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We report on the discovery, using numerical simulations, of a segregation pattern in high-
speed granular �ows, in which size segregation is primarily driven by two-dimensional
granular temperature gradients, rather than by gravity. In contrast to slower �ows on
gentle slopes, in high speed �ows on steep slopes, large particles no longer accumulate in
the upper layers of the �ow, but are trapped in the interior. The strong temperature gra-
dients that develop between the interior of the �ow and the surrounding dilute periphery
appear to govern the segregation mechanism. Interestingly, these new segregated �ows
run at a much faster speed than similar mono-disperse �ows. This opens up promising
perspectives for transporting granular material with enhanced e�ciency. Importantly,
we show that the kinetic theory for dense, inclined �ows of binary mixtures can pro-
vide a relevant theoretical framework to explain the segregation patterns observed in the
numerical simulations.

1. Introduction

Granular mixture of particles that di�er in size or density tend to demix into striking
segregation patterns (e.g., radial segregation in rotating drums (Hill et al. 2004; Gray
& Ancey 2011), granular �ngering (Pouliquen et al. 1997), or self-induced Rayleigh-
Taylor instability (D'Ortona & Thomas 2020)). Various factors in�uence the segregation
patterns, including gravity, gradients of concentration and granular temperature, and
secondary �ows. Among these, segregation attributed purely to gravity has been studied
the most (Savage & Lun 1988; Khakhar et al. 1997; Gray & Thornton 2005); however
the role played by gradients in the granular temperature is beginning to be understood
(Arnarson & Jenkins 2004; Larcher & Jenkins 2013, 2015); with spheres of two sizes made
of the same material, the larger migrate towards regions of lower granular temperature,
for spheres of the same size made of di�erent materials, the more massive move downward
under gravity. Slow and dense gravitational �ows of poly-sized granular mixture have
earned serious attention. In many of these �ows, larger particles migrate at the surface of
the �ow while smaller ones percolate to the bottom. The dominant mechanisms driving
this segregation process is commonly identi�ed as kinetic sieving and squeeze expulsion
(Savage & Lun 1988).
Recently, Brodu et al. (2015) highlighted the existence of highly inhomogeneous �ows

on steep slopes, named "supported �ows" (Taberlet et al. 2007) and characterized by
a dense core �oating over a dilute and highly agitated layer of grains. We present here
discrete numerical simulations that reveal a new segregation pattern emerging in high-
speed granular �ows, in which large particles are trapped within the �ow in the dense core.
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Figure 1. Scheme of the simulation cell of width W and length L. The �ow is bounded by
in�nitely high (in z direction) �at walls in the transverse direction y, and periodic boundary
conditions are applied in the stream direction x. The box is inclined by an angle θ.

This size segregation is driven by granular temperature gradients rather than gravity and
can be described by the kinetic theory for binary mixtures. The granular temperature
is a measure of the energy of the velocity �uctuations of the grains. Interestingly, this
segregating behavior promotes the transport capability of the �ow of binary mixtures,
which can be one of the mechanisms involved in long run-out avalanches observed in
nature. A �ow enhancement due simply to the presence of spheres of two sizes is also
predicted by kinetic theory (Larcher & Jenkins 2019) for particle-�uid �ows.

