments on toy
models. Section 4 contains conclusions and perspectives.

https://github.com/tchau218/parEMDA

4 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

2. Methods.

2.1. Smoothing using conditional particle-based methods.

2.1.1. Particle Filtering (PF) and Conditional Particle Filtering (CPF). In the
state-space model (1), the latent state {xt} is a Markov process with values in
X , defined by its initial distribution pθ(x0) and transition kernel pθ(xt|xt−1). The
observations {yt} with values in Y are conditionally independent given the state
process and we denote pθ(yt|xt) the conditional distribution of yt given xt. The
transition kernel pθ(xt|xt−1) depends on both the dynamical model Mθ and the
distribution of the model error ηt whereas the conditional observation distribution
pθ(yt|xt) is a function of the observation model Hθ and the distribution of the
observation error εt.

Given a fixed vector θ and a sequence of length T of observations y1:T =
(y1, ...,yT), a classical inference problem consists in computing the filtering dis-
tributions pθ(xt|y1:t) and smoothing distributions pθ(xt|y1:T). For linear Gaussian
models, the filtering distributions are Gaussian distributions whose means and co-
variances can be computed using the Kalman recursions. When state-space models
are nonlinear or non-gaussian, the filtering distributions do not admit a closed form
and particle filtering (PF) methods have been proposed to compute approximations
of these quantities [8, 17, 18]. The general PF algorithm is based on the following
relation between the filtering distributions at time t− 1 and t,

pθ(x0:t|y1:t) =
pθ(yt|xt) pθ(xt|xt−1)

pθ(yt|y1:t−1)
pθ(x0:t−1|y1:t−1). (2)

Note that if we are able to compute the joint filtering distribution pθ(x0:t|y1:t), then
it is possible to deduce the marginal filtering distribution pθ(xt|y1:t) by integrating
over the variables x0:t−1.

PF is based on importance sampling and it leads to an approximation of
pθ(x0:t|y1:t) as follows,

p̂θ (x0:t|y1:t) =

Nf∑
i=1

δ
x
(i)
0:t

(xt)w
(i)
t (3)

where Nf denotes the number of particles, δx the Dirac function, and {w(i)
t } are

normalized positive weights. Starting from an approximation (3) at time t − 1,
the iteration at time t of PF algorithms usually consists of the three main steps
described below (see left panel of Figure 2 for an illustration).

o Resampling. A resampling method is used to duplicate particles with large
weights and remove particles with very small weights (see in [15, 25] for a
discussion on different resampling methods).

o Forecasting. It consists in propagating the particles from time t− 1 to time
t with a proposal kernel πθ(xt|x0:t−1,y1:t).

o Weighting. Importance weights {w(i)
t }i=1:Nf of the particles {x(i)

0:t}i=1:Nf are
computed according to the formula

W (x0:t) =
pθ (x0:t|y1:t)

πθ(xt|x0:t−1,y1:t)

(2)
∝ pθ (yt|xt) pθ(xt|xt−1)

πθ(xt|x0:t−1,y1:t)
pθ (x0:t−1|y1:t−1) . (4)

ESTIMATION IN STATE-SPACE MODELS 5

The PF algorithm is presented in Algorithm 1. Notation {Iit}
i=1:Nf

t=1:T in Algo-
rithm 1 is used to store the indices of the particles across time steps and permits
to reconstruct the past trajectory of a particle. This is further discussed below
since it is a key ingredient in some smoothing algorithms discussed in this study.
Also note that, in a general PF algorithm, particles can be propagated according to
any proposal distribution πθ (see [8, 18]). In this paper, the boostrap filter is used
where πθ(xt|x0:t−1,y1:t) = pθ(xt|xt−1) pθ(x0:t−1|y1:t−1). Accordingly, the forecast-
ing step consists in sampling with respect to the dynamical model Mθ and the
importance weight function (4) can be simplified as W (x0:t) ∝ pθ (yt|xt).

One of the drawback of PF algorithms is that a large number of particles is gen-
erally required to get a good approximation of the filtering distributions and this
may lead to prohibitive computational costs in practical applications. Conditional
particle filtering (CPF) was introduced in [1] as an alternative to approximate the
smoothing distributions using a lower number of particles. CPF algorithms dif-
fer from PF algorithms by adding a replacing step between the forecasting and
weighting steps. In this step, one of the particle path is replaced by a conditioning
trajectory X∗ = (x∗1, · · · ,x∗T) ∈ X T . For instance, if the Nf -th particle is replaced
it leads to the following scheme at time t,

x
(i)
t =

{
x
(i)
t ∼ πθ(xt|x

(Iit)
0:t−1,y1:t), ∀i = 1 : Nf − 1

x∗t , i = Nf .
(5)

Similarly to PF, the resulting sample {x(i)
t }i=1:Nf is weighted according to (4).

In Algorithm 1, the differences between PF and CPF algorithms are presented.
The additional ingredients of CPF are highlighted in grey. The general principle of

Algorithm 1: Particle Filtering (PF)/Conditional Particle Filter-
ing (CPF) given the conditioning sequence X∗ = (x∗1,x

∗
2, · · · ,x∗T)

(only for CPF), observations y1:T , and parameter θ.

o Initialization:
+ Sample {x(i)

0 }i=1:Nf ∼ pθ(x0).

+ Set initial weights w
(i)
0 = 1/Nf ,∀i = 1 : Nf .

o For t = 1 : T ,
+ Resampling: draw indices {Iit}i=1:Nf with respect to particle

weights {w(i)
t−1}i=1:Nf .

+ Forecasting:

x
(i)
t ∼ πθ

(
xt|x

(Iit)
0:t−1,y1:t

)
,∀i = 1 : Nf .

+ Replacing (only for CPF): set x
(Nf)
t = x∗t and I

Nf

t = Nf .

+ Weighting: compute w̃
(i)
t = W

(
x
(Iit)
0:t−1,x

(i)
t

)
by using (4), then

calculate its normalized weight w
(i)
t =

w̃
(i)
t

Nf∑
i=1

w̃
(i)
t

, ∀i = 1 : Nf .

end for.

the CPF algorithm is also illustrated on Figure 2. Let us discuss informally the role
of the conditioning trajectory. When selecting from a sample composed of particles
simulated from the proposal kernel πθ and the conditioning particle, two opposite

6 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

 W
e
ig

h
te

d
 p

a
rt

ic
le

s

time

Particle filtering (PF)

yt-1

Forecasting WeightingResampling

xt(Nf) xt-1(i)

yt
Conditional particle filtering (CPF)

sp
a
ce

sp
a
ce

time

 W
e
ig

h
te

d
 p

a
rt

ic
le

s

xt-1(i)
yt-1

Resampling Forecasting

 xt(Nf)

yt Weighting

Replacing

xt(Nf)

yt ytxt(Nf)= xt* yt
xt(Nf)

Figure 2. Comparison of one iteration of PF and CPF algorithms
using Nf = 5 particles (light grey points). The differences are

highlighted in black : CPF replaces the particle x
(Nf)
t of the PF

with the conditioning particle x∗t (dark grey point).