2. Simulation methodology

To unravel the role of complex secondary �ows on the segregation process of a granular
mixture of spheres, numerical simulations using the Discrete Element Method (DEM)
have been performed. The details of the method can be found in Brodu et al. (2013). We
recall here brie�y the main ingredients. The simulation cell is composed of smooth, �at
and frictional bottom and parallel side walls (see Figure 1), in a similar way that is usually
done experimentally (Louge & Keast 2001; Richard et al. 2008). The simulation cell width
W is chosen to be W = 40D, with D a unit of length, and periodic boundary conditions
are applied in the stream-wise direction with a periodic length L = 20D. The cell is tilted
by an angle θ to produce �ows. Particles are subject to gravity and interact through
frictional visco-elastic contacts with other particles. These interactions employ a linear
visco-elastic model with normal and tangential coe�cients of restitution eggn = 0.972 and
eggt = 0.25, respectively. The normal spring sti�ness is chosen as kggn = 2x105m∗g/D, with
m∗ and g being mass and acceleration units, respectively; the tangential spring sti�ness
is computed from the relation provided by Brodu et al. (2013): 7kggt (π2 + [ln(eggn )]2) =
2kggn (π2 + [ln(eggt )]2). The tangential force is bounded according to a Coulomb friction
model with friction coe�cient µgg. The same set of parameters is used for particles/wall
contacts: egwn = 0.8, egwt = 0.35, kgwn = 2x105, µgw = 0.593. These parameter values are
taken from Louge & Keast (2001) and correspond to glass beads and aluminum walls to
match materials usually used in experiments.
A time step of 2x10−5

√
(D/g) was chosen as a good compromise between numerical

stability requirements and reasonable simulation duration. The total mass in the system is
controlled by the mass holdup, which basically represents the height of the grain assembly
when densely packed and is de�ned by H =

∑
imi/(ρ

∗LW ), with ρ∗ = 6m∗/πD3, the
reference material density, and mi, the mass of the grain i. All the simulation outcomes
have been obtained with a mass hold-up H = 6D. Binary mixtures have been used. The
two grain species have the same material density ρ∗, but di�er in size, with a mean radii
rS and rL, respectively, for the small and large. The radii of each size are uniformly
distributed by 8% around the mean value. The radius of the "mixture sphere" is de�ned
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as the average of both radii, r = (rS + rL)/2. The grains have masses mS and mL, with
m = mS + mL, number densities, nS and nL, with n = nS + nL, and mass densities,
ρS = mSnS and ρL = mLnL, with ρ = ρS + ρL. We de�ne volume concentrations for
the small and large grains, cS = 4πnSr

3
S/3 and cL = 4πnLr

3
L/3, and for the mixture

c = cS + cL, and we denote the volume concentration fraction of the small particles in
the mixture as ΦS = cS/c, which is equivalent to the mass concentration fraction for
grains made of same material. The granular temperature T of the mixture is de�ned as:
T = (nSTS + nLTL)/n where Ti = (1/2)mi < (vi −V) .(vi −V) > with i = S,L (vi is
the particle velocity of species i and V is the barycentric velocity of the mixture).

Most of the simulation outcomes were obtained for binary mixtures with a radii ratio
rL/rS = 2 and a mixture diameter 2r = 1.125D (i.e., 2rS = 0.75D and 2rS = 1.5D)
and various volume concentration fraction ΦS of small particles ranging from 0 to 100%.
For the comparison with the kinetic theory, we also employed mixtures with a smaller
radii ratio rL/rS = 1.35 and a mixture diameter 2r = 1D (i.e., 2rS = 0.85D and
2rL = 1.15D). The particles of the mixture were initially displayed on a regular lattice
but randomly distributed between the small and large according to the prescribed volume
concentration fraction. The assembly of particles is dropped at a small altitude from the
bottom of cell with a �nite but small stream-wise velocity Vx = 5

√
gD. After a transient

which never exceeds 1000
√

(D/g) time units, for the set of parameters investigated so
far, the �ow reaches a steady state in which �ow kinematic and segregation patterns
remain stationary (i.e., relative variations are less than 1%). We explored a large range
of inclination angles (from 19 to 50◦) for various mass concentration fraction of the
mixture and the �ow always achieved a steady state. The coarse-grained �elds (volume
fraction, velocity and granular temperature) are computed following Serero et al. (2008)
with a Lucy polynomial for the weighting function as proposed by Weinhart et al. (2012).
The window size of the coarse-graining procedure is twice the mean particle diameter,
i.e., 2(rL + rS). The �eld values are spatially averaged along the stream-wise direction
and time averaged over 200 time units, once the �ow reached its steady state.

3. Supported �ows and segregation patterns

As a start, we describe brie�y the main features of the �ow regimes obtained for
monodisperse particles with diameter 2r = 1D±0.08D. Packing fraction and longitudinal
velocity maps of the �ow cross-section for three di�erent inclination angles are presented
in Fig. 2. For a low inclination angle (θ = 19◦), a dense unidirectional �ow is observed with
grains arranged in horizontal layers. At an intermediate angle (θ = 25◦), the layering is
broken and a denser region emerged within the �ow accompanied with a pair of counter-
rotating longitudinal rolls. One can note a slight concavity of the free surface with a
trough in the center of the cell. At a higher inclination angle (θ = 35◦), a supported state
develops. The latter is characterized by the presence of a very dense core surrounded
by a dilute layer of highly agitated grains. This scenario that leads to the emergence
of supported �ows was already evidenced by Brodu et al. (2015) for wider channels
(W = 68D) and is also observed with smaller gap widths Zhu et al. (2021). ForW = 40D,
the transition towards supported �ows occurs at a critical inclination angle θc = 27◦.

We �rst investigated the segregation patterns obtained for a binary mixture with equal
mass (i.e., equivalently, equal volume) of small and large particles (ΦS = 0.5) and with a
size ratio equal to 2 (i.e., 2rL = 1.5D and 2rS = 0.75). Figure 3 shows the relative local
concentration of large particles cL/c within the �ow cross-section for three inclination
angles (19◦, 25◦ and 35◦), together with streamlines to visualize the longitudinal rolls.
For an inclination of 19◦, the �ow is unidirectional and uniformly sheared and a classical
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(a)

(b)

Figure 2. Monodisperse �ows (2r = 1D) for H = 6D andW = 40D: (a) Packing fraction maps
together with transverse velocity (black lines) for a dense �ow (θ = 19◦), an intermediate �ow
(θ = 25◦) and a supported �ow (θ = 35◦), as already evidenced in (Brodu et al. 2015) for a
wider channel. (b) Corresponding longitudinal velocities

reverse grading is observed, with large particles at the top of the �ow, while small particles
have percolated down to the bottom.

Upon increasing the inclination angle (i.e. θ ≈ 25◦), a pair of longitudinal rolls develops
within the �ow. The convection tends to mix the granular systems, because large particles
are incorporated in the bulk �ow. A transverse segregation also clearly appears: there
is a depletion of large particles between the two longitudinal rolls. At higher inclination
(i.e., θ = 30◦), as in the monodisperse case, a supported �ow regime emerges with a
dense core "�oating" over a highly agitated and dilute layer. Despite the formation of
the dense core, convection rolls are still present. Surprisingly, the setting of this supported
state leads to the emergence of a new segregation pattern in which the large particles no
longer reside at the surface of the �ow but are trapped within the dense, cooler core, as
clearly evidenced for θ = 35◦. More precisely, two spots of high concentration of large
grains are located at the center of the longitudinal rolls, surrounded by a mixed layer of
large and small particles. Pure layers of small particles are present close to the bottom
and lateral walls, and the upper part of the �ows consists essentially of small particles.
This segregated state is not a transient but a mature and steady state. An intermediate
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Figure 3. (a) Top panel : Bi-disperse �ows (2rL = 1.5D and 2rS = 0.75D): Relative concentra-
tion of large particles cL/c in the �ow cross-section versus inclination angles for a mass fraction
of small particles ΦS = 0.5. Streamlines are plotted to highlight the presence of convection
rolls (black lines). (b) bottom panel: Corresponding maps of the granular temperature T of the
mixture. (c) and (d): Vertical pro�les of the relative volume fraction of the large particle, cL/c,
and of the granular temperature, computed at y = 10D.