0 5 10 15 20 25 30
time (t)

−20

−10

0

10

20

Particle filtering (PF)

observation yt true state xt particle x(i)
t

0 5 10 15 20 25 30
time (t)

−20

−10

0

10

20

Conditional particle filtering (CPF)

observation yt

true state xt

particle x(i)
t

conditioning particle x *
t

Figure 3. Comparisons of PF and CPF algorithms with 10 parti-
cles on the Kitagawa model defined in Section 3.2. Grey lines show
the ancestors of the particles.

situations may occur. If the conditioning particle is far from the true state then it
will have a low probability to be duplicated after weighting and resampling in the
filtering procedure. But if the conditioning particle is close to the true state, then
it will have a high probability to be duplicated and propagated at the next time
step. Consequently, a good sequence set for the conditioning trajectory ensures that
the CPF algorithm will explore the state space in its neighborhood, hopefully, an
interesting part of the state space. This is also illustrated on Figure 3 which has been
drawn using the Kitagawa state-space model (see 19). The forecasting distribution
can be bimodal given this model due to the cos-term and the observation operator
which is quadratic. In addition, a large value of the observation error variance R
leads to observations which may not bring useful information about the state and
this complicates the identification of the filtering distribution. On the left panel of
Figure 3, PF starts to simulate trajectories (grey lines) which are far away from the

ESTIMATION IN STATE-SPACE MODELS 7

true state around time t = 17 (black line). At the same time, the observation yt
does not bring enough information on the state and the correction step is unable
to correct the forecast. It leads to a bad approximation of the filtering distribution
at time t = 18 and this effect persists during several time steps. CPF gives better
results thanks to a good conditioning trajectory which helps generating relevant
forecasts (see right panel of Figure 3).

2.1.2. Smoothing with conditional particle filter. Running the CPF algorithm
(Algorithm 1) until the final time step T gives a set of particles, weights, and
indices which define an empirical distribution on X T+1,

p̂θ (x0:T |y1:T) =

Nf∑
i=1

δ
x
(i)
0:T

(x0:T)w
(i)
T (6)

where x
(i)
0:T is a particle path, w

(i)
T is its corresponding weight, and i is the index

of the particle at the final time step. In practice, given the final particle, e.g.,

xsT = x
(i)
T , the rest of the smoothing path xs0:T can be retrieved by tracking the

ancestors (parent, grandparent, etc) of the particle x
(i)
T . The information on the

genealogy of the particles is stored in the indices (Iit)
i=1:Nf

t=1:T since Iit is the index

of the parent of x
(i)
t . The technique, which is named ancestor tracking in the

literature, is illustrated on Figure 4 with Nf = 3 and T = 4. Given i = 1, the

parent of particle x
(1)
4 is the particle x

(I14)
3 = x

(3)
3 , its grandparent is the particle

x
(I33)
2 = x

(3)
2 and its highest ancestor is x

(I32)
1 = x

(2)
1 . At the end, we obtain one

realization xs1:4 = x
(1)
1:4 = (x

(2)
1 ,x

(3)
2 ,x

(3)
3 ,x

(1)
4).

p
a
rt

ic
le

s

x1(1) x1(2)
x1(3)

x2(3)

x2(3)
x3(3)

x4(3) x2(2)
x3(2) x4(2)

x2(1)

x3(1)

1 2 3 4time(t)

x4(1)

Figure 4. Example of ancestor tracking based on ancestral links
of filtering particles. Particles (grey balls) are obtained using a
filtering algorithm with Nf = 3 particles.

In the CPF smoother (Algorithm 2), the conditioning particle is updated iter-
atively, using the particles obtained at the final time step in the previous iteration.
According to Theorem A in [1], starting from any initial conditioning trajectory, the
CPF smoother (Algorithm 2) will generate trajectories which are approximately
distributed according to the smoothing distribution after a certain number of iter-
ations, even if the numbers of particles Nf and Ns are low. However, in practice,

8 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

Algorithm 2: Smoothing with Conditional Particle Filtering (CPF)
given the conditioning X∗ = (x∗1,x

∗
2, · · · ,x∗T), observations y1:T , and

parameter θ.

o Run CPF (Algorithm 1) given X∗, observations y1:T , parameter θ, and
Nf particles.

o Repeat Ns times to simulate Ns trajectories :

+ For t = T , draw index JT with p(JT = i) ∝ w(i)
T and set xsT = x

(JT)
T .

+ For t < T , set index Jt = I
Jt+1

t+1 and xst = x
(Jt)
t .

o Update the conditioning particle X∗ with one of these trajectories.

this algorithm generally has a poor mixing and a low rate of convergence. The main
reason for this is the so-called degeneracy issue [33]: all the particles present at the
final time step T share the same ancestors after a few generations. This is illustrated
on Figure 4 where all the particles present at time t = 4 have the same grandparent
at time t = 2. This is also visible on the left panel of Figure 5. The resampling
makes many particles disappear whereas other particles have many children. As a
consequence, all 10 particles at the final time step T = 30 share the same ancestors
for t < 20. This degeneracy issue clearly favors the conditioning particle which is
warranted to survive and reproduce at each time step. When iterating the CPF
algorithm, the next conditioning sequence is thus very likely to be identical to the
previous one, except maybe for the last time steps.

To improve the mixing properties of the algorithm, [34, 37] proposed to modify
the replacing step in the CPF (Algorithm 1) as follows. After setting the final

particle x
(Nf)
t = x∗t ∈ X∗ to the conditioning particle, the index of its parent I

Nf

t

is drawn following Bayes’ rule,

pθ(I
Nf

t = i|x∗t ,y1:t) ∝ pθ(x∗t |x
(i)
t−1) w

(i)
t−1. (7)

Resampling I
Nf

t helps to break the conditioning trajectory X∗ into pieces so that
the algorithm is less likely to simulate trajectories which are similar to X∗. The
resulting algorithm is referred to as Conditional Particle Filtering-Ancestor Sam-
pling (CPFAS) in the sequel. In [33, 34], it is shown empirically that this algorithm
is efficient to simulate trajectories of the smoothing distribution with only 5 − 20
particles. It is also proven that theoretical properties of the original CPF algorithm
hold true for the CPFAS (see Theorem A in Appendix).

The comparison of the left and middle panels of Figure 5 shows that resampling
indices permits to obtain ancestor tracks which are different from the conditioning
particles. However, the CPFAS smoother also suffers from the degeneracy problem
mentioned above: all the trajectories simulated with the CPFAS coincide for t < 20
and thus cannot describe the spread of the smoothing distribution except maybe for
the last time steps. In the next sections, we propose to replace ancestor tracking by
backward simulation in order to better use the information brought by the particles.

2.1.3. Smoothing with Conditional particle filtering- Backward simulation (CPFBS).
Backward simulation (BS) was first proposed in the statistical literature [16, 19, 24]
to sample smoothing distribution in association with the regular particle filter
(PFBS algorithm), and then combined with CPF in studies of [47, 33]. For BS,

ESTIMATION IN STATE-SPACE MODELS 9

the smoothing distribution is decomposed as

pθ (x0:T |y1:T) = pθ (xT |y1:T)

T−1∏
t=0

pθ (xt|xt+1,y1:t) , (8)

where

pθ(xt|xt+1,y1:t) ∝ pθ (xt+1|xt) pθ (xt|y1:t) (9)

is the so-called backward kernel. Given the particles {x(i)
t }i=1:Nf and the weights

{w(i)
t }i=1:Nf of the CPF algorithm, we obtain an estimate (3) of the filtering dis-

tribution pθ (xt|y1:t). By plugging this estimate in (9), we deduce the following
estimate of the backward kernel

p̂θ (xt|xt+1,y1:t) ∝
Nf∑
i=1

pθ(xt+1|x(i)
t)w

(i)
t δ

x
(i)
t

(xt) (10)

Combining the relation (8) and estimator (10), one smoothing trajectory xs0:T =

xJ0:T

0:T = (x
(J0)
0 ,x

(J1)
1 , · · · ,x(JT−1)

T−1 ,x
(JT)
T) can be simulated recursively backward in

time. The algorithm is described more precisely below.

Algorithm 3: Smoothing with Conditional Particle Filtering -
Backward Simulation (CPFBS) given the conditioning sequence
X∗ = (x∗1,x

∗
2, · · · ,x∗T), observations y1:T , and parameter θ.

o Run CPF (Algorithm 1) given X∗, observations y1:T , parameter θ, and
Nf particles.

o Repeat the Backward Simulation for Ns times:

+ For t = T , draw JT with p(JT = i) ∝ w(i)
T .

+ For t < T ,

- Compute weights w
s,(i)
t = pθ(x

(Jt+1)
t+1 |x(i)

t) w
(i)
t using (10), for all

i = 1 : Nf .

- Sample Jt with p(Jt = i) ∝ ws,(i)t .
end for

o Update the conditioning trajectory X∗ with one of these trajectories.

Results displayed on Figure 5 suggest that the CPFBS algorithm (right panel)
is better in simulating different smoothing trajectories than the ones with ancestor
tracking (left and middle panels) which are prone to the degeneracy issue. Figure 6
illustrates this algorithm with a small sample simulating the state in the Kitagawa
model. CPFBS is initialized with the constant sequence equal to 0 (x∗t = 0 for
t ∈ {1, ..., T}). This impacts the quality of the simulated trajectories which are
far from the true state at the first iteration. The conditioning trajectory is then
updated at each iteration and it helps driving the particles to interesting parts of
the state space. After only 3 iterations, the simulated trajectories stay close to the
true trajectory. Note that only 10 particles are used at each iteration.

Generating new trajectories for each iteration conditionally on a trajectory in the
previous one of the CPF, CPFAS, and CPFBS algorithms defines a Markov kernel
on X T . Theorem A states that these Markov kernels have interesting theoretical
properties (see also [12] for more results). In particular, the second property of this
theorem implies that running the algorithm with any initial conditioning trajectory

10 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

0 5 10 15 20 25 30
time (t)

−20

−10

0

10

20

CPF (Algorithm 1)

observation
true state

conditioning particle
realization

0 5 10 15 20 25 30
time (t)

CPF-AS (Algorithm 2)

observation
true state

conditioning particle
realization

0 5 10 15 20 25 30
time (t)

CPF-BS (Algorithm 3)

observation
true state

conditioning particle
realization

Figure 5. Comparison of CPF (left), CPFAS (middle), and
CPFBS (right). The state (black line) and the observations (black
points) have been simulated using the Kitagawa model (19) with
Q = 1 and R = 10. Nf = 10 particles (grey points with grey lines
showing the genealogy) are used in the three algorithms. The red
curves show Ns = 10 realizations simulated with the algorithms.

−20

−10

0

10

20

ite
ra
tio

n
0

observation true state particle conditioning trajectory realization
−20

−10

0

10

20

ite
ra
tio

n
1

0 5 10 15 20 25 30
time (t)

−20

−10

0

10

20

ite
ra
tio

n
2

0 5 10 15 20 25 30
time (t)

−20

−10

0

10

20

ite
ra
tio

n
3

Figure 6. Four iterations of the CPFBS smoother
(Algorithm 3). The state (black line) and the observations
(black points) have been simulated using the Kitagawa model (19)
with Q = 1 and R = 10. At the first iteration, the conditioning
trajectory (grey dotted line) is initialized with the constant
sequence equal to 0. CPFBS is run with Nf = 10 particles (grey
points) and Ns = 10 trajectories (red curves).

permits to simulate samples distributed approximately according to the smoothing
distribution after a sufficient number of iterations, whatever the values of Nf and
Ns. This theorem was first proven for the CPF smoother in [1]. The results were
then extended to CPFBS in [35] and to CPFAS in [34] on target to solving inverse
problems in non-Markovian models.

ESTIMATION IN STATE-SPACE MODELS 11

Though the CPFBS smoother shares the same good theoretical properties as the
CPF and CPFAS, we will show further in Section 3 that it gives better results in
practice. This is due to its ability to reduce the degeneracy problem and hence
provide better descriptions of the smoothing distribution. At first glance, running
BS seems to be more costly than tracking ancestors. Nevertheless, the transition
probability in the backward kernel (10) is computed reusing the information of the
particles simulated within CPF and thus does not require extra simulations of the
state equation. In practice, the computational complexity of the CPFBS algorithm
is thus similar to that of the CPF or CPFAS algorithm and grows linearly with Nf .

Recently, the CPFBS with few particles (5−20) has been applied to sample θ and
the latent state in a Bayesian framework [33, 35]. In the next section, we propose
to combine CPFBS and Stochastic EM algorithm to perform maximum likelihood
estimation.

2.2. Stochastic EM algorithm and parameter estimation. This section
presents the estimation of the unknown parameter θ given a sequence y1:T of ob-
servations of the SSM (1). For a SSM, the likelihood function is given by

L(θ) = pθ(y1:T) =

∫
pθ (x0:T ,y1:T) dx0:T . (11)

The EM algorithm originally proposed in [14] is the most classical numerical method
in the statistical literature to maximize the likelihood function in models with latent
variables. This iterative algorithm maximizes at each step an auxiliary function G
which is generally easier to optimize than the likelihood function (11). G is defined
as

G(θ, θ′) = Eθ′ [ln pθ (x0:T ,y1:T)] (12)

,
∫

ln pθ (x0:T ,y1:T) pθ′ (x0:T |y1:T) dx0:T (13)

where θ and θ′ denote two possible values for the parameters. Starting from an
initial parameter θ0, each iteration r (r ≥ 1) of the EM algorithm comprises two
main steps:

o E-step: compute the auxiliary quantity G(θ, θr−1),
o M-step: compute θr = arg max

θ
G(θ, θr−1).

It can be shown that this algorithm increases the likelihood function at each iteration
and gives a sequence (θr) which converges to a maximum likelihood estimate (MLE).

Remark that the intermediate function (12) of the EM algorithm is defined as
the expectation of the full likelihood function

pθ(x0:T ,y1:T) = pθ (x0)

T∏
t=1

pθ (xt|xt−1)

T∏
t=1

pθ (yt|xt) (14)

with respect to the smoothing distribution pθ′ (x0:T |y1:T). The EM algorithm com-
bined with Kalman smoothing (KS-EM, [43]) has been the dominant approach to
estimate parameters in linear Gaussian models. In nonlinear and/or non-Gaussian
models, the smoothing distribution and thus the intermediate function of the EM
algorithm are generally intractable. The EM algorithm needs to be adapted in such
situation. In [10, 11, 46], the authors proposed to use as alternative a Monte Carlo

12 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

approximation of (12),

Ĝ(θ, θ′) ,
1

Ns

Ns∑
j=1

ln pθ

(
xj0:T ,y1:T

)
, (15)

where {xj0:T }j=1:Ns are Ns trajectories simulated according to the smoothing dis-
tribution pθ′ (x0:T |y1:T). This algorithm is referred to as Stochastic EM (SEM)
algorithm in the literature.

SEM requires generating samples of the smoothing distribution at each iteration.
In the literature, standard particle smoothing methods are generally used (see [26]).
However, the computational cost of these algorithms can be prohibitive for practical
applications. A possible alternative is to use an approximate smoother such as EnKS
leading to the EnKS-EM algorithm originally proposed in [20]. It was found using
numerical simulations that this algorithm performs well as long as the non-linearities
are not too important. Nevertheless, the EnKS-EM may lead to bad estimations or
divergence problems in case of strong non-linearities (see numerical experiments in
Section 3). Hereafter, we explore alternatives based on the smoothers introduced
in Section 2.1.