segregation pattern is seen for an angle of 25◦, for which the �ow is not yet in a supported
regime.
Fig. 4 shows the vertical position of the center of mass of the mixture together with

that of the large and small particles, respectively, versus the tangent of the inclination
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Figure 4. Vertical position of the center of mass of the mixture (solid line green triangle),
large particles (dashed line red diamond) and small particles (dashed line blue dots) versus the
inclination angle θ. 50 − 50 mixture by mass with 2rL = 1.5D and 2rS = 0.75D.

angle θ. Interestingly, an inversion in the vertical position of the center of mass of the
large and small particles clearly appears between 25◦ and 30◦, which corresponds to the
range of angles in which supported �ows develop for the set of parameters investigated.
This unusual segregation pattern appears to be a direct consequence of the establishment
of the supported �ow. Furthermore, the linear relation between the center of mass and
the tangent of the angle of inclination, derived by (Brodu et al. 2015) for supported
�ows (θ > 27◦) is also seen for a binary mixture and is robust to change of mixture
composition.

4. In�uence of the mixture concentration

The in�uence of the relative concentration of small particles ΦS within the mixture was
explored. We kept the same radii ratio of 2 as for previous simulations (i.e., 2rL = 1.5D
and 2rS = 0.75D). Pro�les of streamwise velocity Vx are presented in Fig. 5.a for a low
inclination angle, where dense �ows are expected. The two limit cases (i.e., Φs = 0 and
1) correspond to monodisperse �ows with particles of diameter 2rL = 1.5D and 2rS =
0.75D, respectively. The vertical velocity pro�les corresponding these monodisperse �ows
indicate that the �ow is uniformly sheared, with an ordering of grains in horizontal layers
(Jenkins & Larcher 2017). The monosize �ow with small particles is faster than the one
with large particles, as predicted by Jenkins & Larcher (2017) for uncon�ned layered
shear �ows. In addition, decreasing the particle size while maintaining the width of the
channel constant leads to a decrease of the lateral con�nement exerted by the walls,
resulting in an increase of the mean �ow velocity. Theses two limit cases provide bounds
for the comparison with binary mixtures.
Dense �ow regimes of binary mixtures exhibit contrasting features. At any �nite con-

centration investigated so far, the velocity pro�le looks like a plug �ow with almost no
shearing but a �nite slip at the bottom. This is a consequence of the in�uence of the
lateral boundaries. Note also that a weak concentration of small particles in the mixture
(ΦS = 0.05 and 0.1) leads to a drastic reduction of the �ow velocity in comparison with
monodisperse �ows of large particles. Mixture seems thus to prevent the formation of
ordered layers, which slow the �ow.



Particle segregation 7

(a) (b)

0 5 10 15 20
Streamwise velocity Vx/√gD

0

5

10

15

20

25

30

35

40
Alt

itu
de

 z/
D

Φs =
0.
0.05
0.1
0.4

0.6
0.8
1.0

0 20 40
Streamwise velocity Vx/√gD

0

5

10

15

20

25

30

35

40

Alt
itu

de
 z/

D
(c) (d)

0.0 0.2 0.4 0.6 0.8 1.0
Mixture concentration c

0

5

10

15

20

25

30

35

40

Alt
itu

de
 z/

D

Φs =
0.
0.05
0.1
0.4

0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Mixture concentration c

0

5

10

15

20

25

30

35

40

Alt
itu

de
 z/

D

Figure 5. Vertical pro�les of the streamwise velocity (a,b) and mixture concentration c (c,d)
for binary mixtures with relative volume concentration of small particles ΦS varying from 0 to
1: (a) and (c) dense regimes θ = 20◦, (b) and (d) supported regime θ = 35◦. Binary mixtures
with 2rL = 1.5D and 2rS = 0.75D.