In [32], it is proposed to combine SEM and CPFAS leading to the CPFAS-

SEM algorithm described below. Starting from an initial parameter value θ̂0 and a
conditioning trajectory X∗0, each iteration r in the CPFAS-SEM algorithm consists
of

o E-step:

i. Draw Ns realizations using the CPFAS smoother with parameter θ̂r−1,
conditioning sequence X∗r−1, and observations y1:T . X∗r denotes the new
conditioning trajectory obtained after updating.

ii. Compute the quantity Ĝ(θ, θ̂r−1) via (14) and (15).

o M-step: Compute θ̂r = arg max
θ

Ĝ(θ, θ̂r−1).

Note that the CPFAS-SEM algorithm is slightly different from a regular SEM al-
gorithm because at iteration r, Ns smoothing trajectories are sampled given the
previous conditioning trajectory X∗r−1. This creates some (stochastic) dependence
between successive iterations in the algorithm.

Numerical illustrations shown in Figure 5 and results given in Section 3 indicate
that the degeneracy issue in the CPFAS algorithm may lead to estimates with some
bias and large variances. As discussed in the preceding section, the CPFBS algo-
rithm is expected to be less prone to degeneracy and to provide a better description
of the smoothing distribution at the same computational cost than the CPFAS
algorithm. We thus propose to replace CPFAS by CPFBS in the CPFAS-SEM
algorithm leading to the CPFBS-SEM algorithm.

Depending on the complexity of the SSM (1), analytical or numerical procedures

may be used to maximize Ĝ in the M-step. Usual practical applications are based
on Gaussian SSM defined as {

xt = m(xt−1) + ηt,

yt = h(xt) + εt.
(16)

where m and h can be linear or nonlinear functions, ηt ∼ N (0,Q), and εt ∼
N (0,R). In this particular case, the following analytical expressions can be derived

ESTIMATION IN STATE-SPACE MODELS 13

for updating Q and R in the M-step.

Q̂r =
1

TNs

T∑
t=1

Ns∑
j=1

[
xjt −m

(
xjt−1

)] [
xjt −m

(
xjt−1

)]′
,

R̂r =
1

TNs

T∑
t=1

Ns∑
j=1

[
yt − h

(
xjt

)] [
yt − h

(
xjt

)]′
. (17)

The number Ns of simulated trajectories is a key parameter in the CPFBS-

SEM algorithm. If Ns is large, the law of large numbers implies that Ĝ is a good
approximation of G and the SEM algorithm is close to the EM algorithm. However,
a large Ns means a high computational cost. Different strategies have been proposed
in the SEM literature to get a good trade-off between the quality of the estimation
and the computational time. For instance, it is possible to increase the value of
Ns at each iteration of the EM (Monte Carlo EM algorithm, MCEM, see [10]) or
to re-use the smoothing trajectories simulated in the previous iterations (stochastic
approximation EM algorithm, SAEM, see [13, 29]) to decrease the variance of the
estimates. In this article, we focus on the usual SEM to simplify the presentation.

3. Numerical results. The performance of the CPFBS-EM algorithm is assessed
using simulations and compared with other algorithms including CPFAS-SEM,
PFBS-SEM, and EnKS-EM. Simulations are performed using three different toys
models. We first focus on a simple univariate linear Gaussian model. For this
model, the KS-EM algorithm, which can provide an exact numerical approxima-
tion to the MLE, is run to check the accuracy of the estimates derived from the
SEM algorithms. Then, we consider nonlinear models, starting with the univari-
ate Kitagawa model, before discussing results obtained with the three-dimensional
Lorenz-63 model.

3.1. Linear model. The linear Gaussian SSM is one classical toy model in the
literature since the Kalman recursions give exact expressions for the filtering and
smoothing expressions and the M-step of the EM algorithm can also be solved
exactly. For this model, the KS-EM algorithm [43] can thus be implemented to
compute an accurate numerical approximation of the MLE at a low computational
cost and be used as a reference for other estimation algorithms. Implementations
of stochastic versions of the EM algorithm for linear Gaussian SSMs are discussed
for example in [26, 32, 41].

Consider a linear SSM defined as{
xt = Axt−1 + ηt,

yt = xt + εt,
(18)

where {xt} and {yt} have values in R, ηt and εt are independent Gaussian white
noise sequences with variances Q and R, and A is the autoregressive coefficient.
θ = (A,Q,R) denotes the vector of unknown parameters. The true parameter
value is fixed to θ∗ = (0.9, 1, 1) and the length of simulated sequences to T = 100.
An example of simulated trajectory is shown in Figure 7.

The initial parameter θ̂0 for all the algorithms is sampled using a uniform dis-
tribution on the interval [0.5, 1.5]3. The KS-EM is run with 1000 iterations and
is expected to obtain an exact numerical approximation to the MLE. In all the
experiments below, the initial conditioning trajectories X∗0 of the CPFBS-SEM and

14 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

0 20 40 60 80 100
Time (t)

5

0

5 Observations
True state
Smoothed mean

Figure 7. Sequence simulated with the linear Gaussian SSM
model (18) with θ∗ = (0.9, 1, 1). The mean of the smoothing dis-
tribution (red curve) and 95% prediction interval (light red area)
are computed based on the smoothing trajectories simulated in the
last 10 iterations of CPFBS-SEM algorithm with Nf = Ns = 10
particles.

CPFAS-SEM algorithms are simulated by running standard PF-based smoothing

algorithms given θ̂0 and a sequence of observations. In order to estimate the dis-
tribution of the estimators, each experiment is run 100 times. Besides the quality
of the estimate of θ, we also compare the algorithms through their abilities to
reconstruct the latent state x1:T from the observations y1:T . In practice, all the
smoothing trajectories obtained in the the last 10 iterations of the SEM algorithms
are used to compute an empirical mean for the smoothing distribution and a 95%
confidence interval (CI) for the latent state as illustrated on Figure 7. Finally, the
reconstruction ability of the algorithms is measured using the root mean square
error (RMSE) between the estimated mean of the smoothing distribution and the
true latent state.

Figure 8 shows the evolution of the distributions of the estimators of θ and
the RMSEs between the true state and the mean of the smoothing distributions
as a function of the number of EM iterations. The estimates given by the KS-
EM algorithm are shown in Figure 8 (dotted line). Although the CPFBS-EM is
run with a low number Nf = Ns = 10 of particles, it provides estimates and
reconstruction errors with similar distributions than KS-EM. It is also noticeable
that the algorithms begin to stabilize after only 10 iterations. As expected from the
discussion in Section 2.1.3, CPFBS-SEM estimates and reconstruction errors have
a smaller variance than those of CPFAS-SEM.