A completely di�erent behavior is observed for rapid �ows, for which the supported
regime is expected. Indeed, the slowdown for binary mixtures observed for dense �ow
regimes no longer exists and the streamwise velocity of mixtures are always higher than
monodisperse �ows of large particles (Fig. 5). Surprisingly, there is an optimal concen-
tration of small particles (about ΦS = 0.4, see Fig. 5) that produces �ows with velocities
higher than the expected most favorable case, corresponding to a monodisperse �ow of
small particles. This is also seen in the �ow of mixtures of a �uid and a binary mixtures
of spheres above a particle bed (Larcher & Jenkins 2019).
The mass �ow rate, which indicates the capacity of the �ow to transport matter, is

also highly in�uenced by the nature of the �ow regime (dense versus supported). The
variation of the mass �ow rate as a function of the mixture concentration is reported in
Fig. 6 for the dense and supported regimes, respectively. In the dense regime, the mass
�ow rate exhibits a plateau for mixture concentration ΦS between 0.2 and 0.8. In this
range of concentration, the mass �ow rate is independent of the mixture concentration.
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Figure 6. Mass �ow rate Q (green stars) as a function of the relative volume concentration of
small particles Φs in the mixture for dense �ows at θ = 20◦ (top panel) and supported �ows
at θ = 35◦ (bottom panel). Q is the sum of the mass �ow rate of the large (red triangles) and
small (blue dots) particles.

This is simply a consequence of the invariance of the �ow pro�les in this concentration
regime (cf. Fig 5). For small concentrations of the mixture, there is, in contrast, a drop
of the mass �ow rate which is mainly due to a decrease of the mass �ow rate of the large
particles. This drop is closely related to the decrease observed in the �ow velocity pro�le
for small mixture concentrations. The large concentration limit is also singular with an
enhancement of the mass �ow rate in comparison with the value of the plateau.
For the supported regime (θ = 35◦), an optimum of the mass �ow rate emerges for a

�nite value of the mixture concentration: ΦS ≈ 0.4. Moreover, a wide range of concen-
tration provides a mass �ow rate which is higher than the monodisperse case of small
particles. The optimum seems to be governed by the large particles. Indeed, the mass
�ow rate of the large particles also displays an optimum for a �nite concentration of the
mixture (of order of ΦS ≈ 0.3). In contrast, the mass �ow rate of the small particles
exhibits a monotone, regular increase with increasing mixture concentration. This result
indicates that the establishment of the supported regime for a binary mixture promotes
the transport capacity of the �ow. The increase in transport e�ciency is the result of the
segregation process concentrating the large particles within the dense core, which is the
most rapid part of the �ow.

5. Interpretation and discussion

In dense gravity-driven �ows, the larger particles often tend to rise at the top of the
granular packing against gravity, usually associated with the kinetic sieving mechanism
introduced by Savage & Lun (1988). At low inclination, we observe dense �ows which
exhibit such segregation. In contrast, at higher inclination, the observed segregation
pattern is di�erent. The large particle stand neither at the bottom of the �ow nor at the
top but are localized within the �ow at rather constant elevation (i.e., at z = 10D). The
large particle layer constitutes the densest part of the �ow and is sandwiched between two
dilute layers of �nes (see Fig. 3.c). The elevation of the large particle layer corresponds
to the location where the granular temperature is minimum (see Fig. 3.d).
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The temperature di�erence between the dilute layer above the dense core and the dense
core increases with increasing angle. This seems to indicate that the segregation is driven
by temperature gradients. This is apparently di�erent from segregation in gravity-driven
�ows at moderate inclination angle, but vertical temperature gradients can also play a
role in these. Segregation driven by temperature gradients may be understood in the
framework of the kinetic theory for binary mixtures of dense granular gases (Arnarson
& Jenkins 2004; Garzó 2008, 2009; Larcher & Jenkins 2013, 2015; Jenkins & Larcher
2020). We anticipate that this kinetic theory, based on instantaneous, pairwise collisions
alone, is, for the value of the sliding friction employed in the simulations, relevant until
a mixture concentration of 0.60. For higher volume fractions, more enduring interactions
at compliant contacts, associated with ephemeral force chains, become increasingly im-
portant (Berzi et al. 2020). This critical value of the concentration is a known function
of the sliding friction, when the tangential coe�cient is unity (Berzi & Vescovi 2015); we
employ a slightly larger value for the lower value of tangential restitution in the simu-
lations. We next employ this framework and outline the derivation of the equation that
predicts a local measure of segregation in a binary mixture of spheres that do not di�er
much in size or mass. We then obtain two-dimensional solutions of this equation and
compare the prediction with the data of the numerical simulations of a supported �ow.