In the next experiment, the performances of the CPFBS-SEM, CPFAS-SEM,
PFBS-SEM, and EnKS-EM algorithms are compared for different numbers of par-
ticles Nf = Ns ∈ {10, 50, 100}. The empirical distribution of the estimators at
iteration 100 are shown on Figure 9. When only Nf = Ns = 10 particles are used,
the CPFBS-SEM algorithm clearly outperforms all the other algorithms based on
Monte-Carlo simulations and gives similar results than KS-EM. The PFBS-SEM al-
gorithm with Nf = Ns = 10 or even Nf = Ns = 50 particles leads to estimates with
a bias which is significantly larger than the ones of other algorithms. It illustrates
that the PFBS-SEM algorithm, based on the usual particle filter, needs much more
particles than the ones based on CPF (see also in [32]). With Nf = 100 particles,

ESTIMATION IN STATE-SPACE MODELS 15

0 10 20 30 40 50 60 70 80 90 100

0.0

0.5

1.0

1.5

A

True parameter
KS

CPFBS
CPFAS

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

Q

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

R

0 10 20 30 40 50 60 70 80 90 100
Iteration (r)

1

2

RM
SE

Figure 8. Distribution of the estimates obtained with CPFBS-
SEM and CPFAS-SEM algorithms as a function of the number of
EM iterations for the linear Gaussian SSM model (18) with θ∗ =
(0.9, 1, 1), T = 100, Nf = Ns = 10. The empirical distributions are
computed using 100 simulated samples. The median (grey dotted
line) and 95% confidence interval (grey shaded area) are computed
using 103 iterations of the KS-EM algorithm.

the effect of conditioning becomes less important and the PFBS-SEM and CPFBS-
SEM give similar results. With Nf = 10 members, the EnKS-EM algorithm leads
to biased estimates for Q and R but with Nf = 50 or Nf = 100 members it exhibits
similar good performances than CPFBS-SEM and KS-EM algorithms. Finally, the
CPFAS-SEM algorithm leads to estimates with a larger variance compared to the
other algorithms, and even with Nf = Ns = 100 its performance is not as good
than the one of KS-EM or CPFBS-SEM with Nf = Ns = 10.

3.2. Kitagawa model. The SEM algorithms are now applied on the univariate
Kitagawa SSM defined as

16 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

10 50 100
0.4

0.6

0.8

1.0

A

True parameter
CPFBS

CPFAS
PFBS

EnKS
KS

10 50 100
0

2

Q

10 50 100
0

1

2

3

R

10 50 100
Number of particles/members (Nf = Ns = N)

0.6

0.8

1.0

1.2

RM
SE

Figure 9. Distribution of the estimates obtained with CPFBS-
SEM, CPFAS-SEM, PFBS-EM, and EnKS-EM algorithms as a
function of the number of particles for the linear Gaussian SSM
model (18) with θ∗ = (0.9, 1, 1) and T = 100. Results obtained by
running 100 iterations of the algorithms. The empirical distribu-
tions are computed using 100 simulated samples.

{
xt = 0.5xt−1 + 25 xt−1

1+x2
t−1

+ 8 cos(1.2t) + ηt,

yt = 0.05x2t + εt,
(19)

where {xt} and {yt} have values in R, ηt and εt are independent Gaussian white
noise sequences with variancesQ and R. θ = (Q,R) denotes the unknown parameter
with true parameter value fixed to θ∗ = (1, 10) in the experiments below, unless
stated otherwise. Figure 10 shows a sequence simulated with this model. It was
first proposed in [40] and then widely considered in the literature as a toy model to
perform numerical experiments (see e.g., [18, 24, 27, 28, 42, 32]). It is a challenging
univariate SSM since both the dynamical and observation models are non-linear.

The SEM algorithms were initialized using values of θ simulated according to the
uniform distribution in [1, 10]2. In this section, we only compare results obtained
with the CPFBS-SEM and CPFAS-SEM algorithms run with Nf = Ns = 10 parti-
cles and 100 iterations. As shown in the linear case, these algorithms outperform the

ESTIMATION IN STATE-SPACE MODELS 17

0 20 40 60 80 100
Time (t)

20

10

0

10

20 Observations True state Smoothed mean

Figure 10. Sequence simulated with the Kitagawa model (19)
with θ∗ = (1, 10). The mean of the smoothing distribution (red
curve) and 95% prediction interval (light red area) are computed
based on the smoothing trajectories simulated in the last 10 itera-
tions of CPFBS-SEM algorithm with Nf = Ns = 10 particles.

PFBS-SEM with such a small number of particles. We also found that the EnKS-
EM algorithm provides estimates with very large bias and thus their corresponding
numerical results are not reported.

Figure 11 shows the distribution of the estimates obtained with CPFBS-SEM
and CPFAS-SEM algorithms as a function of the number of SEM iterations. Both
methods stabilize rapidly, after about 30 iterations, and provide estimates with a
low bias. Again the estimates obtained with CPFBS-SEM have a lower variance
compared to CPFAS-SEM.

Figure 12 shows the distribution of the estimates obtained with CPFBS-SEM
and CPFAS-SEM algorithms as a function of the observation error variance R.
As expected, the reconstruction error increases with the observation error. Both
methods give similar results when the observation error is small, but the CPFBS-
SEM algorithm provides estimates with a lower variance when R increases.

3.3. Lorenz-63 model. In this section, we consider the SSM defined as
xt = m(xt−1) + ηt,

yt =

[
1 0 0

0 0 1

]
xt + εt,

(20)

where xt and yt have values respectively in R3 and R2 (only the first and third
components of the state are observed), ηt ∼ N (0,Q), and εt ∼ N (0,R).

The dynamical model m is defined as the solution on the time interval [0,4] of
the Lorenz-63 model [38],

z(0) = x
dz(τ)
dτ = g(z(τ)), τ ∈ [0,4],

m(x) = z(4)

(21)

for x ∈ R3 and g(z) = (10(z2 − z1), z1(28− z3)− z2, z1z2 − 8/3z3), ∀z =
(z1, z2, z3)> ∈ R3.

In order to computem(xt−1), a Runge-Kutta scheme (order 5) is used to integrate
(21) on the time interval [0,4] with initial condition xt−1. The value of4 affects the

18 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

0 10 20 30 40 50 60 70 80 90 100

0

5

10

Q

True parameter
CPFBS
CPFAS

0 10 20 30 40 50 60 70 80 90 100
0

10

20

R

0 10 20 30 40 50 60 70 80 90 100
Iteration (r)

0.0

2.5

5.0

7.5

10.0

RM
SE

Figure 11. Distribution of the estimates obtained with CPFBS-
SEM and CPFAS-SEM algorithms as a function of the number
of SEM iterations for the Kitagawa model (19) with θ∗ = (1, 10),
T = 100, Nf = Ns = 10. The empirical distributions are computed
using 100 simulated samples.

non-linearity of the dynamical model m. According to Figure 15 (see top panels),
when 4 = 0.01 the relation between xt−1 and xt is well approximated by a linear
model, but when 4 = 0.15 the non-linearity is more pronounced. The intermediate
value 4 = 0.08 corresponds to 6-hour recorded data in atmospheric applications
[20, 31].

For the sake of simplifying illustrations, error covariance matrices are assumed to
be diagonal. More precisely, we denote Q = σ2

QI3 and R = σ2
RI2 and the unknown

parameter to be estimated is θ = (σ2
Q, σ

2
R) ∈ R2. Analytical expression can be

derived for the M-step of the SEM algorithm:

θ̂r =
(
σ̂2
Q,r, σ̂

2
R,r

)
=

(
Tr[Q̂r]

3
,

Tr[R̂r]

2

)
(22)

where Q̂r and R̂r are defined in (17).
Unless stated otherwise, the model time step is 4 = 0.15 and the true parame-

ter value is θ∗ = (0.01, 2). Figure 13 shows a sequence simulated with this model
together with the reconstruction of the state obtained after running 100 iterations
of the CPFBS-EM algorithm. Remark that the algorithm seems to be able to re-
construct the second component of the state which is not observed but which is

ESTIMATION IN STATE-SPACE MODELS 19

0.1 1.0 5.0 10.0
0

2

4

6

Q

True parameter
CPFBS
CPFAS

0.1 1.0 5.0 10.0
0

10

20

R

0.1 1.0 5.0 10.0
True R values

2

4

RM
SE

Figure 12. Distribution of the estimates obtained with CPFBS-
SEM and CPFAS-SEM algorithms for the Kitagawa model (19)
with θ∗ = (1, R∗) , R∗ ∈ {0.1, 1, 5, 10} , T = 100, Nf = Ns = 10.
Results obtained by running 100 iterations of the SEM algorithms.
The empirical distributions are computed using 100 simulated sam-
ples.

strongly related to the other components. In the experiments below, the recon-
struction error (RMSE) is computed over all the components of the state, including
the non-observed one.