The balance of linear momentum for each type of sphere, written in terms of dimen-
sional variables, has the form (e.g, Jenkins & Mancini (1987))

∂

∂t
(ρIvI) +∇ · (ρIvIvI) = −∇ ·ΠI − nIFI + φI , (5.1)

where I = L, S labels the two sizes of spheres, vI is the species velocity, pI the species
pressure tensor, which in a dense �ow contains only collisional contributions, FI is the
external force on a sphere I, and φL = −φS are the forces of interaction between the two
sizes of spheres. Segregation of the two sizes is predicted from the weighted di�erence
of the momentum balances, when the inertia of the spheres is neglected and only the
contributions of the partial pressures, pL and pS , to the pressure tensors are retained:

0 = − 1

ρL
∇pL +

1

ρS
∇pS −

1

mL
FL −

1

mS
FS +

1

ρL
φL −

1

ρS
φS , (5.2)

in which the partial pressures are given in a dense �ow by

pL = (KLL +KLS)T and pS = (KSS +KSL)T , (5.3)

where KIJ = (2/3)πnInJr
3
IJgIJ , with i = L, S and J = L, S; the radial distribution

functions gIJ for the two types of spheres will be given later in their approximate forms.
This approximate form of the weighted di�erence of the balances of momentum of the
two sizes of spheres provides an equation for predicting local segregation in the dense,
inclined �ow.

The Chapman-Enskog procedure for the determination of the velocity distribution
function and constitutive relations for a dense binary mixture, as in Jenkins & Mancini
(1989); Arnarson & Jenkins (2004); Larcher & Jenkins (2013, 2015), leads an expression
for the di�erence in velocities of the two types of spheres:

nLnS
n2

1

DLS
(vL − vS) = dL +

1

T
KT∇T , (5.4)

where nL and nS are the two number densities, n = nL + nS ; DLS is the di�usion
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coe�cient,

DLS =
3

2

1

ngLS

(
2mLST

πmLmS

)1/2
1

8r2LS
; (5.5)

and dL is the di�usion force of the large spheres,

dL = −ρL
ρ

1

nT
∇P+

1

nT

(
KLL + 2

mL

mLS
KLS

)
∇T+

nA
nT

(
∂µL
∂nL
∇nL +

∂µL
∂nS
∇nS

)
, (5.6)

in which P = pL + pS is the total pressure and µL is the chemical potential of the large
spheres; and KT is their thermal di�usion coe�cient, all of which will also be given later
in approximation. The expression for the velocity di�erence (5.4) has the same form of
the weighted di�erence of the momentum balances (5.2), when the particle interaction
φS is taken to be

φS = −KLS
mS −mL

mLS
∇T +

nLnS
n

T
1

DLS
(vL − vS)

+ nL
∂

∂nL

(
µL −

pL
T

)
∇nL + nL

∂

∂nS

(
µL −

pL
T

)
∇nS + nTKT∇T . (5.7)