When running the SEM algorithms, the initial parameter values of θ are drawn
uniformly in [0.001, 1]×[0.1, 3]. Figure 14 shows the distribution of the estimates ob-
tained with CPFBS-SEM and CPFAS-SEM algorithms as a function of the number
of SEM iterations. Compared to the results obtained with the univariate models,
more iterations are needed before the algorithms stabilize. After 100 iterations,
both algorithms provide estimates with a low bias and again the CPFBS-SEM is
better in terms of variance and reconstruction error.

Figure 15 shows the performances of the CPFBS-SEM, CPFAS-SEM, and EnKS-
EM algorithms as a function of the time step 4 and thus of the non-linearities
presented in the dynamical model. For the model with small non-linearity (4 =
0.01), the EnKS-EM algorithm performs better. This may be due to the ability of
the EnKS to describe the smoothing distribution with a low number of members
in such setting. When the non-linearities increase, the EnKS does not provide
relevant approximations of the smoothing distribution and the EnKS-EM provides
estimates with a large bias and variance compared to the SEM algorithms based on

20 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

0 20 40 60 80 100
20

10

0

10

20

X 1
Observations
True state
Smoothed mean

0 20 40 60 80 100

20

10

0

10

20

X 2

0 20 40 60 80 100
Time (t)

10

20

30

40

X 3

Figure 13. Sequence simulated with the Lorenz-63 model (20)
with θ∗ = (0.01, 2) and time step 4 = 0.15. The mean of the
smoothing distribution (red curve) and 95% prediction interval
(light red area) are computed based on the smoothing trajecto-
ries simulated in the last 10 iterations of CPFBS-SEM algorithm
with Nf = Ns = 10 particles.

CPF. Again, the CPFBS-SEM algorithm leads to estimates with a lower variance
compared to CPFAS-SEM for all4. It has been found that with4 = 0.25, the CPF-
based algorithms still give reasonable estimates whereas the EnKS-EM algorithm
completely diverges (not shown; a Python library is provided for repeating the
experiments).

Finally, a cross-validation exercise is conducted to check the out-of-sample re-
construction ability of the algorithms. The CPFBS-SEM and the CPFAS-SEM
algorithms are first run to estimate the parameter θ on a learning sequence. The
estimate obtained in the last iteration, which distribution is shown in Figure 14, is
then used as input of the CPFBS and CPFAS smoothing algorithms on a validation
sequence to estimate the smoothing distribution. RMSE and coverage probability
(CP) are reported in Table 1 as a function of the number of iterations of these
smoothing algorithms. As expected RMSEs decrease and CPs tend to 95% when
the number of iterations and thus the number of trajectories simulated with the

ESTIMATION IN STATE-SPACE MODELS 21

0 10 20 30 40 50 60 70 80 90 100

0.0

0.5

1.0

2 Q

True parameter
CPFBS
CPFAS

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

2 R

0 10 20 30 40 50 60 70 80 90 100
Iteration (r)

0

2

4

6

RM
SE

Figure 14. Distribution of the estimates obtained with CPFBS-
SEM and CPFAS-SEM algorithms as a function of the number of
EM iterations for the Lorenz-63 models (20) with θ∗ = (0.01, 2),
4 = 0.15 T = 100, Nf = Ns = 20. The empirical distributions are
computed using 100 simulated samples.

smoothing algorithms increase. The scores computed over the second (unobserved)
variable of the Lorenz model are generally close to those computed over the other
components. This confirms the ability of the proposed approach to reconstruct non-
observed component. The CPFBS smoother clearly outperforms the CPFAS as it
leads to smaller RMSEs and CPs closer to 95%. For example, the CPFBS smoother
run with 50 iterations provides similar results than the CPFAS run with 100 iter-
ations. This is another benefit of using the BS approach to reduce the degeneracy
issue.

4. Conclusion. The numerical results obtained in this study promote the combi-
nation of CPF, BS, and SEM algorithms to estimate both the unknown parameters
and the state in non-linear state-space models. The use of CPF permits to better
handle non-linearities than the EnKS and the use of BS permits to avoid degeneracy
issues and provide a better description of the smoothing distribution compared to
AS. It is shown that running 100 iterations of the CPFBS-SEM algorithm with a
low number of particles (10− 20) is generally sufficient to obtain good estimates in
low-dimensional (d ≤ 3) state-space models.

22 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

−20 0 20

xt−1, 2

−20

0

20

x t
,2

△=0△01

−20 0 20

xt−1, 2

△=0△08

−20 0 20

xt−1, 2

△=0△15

0.01 0.08 0.15
0

1

2

3

2 Q

True parameter
CPFBS
CPFAS
EnKS

0.01 0.08 0.15

1

2

3

2 R

0.01 0.08 0.15
Model time step ()

0.2
0.4
0.6
0.8
1.0

RM
SE

Figure 15. Distribution of the estimates obtained with CPFBS-
SEM, CPFAS-SEM, and EnKS-EM algorithms as a function of the
time step 4 for the Lorenz-63 models (20) with θ∗ = (0.01, 2),
T = 100, Nf = Ns = 20 and 20 members for the EnKS algorithm.
The empirical distributions are computed using 100 simulated sam-
ples.

In the future, we plan to test the methodology on mid- to large-dimensional non-
linear models, starting with models with a low number of parameters. Future works
also include the study of the convergence properties of the proposed algorithm.

Appendix

Theorem A. For any number of particles (Nf ≥ 2) and a parameter θ ∈ Θ,

i. The Markov kernel Kθ defined by one of conditional smoothers (CPF: Algo-
rithm 2, CPFAS, and CPFBS: Algorithm 3) leaves the smoothing distribu-
tion pθ(x0:T |y1:T) invariant. That is, for all X∗ ∈ X T and A ⊂ X T+1,

ESTIMATION IN STATE-SPACE MODELS 23

Table 1. Comparison of the reconstruction ability of the CPFBS
and CPFAS smoothers using cross-validation on the Lorenz-63
model (20) with 4 = 0.15, θ∗ = (0.01, 2). The parameter θ is
estimated on learning sequences of length T = 100. Given these
estimates, the CPFBS and CPFAS algorithms are run on valida-
tion sequences of length T ′ = 100. The two scores are computed
on only the second component (top) and over all the three com-
ponents (bottom). Algorithms run with Nf = Ns = 20 parti-
cles/realizations. The median and 95% CI of each score are evalu-
ated based on 100 simulated sequences.

2nd component
Number of iterations

10 20 50 100

CPFBS
RMSE

0.4328 0.3928 0.3772 0.3704
[0.3011, 0.7473] [0.2771, 0.6258] [0.2609, 0.5752] [0.2438, 0.5737]

CP
89% 93% 96% 97%

[72%, 97%] [78%, 99%] [83%, 100%] [87%, 100%]

CPFAS
RMSE

0.4351 0.4146 0.3993 0.3798
[0.2927, 2.2515] [0.2532, 1.216] [0.2433, 0.7047] [0.2315, 0.7068]

CP
73% 85% 92% 95%

[53%, 85%] [69%, 95%] [82%, 99%] [86%, 100%]

Three components
Number of iterations

10 20 50 100

CPFBS
RMSE

0.4351 0.3990 0.3803 0.3722
[0.2983, 0.7969] [0.2771, 0.6277] [0.2761, 0.5251] [0.2758, 0.5053]

CP
89.33% 92.67% 95.67% 96.83%

[72.42%, 96.96%] [77.71%, 98.88%] [83.38%, 99.33%] [88.71%, 99.67%]

CPFAS
RMSE

0.4354 0.4172 0.3912 0.3813
[0.3199, 2.0301] [0.3022, 1.1063] [0.2611, 0.5682] [0.2448, 0.5665]

CP
71.67% 85.17% 92.5% 95.0%

[54.17%, 84.5%] [71.17%, 94.63%] [82.08%, 98.29%] [86.42%, 99.29%]

pθ(A|y1:T) =

∫
Kθ(X∗,A) pθ(X

∗|y1:T) dX∗ (23)

where Kθ(X∗,A) = Eθ,X∗
[
1A(xJ0:T

0:T)
]
, and xJ0:T

0:T = {x(J0)
0 , · · · ,x(JT)

T }.
ii. The kernel Kθ is pθ- irreducible and aperiodic. It hence converges to

pθ(x1:T |y1:T) for any starting point X∗. Consequently,

‖Krθ(X∗, ·)− pθ(·|y1:T)‖TV
r→∞ as−→ 0. (24)

where ‖ · ‖TV is the total variation norm.

Proof. Theorem A in this paper was proved corresponding to Theorem 5 in [1] for
CPF (Algorithm 2), Propositions 1 and 2 in [35] for CPFBS (Algorithm 3), and
Theorems 1 and 2 in [34] for CPFAS.

REFERENCES

[1] C. Andrieu, A. Doucet and R. Holenstein, Particle markov chain monte Carlo methods, J. R.
Stat. Soc. Ser. B Stat. Methodol., 72 (2010), 269–342.

[2] M. Aoki, State Space Modeling of Time Series, Springer-Verlag, Berlin, 1987.

[3] D. Barber, A. T. Cemgil and S. Chiappa, Bayesian Time Series Models, Cambridge University
Press, 2011.

[4] T. Berry and T. Sauer, Adaptive ensemble Kalman filtering of non-linear systems, Tellus A:
Dynamic Meteorology and Oceanography, 65 (2013), 20331.

[5] M. Bocquet and P. Sakov, Joint state and parameter estimation with an iterative ensemble

Kalman smoother, Nonlin. Processes Geophys., 20 (2013), 803–818.

http://www.ams.org/mathscinet-getitem?mr=MR2758115&return=pdf
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://www.ams.org/mathscinet-getitem?mr=MR891182&return=pdf
http://dx.doi.org/10.1007/978-3-642-96985-0
http://www.ams.org/mathscinet-getitem?mr=MR2894230&return=pdf
http://dx.doi.org/10.1017/CBO9780511984679
http://dx.doi.org/10.3402/tellusa.v65i0.20331
http://dx.doi.org/10.5194/npg-20-803-2013
http://dx.doi.org/10.5194/npg-20-803-2013

24 T. T. T. CHAU, P. AILLIOT, V. MONBET AND P. TANDEO

[6] M. Bocquet and P. Sakov, Combining inflation-free and iterative ensemble Kalman filters for
strongly nonlinear systems, Nonlinear Processes in Geophysics, 19 (2012), 383–399.

[7] M. Bocquet and P. Sakov, An iterative ensemble Kalman smoother, Quarterly Journal of the

Royal Meteorological Society, 140 (2014), 1521–1535.
[8] O. Cappé, S. J. Godsill and E. Moulines, An overview of existing methods and recent advances

in sequential monte carlo, Proceedings of the IEEE, 95 (2007), 899–924.
[9] A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, Data assimilation in the geosciences:

An overview of methods, issues, and perspectives, Wiley Interdisciplinary Reviews: Climate

Change, 9 (2018), e535.
[10] G. Celeux, D. Chauveau and J. Diebolt, On Stochastic Versions of the EM Algorithm, Re-

search Report RR-2514, INRIA, 1995.

[11] K. S. Chan and J. Ledolter, Monte Carlo EM estimation for time series models involving
counts, J. Amer. Statist. Assoc., 90 (1995), 242–252.

[12] N. Chopin, S. S. Singh, On particle gibbs sampling, Bernoulli , 21 (2015), 1855–1883.

[13] B. Delyon, M. Lavielle and E. Moulines, Convergence of a stochastic approximation version
of the em algorithm, Ann. Statist., 27 (1999), 94–128.

[14] A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data

via the EM algorithm, J. Roy. Statist. Soc. Ser. B , 39 (1977), 1–38.
[15] R. Douc and O. Cappé, Comparison of resampling schemes for particle filtering, in ISPA

2005. Proceedings of the 4th International Symposium on Image and Signal Processing and
Analysis, IEEE, 2005, 64–69.

[16] R. Douc, A. Garivier, E. Moulines and J. Olsson, On the forward filtering backward smoothing

particle approximations of the smoothing distribution in general state spaces models, arXiv
preprint, arXiv:0904.0316.

[17] A. Doucet, N. de Freitas and N. Gordon (eds.), Sequential Monte Carlo Methods in Practice,

Statistics for Engineering and Information Science, Springer-Verlag, New York, 2001.
[18] A. Doucet, S. Godsill and C. Andrieu, On Sequential Monte Carlo Sampling Methods for

Bayesian Filtering, 1998.

[19] A. Doucet and A. M. Johansen, A tutorial on particle filtering and smoothing: Fifteen years
later, The Oxford Handbook of Nonlinear filtering, 656–704, Oxford Univ. Press, Oxford,

2011.

[20] D. Dreano, P. Tandeo, M. Pulido, B. Ait-El-Fquih, T. Chonavel and I. Hoteit, Estimating
model-error covariances in nonlinear state-space models using kalman smoothing and the

expectation–maximization algorithm, Quarterly Journal of the Royal Meteorological Society,
143 (2017), 1877–1885.

[21] J. Durbin and S. J. Koopman, Time Series Analysis by State Space Methods, Oxford univer-

sity press, 2012.
[22] G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementa-

tion, Ocean Dynamics, 53 (2003), 343–367.
[23] G. Evensen and P. J. van Leeuwen, An ensemble Kalman smoother for nonlinear dynamics,

Monthly Weather Review , 128 (2000), 1852–1867.

[24] S. J. Godsill, A. Doucet and M. West, Monte Carlo smoothing for nonlinear time series, J.

Amer. Statist. Assoc., 99 (2004), 156–168.
[25] J. D. Hol, T. B. Schon and F. Gustafsson, On resampling algorithms for particle filters, in

Nonlinear Statistical Signal Processing Workshop, 2006 IEEE , IEEE, 2006, 79–82.
[26] N. Kantas, A. Doucet, S. S. Singh, J. Maciejowski, N. Chopin, On particle methods for

parameter estimation in state-space models, Statist. Sci., 30 (2015), 328–351.

[27] G. Kitagawa, Monte Carlo filter and smoother for non-Gaussian nonlinear state space models,

J. Comput. Graph. Statist., 5 (1996), 1–25.
[28] J. Kokkala, A. Solin and S. Särkkä, Expectation maximization based parameter estimation

by sigma-point and particle smoothing, in FUSION, IEEE, 2014, 1–8.
[29] E. Kuhn and M. Lavielle, Coupling a stochastic approximation version of EM with an MCMC

procedure, ESAIM Probab. Stat., 8 (2004), 115–131.

[30] F. Le Gland, V. Monbet and V.-D. Tran, Large sample asymptotics for the ensemble kalman
filter, in Handbook on Nonlinear Filtering (eds. D. Crisan and B. Rozovskii), Oxford Univer-

sity Press, Oxford, 2011, chapter 22, 598–631.