With the connection between (5.4) and (5.2) established, we adopt the (5.5) and (5.6)
for the velocity di�erences and follow Arnarson & Jenkins (2004) and Larcher & Jenkins
(2013, 2015) in employing approximations to gLS , µL, and KT that are linear in the
small values of δr = rL/rS−1 and δm = (mL−mS)/m, where, again, m = mS +mL. In
addition, we here retain only those terms that dominate in the dense limit, and express
these in terms of the measure of segregation X = (nL−nS)/(2n). The segregation index
X is the local di�erence in number fractions of the two sizes of spheres; at points at which
it is 0, there is no segregation; where it is 1/2, there are only large spheres; and where it
is −1/2 there are only small spheres. Because X varies between −1/2 and 1/2, we also
ignore products of it with δr and δm. Then, when expressed in terms of the mixture
concentration, c, and λ = c(3 − c)/(2 − c) the approximation to the radial distribution
functions for a binary mixture given by (e.g., Larcher & Jenkins (2015))

gLL ≈ G
c (1 + 0.5λδr) and KLL ≈ 4

n2L
n
G [1 + 0.5 (3 + λ) δr] (5.8)

gSS ≈ 2−ν
2(1−ν)3 (1− 0.5λδr) and KSS ≈ 4

n2S
n
G [1− 0.5 (3 + λ) δr] (5.9)

and

gLS ≈
G

c
and KLS ≈ 4G

nLnS
n

(5.10)

in which, we regard the mixture as a single phase of identical spheres of radius r ≡
(rS + rL)/2 and concentration c ≈ (4π/3)r3n(1 + 3Xδr), and take G/c ≡ 5.69(cM −
0.49)/(cM − c), the dense contact radial distribution function of Torquato (1995), with
a singularity at the critical volume fraction cM , rather than that Mansoori et al. (1971),
appropriate for lower volume fractions, with a singularity at unity,

∂µL
∂nL

≈ 4

n

(
1 + 6

nS
n
δr
)
cHT and

∂µL
∂nS

≈ 4

n
(1− 6Xδr) cHT , (5.11)

where H ≡ dG/dc = G(cM/c)/(cM − c); and

KT ≈
nLnS
29n2

(−6δr + 63δm) . (5.12)

With these, when the only external force is the vector of the gravitational acceleration,
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g, the contributions from the external forces cancel, and (5.4) and (5.6) yield

nLnS
n2

1

DLS
(vL − vS) = −ρL

ρ

1

nT
∇P +

nL
n

4G

[
1 +

1

2

nS
n

(3 + λ)δr +
nS
n
δm

]
∇T
T

+
3

29

nLnS
n2

G (−2δr + 21δm)
∇T
T

+
nL
n2

[(
n

nL
+ 4cH + 24cH

nS
n
δr

)
∇nL + 4cH∇nS

]
.

(5.13)

The spatial gradients of nL = n(0.5 + X) and nS = n(0.5 − X) may be expressed in
terms of those of c and X using the approximations

∇nL ≈
3c

4πr3
(0.5 +X)

∇c
c

+
3c

4πr3
(1− 1.5δr)∇X (5.14)

and

∇nS ≈
3c

4πr3
(0.5−X)

∇c
c
− 3c

4πr3
(1 + 1.5δr)∇X. (5.15)

Then

nS
n

1

DLS
(vL − vS) = −mL

ρ

1

T
∇P + 4G

[
1 +

1

2

nS
n

(3 + λ)δr +
nS
n
δm

]
∇T
T

+
3

29

nS
n
G (−2δ + 21δm)

∇T
T

+
n

nL
∇X + 4cH(1 + 1.5δr)

∇c
c
. (5.16)

The mixture pressure P is given in terms of the mixture concentration, in approxima-
tion, as

P ≈ 4nGT = 4
3c

4πr3
GT =

3c

πr3
GT . (5.17)

Then, when only gravity is present, the sum of the species momentum balances of (5.1)
is

∇P = ρg ; (5.18)

or, upon using (5.17) and ρ ≈ 3/(4πr3)(m/2)c,

4cH
∇c
c
− 12Gδr∇X + 4G

∇T
T

=
m

2

g

T
. (5.19)

With this, the concentration gradient may be eliminated from (5.16):

vL − vS
DLS

= 4G

[(
1

2
(3 + λ)− 177

58

)
δr +

179

116
δm

]
∇T
T

+
m

2
(3δr − 2δm)

g

T
+

n2

nLnS
∇X .