[31] R. Lguensat, P. Tandeo, P. Ailliot, M. Pulido and R. Fablet, The analog data assimilation,
Monthly Weather Review , 145 (2017), 4093–4107.

http://dx.doi.org/10.5194/npg-19-383-2012
http://dx.doi.org/10.5194/npg-19-383-2012
http://dx.doi.org/10.1002/qj.2236
http://dx.doi.org/10.1002/wcc.535
http://dx.doi.org/10.1002/wcc.535
http://www.ams.org/mathscinet-getitem?mr=MR1325132&return=pdf
http://dx.doi.org/10.1080/01621459.1995.10476508
http://dx.doi.org/10.1080/01621459.1995.10476508
http://www.ams.org/mathscinet-getitem?mr=MR3352064&return=pdf
http://dx.doi.org/10.3150/14-BEJ629
http://www.ams.org/mathscinet-getitem?mr=MR1701103&return=pdf
http://dx.doi.org/10.1214/aos/1018031103
http://dx.doi.org/10.1214/aos/1018031103
http://www.ams.org/mathscinet-getitem?mr=MR501537&return=pdf
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1109/ISPA.2005.195385
http://arxiv.org/pdf/0904.0316
http://www.ams.org/mathscinet-getitem?mr=MR1847784&return=pdf
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://www.ams.org/mathscinet-getitem?mr=MR2884612&return=pdf
http://dx.doi.org/10.1002/qj.3048
http://dx.doi.org/10.1002/qj.3048
http://dx.doi.org/10.1002/qj.3048
http://www.ams.org/mathscinet-getitem?mr=MR3014996&return=pdf
http://dx.doi.org/10.1093/acprof:oso/9780199641178.001.0001
http://dx.doi.org/10.1007/s10236-003-0036-9
http://dx.doi.org/10.1007/s10236-003-0036-9
http://dx.doi.org/10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
http://www.ams.org/mathscinet-getitem?mr=MR2054295&return=pdf
http://dx.doi.org/10.1198/016214504000000151
http://dx.doi.org/10.1109/NSSPW.2006.4378824
http://www.ams.org/mathscinet-getitem?mr=MR3383884&return=pdf
http://dx.doi.org/10.1214/14-STS511
http://dx.doi.org/10.1214/14-STS511
http://www.ams.org/mathscinet-getitem?mr=MR1380850&return=pdf
http://dx.doi.org/10.2307/1390750
http://www.ams.org/mathscinet-getitem?mr=MR2085610&return=pdf
http://dx.doi.org/10.1051/ps:2004007
http://dx.doi.org/10.1051/ps:2004007
http://www.ams.org/mathscinet-getitem?mr=MR2884610&return=pdf
http://dx.doi.org/10.1175/MWR-D-16-0441.1

ESTIMATION IN STATE-SPACE MODELS 25

[32] F. Lindsten, An efficient stochastic approximation EM algorithm using conditional particle
filters, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,

IEEE, 2013, 6274–6278.

[33] F. Lindsten, Particle Filters and Markov Chains for Learning of Dynamical Systems, PhD
thesis, Linköping University Electronic Press, 2013.

[34] F. Lindsten, M. I. Jordan and T. B. Schön, Particle Gibbs with ancestor sampling, J. Mach.
Learn. Res., 15 (2014), 2145–2184.

[35] F. Lindsten and T. B. Schön, On the use of backward simulation in the particle Gibbs sam-

pler, in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2012, 3845–3848.

[36] F. Lindsten, T. B. Schön, Backward simulation methods for monte Carlo statistical inference,

Foundations and Trends® in Machine Learning, 6 (2013), 1–143.
[37] F. Lindsten, T. Schön and M. I. Jordan, Ancestor sampling for particle Gibbs, in Advances

in Neural Information Processing Systems, 2012, 2591–2599.

[38] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci., 20 (1963), 130–141.
[39] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions, vol. 382, John Wiley &

Sons, 2008.

[40] M. Netto, L. Gimeno and M. Mendes, On the optimal and suboptimal nonlinear filtering
problem for discrete-time systems, IEEE Transactions on Automatic Control , 23 (1978),

1062–1067.
[41] J. Olsson, O. Cappé, R. Douc, E. Moulines, Sequential Monte Carlo smoothing with applica-

tion to parameter estimation in nonlinear state space models, Bernoulli , 14 (2008), 155–179.

[42] T. B. Schön, A. Wills and B. Ninness, System identification of nonlinear state-space models,
Automatica J. IFAC , 47 (2011), 39–49.

[43] R. H. Shumway and D. S. Stoffer, An approach to time series smoothing and forecasting using

the em algorithm, Journal of Time Series Analysis, 3 (1982), 253–264.
[44] A. Svensson, T. B. Schön and M. Kok, Nonlinear state space smoothing using the conditional

particle filter, IFAC-PapersOnLine, 48 (2015), 975–980.

[45] P. Tandeo, P. Ailliot, M. Bocquet, A. Carrassi, T. Miyoshi, M. Pulido and Y. Zhen, A review of
innovation-based methods to jointly estimate model and observation error covariance matrices

in ensemble data assimilation, Monthly Weather Review, 148 (2020), 3973–3994.

[46] G. C. G. Wei and M. A. Tanner, A Monte Carlo implementation of the em algorithm and the
poor man’s data augmentation algorithms, Journal of the American statistical Association,

85 (1990), 699–704.
[47] N. Whiteley, Discussion on particle markov chain monte carlo methods, Journal of the Royal

Statistical Society: Series B, 72 (2010), 306–307.

Received for publication July 2021; early access March 2022.

E-mail address: trang.chau@lsce.ipsl.fr

E-mail address: pierre.ailliot@univ-brest.fr

E-mail address: valerie.monbet@univ-rennes1.fr

E-mail address: pierre.tandeo@imt-atlantique.fr

http://dx.doi.org/10.1109/ICASSP.2013.6638872
http://dx.doi.org/10.1109/ICASSP.2013.6638872
http://www.ams.org/mathscinet-getitem?mr=MR3231604&return=pdf
http://dx.doi.org/10.1109/ICASSP.2012.6288756
http://dx.doi.org/10.1109/ICASSP.2012.6288756
http://dx.doi.org/10.1561/9781601986993
http://www.ams.org/mathscinet-getitem?mr=MR4021434&return=pdf
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://www.ams.org/mathscinet-getitem?mr=MR2392878&return=pdf
http://dx.doi.org/10.1002/9780470191613
http://dx.doi.org/10.1109/TAC.1978.1101894
http://dx.doi.org/10.1109/TAC.1978.1101894
http://www.ams.org/mathscinet-getitem?mr=MR2401658&return=pdf
http://dx.doi.org/10.3150/07-BEJ6150
http://dx.doi.org/10.3150/07-BEJ6150
http://www.ams.org/mathscinet-getitem?mr=MR2878244&return=pdf
http://dx.doi.org/10.1016/j.automatica.2010.10.013
http://dx.doi.org/10.1080/01621459.1990.10474930
http://dx.doi.org/10.1080/01621459.1990.10474930
mailto:trang.chau@lsce.ipsl.fr
mailto:pierre.ailliot@univ-brest.fr
mailto:valerie.monbet@univ-rennes1.fr
mailto:pierre.tandeo@imt-atlantique.fr

	1. Introduction
	2. Methods
	2.1. Smoothing using conditional particle-based methods
	2.2. Stochastic EM algorithm and parameter estimation

	3. Numerical results
	3.1. Linear model
	3.2. Kitagawa model
	3.3. Lorenz-63 model

	4. Conclusion
	REFERENCES