(5.20)
We apply this equation to a steady, fully-developed �ow in which the di�usion velocities
vanish.
We make the approximations that the mixture concentration in the dense part of the

�ow is uniform and equal to 0.59. Then, λ = 1.01, G = 6.49, and, with g=−gcosθk,
where the unit vector k is normal to the �ow and directed upward, Eq. (5.20) has the
dimensionless form

∇

[
ln

(
1 + 2X

1− 2X

)1/2

+ (6.2δm− 4.2δr)G lnw

]
= − (δm− 1.5δr)

cos θ

w2
k, (5.21)

where w2 ≡ 2T/(mgD). The assumption made regarding the uniformity of the mix-
ture concentration, and its value, are in rough agreement with the measurements in the
neighborhood of the segregation features in the simulations.
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(a) (b)

Figure 7. (a) The values of the segregation index X measured in the numerical simulation for
a 50/50 mixture in mass with rL/rS = 1.35 (i.e., δr = 0.35); and (b) the values of X predicted
by the theory.

If the spheres are made of the same material, δm = 1.5δr. In this case, the right-hand
side of Eq. (5.21) vanishes and, with our assumption of the uniformity of the concentra-
tion, gravity in�uences segregation only through the temperature. Then, 6.2δm−4.2δr =
5.1δr, and Eq. (5.21) may be written as

∇

[
ln

(
1 + 2X

1− 2X

)1/2

+ 5.1Gδr lnw

]
= 0. (5.22)

The integral of this equation is

X =
1

2

w10.2Gδr
0 − w10.2Gδr

w10.2Gδr
0 + w10.2Gδr

, (5.23)

where w0 is the value of w at which X = 0.
In Figure 7 we compare values of the segregation index X, based on the �elds of

temperature and concentration measured in the simulations, with those predicted by
Eq. (5.23) for a 50/50 mixture in mass with rL/rS = 1.35 (i.e., δr = 0.35). The location
of the segregation is roughly the same, but the centers of the segregation patterns in the
simulations are distinct and separated. In our view, the di�erence in the patterns is due to
the presence of convection, which is not incorporated in the theory. The convection rolls
result in mixing that brings smaller spheres into the center of the �ow and creates what
appears to be a more intense segregation between them. Consequently, the predicted
pattern of segregation shows less contrast between the rolls and their centers are not so
distinct and clearly separated.

6. Conclusion

We have outlined the features of a regime of rapid inclined �ow of a binary mixture
of spheres as seen in discrete numerical simulations. The regime occurs at relatively high
inclinations and involves enhanced transport that is associated with the development
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of circulation secondary �ows and the concentration of the larger spheres within them
in response to gradients of granular temperature. This is in contrast to denser �ows at
lower inclinations that exhibit a simpler segregation pattern with larger spheres at the
top, often associated with percolation of the smaller spheres, but also explained as due to
gradients of granular temperature. We have also characterized the ratio of mass fraction
of small spheres that provides the greatest enhancement of the rapid �ows. Finally, we
have indicated that the observed segregation patterns in the rapid �ows are consistent
with the predictions of a kinetic theory for binary mixtures that incorporates the in�uence
of gradients of granular temperature on the segregation.

Additional discrete numerical simulations are necessary to further understand the de-
tails of the parameter space, particularly the in�uence of the particle properties on the
�ow and segregation in the rapid �ows. Also, it would be useful to develop numerical
solutions to the continuum equations of the kinetic theory to predict the two-dimensional
�elds of mixture concentration, velocity, and granular temperature in dense, steady, fully-
developed inclined �ows. This would permit a complete comparison between the predic-
tions of the theory and what is seen in the discrete numerical simulations.
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