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Int roduct ion

The elastic critical bending moment is commonly determined considering theoretical fork support conditions at both ends, i.e. fixed lateral displacement and torsional rotation but free warping. Because very few authors have proposed expressions for the critical moment of a beam elastically restraint against warping, the influence of the warping restraints on the critical moment is usually neglected.

In this paper, the influence of warping restraints on the critical bending moment is investigated. After a brief review of the literature about the determination of the elastic critical moment of a uniform beam with doubly symmetric cross-section and with warping restraints at supports (see Figure 1), an analytical model is described.

Considering appropriate series of displacement and rotation fields, the energy method is used to derive a formula of the elastic critical bending moment under constant and linear distribution of the bending moment. It is shown that the use of displacement and rotation fields approximated with one term is correct for uniform bending moment but for a linear moment diagram two terms are necessary. The derived expression for the critical bending moment depends on

Abst ract

In practice, the elastic lateral-torsional buckling of doubly symmetric I-section steel members is analyzed assuming free warping at supports. However, welded stiffeners, bolted end-plate con-nections or column base plates maintain elastically the opposite flange out-of-plane rotations and thus induce substantial warping restraints.

This paper proposes analytical formulations for the evaluation of the elastic critical bending mo-ment for lateral-torsional buckling of beams taking into account warping restraints at supports. Assuming series of displacement and rotation fields containing one or two terms, the energy method permits to derive expressions of the critical bending moment under constant and linear distribution of the bending moment. A single expression of the warping coefficient kw is proposed whatever the shape of the bending moment diagram. The factor C1 can be conveniently calculated by multiplying two coefficients that depend on the shape of the bending moment diagram and on the warping restraint stiffness, respectively.

Finite Elements analyses of beams with warping restraints at supports have been performed con-sidering a beam element model developed with LTBeamN and a shell element model created in ANSYS. The analytical model is in good agreement with the numerical results obtained by the two finite element models.

the warping stiffness through the coefficients C1 and kw. While the warping coefficient kw has a single expression, C1 also depends on the shape of the bending moment distribution.

Finally, the predictions of the analytical model are compared against finite element results of beams with warping restraints at supports, computed either using beam elements model with the software LTBeamN [1] or shell elements model with ANSYS. A good agreement between the analytical model and finite element analyses is observed.

Lit erat ure overview

In the French National Annex to Eurocode 3 Part 1-1 [START_REF]NF EN 1993-1-1/NA : Eurocode 3 -Design of steel structures -Part 1-1 : General rules and rules for buildings -French National Annex to EN 1993-1-1[END_REF], the formula of the elastic critical bending moment can account for warping restraints only through the warping coefficient kw. No expression is given to determine kw considering potential warping restraints. The critical moment of a beam with doubly symmetric cross-section and with free out-of-plane rotation considering a linear distribution of the bending moment is:

𝑀𝑀 𝑐𝑐𝑐𝑐 = 𝐶𝐶 1 𝜋𝜋²𝐸𝐸𝐼𝐼 z 𝐿𝐿² ��� 1 𝑘𝑘 w � 2 𝐼𝐼 𝑤𝑤 𝐼𝐼 z + 𝐺𝐺𝐼𝐼 t 𝐿𝐿² 𝐸𝐸𝐼𝐼 𝑧𝑧 𝜋𝜋 2 � (1) 
Where:

- The warping coefficient kw varies between 0,5 when warping is fixed to 1 when warping is free. However, no expression is given to compute kw and it is assumed that C1 depends only on the bending moment diagram without any influence of the warping restraints. Based on the work of Lindner and Gietzelt [START_REF] Lindner | Stabilisierung von biegeträgern mit I-Profil durch angeschweißte kopfplatten[END_REF], it has been suggest ed in [START_REF]ECCS, Technical Committee 8 -Stability[END_REF] to evaluate kw for I-beams with end plates at both ends using the following expression:

C1
𝑘𝑘 𝑤𝑤 = 1 - 0.5 1 + 2𝐸𝐸𝐼𝐼 𝑤𝑤 𝑐𝑐 𝑤𝑤 𝐿𝐿 (2) 
𝑐𝑐 𝑤𝑤 = 1 3 𝐺𝐺𝐺𝐺𝑡𝑡 𝑝𝑝 3 ℎ 𝑠𝑠 (3) 
Where:

cw : Stiffness of the warping restraints (see Figure 3) For a uniform bending moment distribution, Pi and Trahair [START_REF] Pi | Distortion and warping at beam supports[END_REF] proposed the following approximation for kw:

𝑘𝑘 𝑤𝑤 = 6,5 + 𝑐𝑐 𝑤𝑤 𝐿𝐿 𝐸𝐸𝐼𝐼 𝑤𝑤 6,5 + 2,25 𝑐𝑐 𝑤𝑤 𝐿𝐿 𝐸𝐸𝐼𝐼 𝑤𝑤 (4) 
Details on the derivation of expressions ( 2) to (4) in references [3]- [START_REF] Pi | Distortion and warping at beam supports[END_REF] are missing. Piotrowski and Szychowski [START_REF] Piotrowski | Lateral-torsional buckling of steel beams elastically restrained at the support nodes[END_REF] used t he energy method to propose a general expression of the elastic critical moment account ing for warping restraints. The out-of-plane displacement v and torsional rotation 𝜃𝜃 are approximated using power polynomials. The proposed expression for the crit ical moment of a beam under linear bending moment wit h free out of plane rotation is:

𝑀𝑀 𝑐𝑐𝑐𝑐 = 𝐷𝐷 1 �𝐸𝐸𝐼𝐼 𝑧𝑧 (𝐶𝐶 1 𝐺𝐺𝐼𝐼 𝑇𝑇 𝐿𝐿 2 + 𝐶𝐶 2 𝐸𝐸𝐼𝐼 w ) 𝐶𝐶 3 𝐿𝐿² (5) 
The values of C1, C2, C3 and D1, depending on the ratio ψ between end moments, are given in Table 1. The index of fixity against warping κw varies between 0 when warping is free, and 1 when warping is fixed. It can be obtained by the following expression:

𝜅𝜅 𝑤𝑤 = 1 1 + 2𝐸𝐸𝐼𝐼 𝑤𝑤 𝑐𝑐 𝑤𝑤 𝐿𝐿 (6) 
From expression [START_REF] Pi | Distortion and warping at beam supports[END_REF], the warping coefficient is identified as :

𝑘𝑘 𝑤𝑤 = 𝜋𝜋 2√3 � 1,457 -2,4𝜅𝜅 𝑤𝑤 + 𝜅𝜅 𝑤𝑤 ² 1,2 -𝜅𝜅 𝑤𝑤 (7) 
The coefficient C1 (when referring to equation ( 1)) is extracted from expression [START_REF] Pi | Distortion and warping at beam supports[END_REF] and depends on the bending moment distribution, through the ratio ψ, and the warping restraints, through κw. Some values of C1 are given in Table 2 according to expression [START_REF] Pi | Distortion and warping at beam supports[END_REF] and according to TableM.1 from the French National Annex t o Eurocode 3 Part 1-1 [START_REF]NF EN 1993-1-1/NA : Eurocode 3 -Design of steel structures -Part 1-1 : General rules and rules for buildings -French National Annex to EN 1993-1-1[END_REF].

Table 2 highlights the evolution of the coefficient C1 with bending moment distribution and warping restraints. The values of C1 when warping is fully restrained increase from 10% when the bending moment is constant to more t han 30% when ψ is equal to -1 when compared to free warping.

Besides, the values of C1 given by the French National Annex [START_REF]NF EN 1993-1-1/NA : Eurocode 3 -Design of steel structures -Part 1-1 : General rules and rules for buildings -French National Annex to EN 1993-1-1[END_REF] are lower than those given by Piotrowski [START_REF] Piotrowski | Lateral-torsional buckling of steel beams elastically restrained at the support nodes[END_REF] for free warping. Finite element analyses should be performed to assess the safety level of t he approaches of the French National Annex and of Piotrowski. Simple expressions have been proposed to take into account the effect of warping restraints on the elastic critical moment, mainly through the warping coefficient kw. However, expressions (2) and (4) seem to be valid only for beams under uniform bending moment. Piotrowski [START_REF] Piotrowski | Lateral-torsional buckling of steel beams elastically restrained at the support nodes[END_REF] proposed to account for the bending moment distribution but the expressions are complex for a daily use in design office. Expressions based on consistent derivation of an analytical model are yet to be developed.

3 Analytical M odel

Int roduct ion

The energy method is used to derive an analytical expression of the elastic critical bending moment of a beam with warping restraints at supports. Firstly, the model is defined in the simple case of a beam under uniform bending moment in §3.2, using one term for the outof-plane displacement v and the torsional rotation 𝜃𝜃 fields. A second term is then added to enhance the displacement and rotation fields in presence of a linear distribution of the bending moment in §3.3.

The analytical model relies on t he following assumptions:

-Uniform beam with doubly symmetrical I-cross-section -Fork supports conditions -Warping restraints at supports (stiffness cw).

Figure 2 present the coordinate system, consistent with Eurocode 3 Part1-1 [START_REF]EN 1993-1-1 : Eurocode 3 -Design of steel structures -Part 1-1 : General rules and rules for buildings[END_REF] and notations used to develop the analytical model.

3.2

Uniform bending moment distribution

Displacements and rotations fields

For a beam under constant bending moment My,0 with free warping and out-of-plane rotation at both supports, the exact solution of the lateral displacement and the torsional rotation has the shape of half of a sine-wave:

𝑣𝑣(𝑥𝑥) = 𝑣𝑣 0 sin � 𝜋𝜋𝑥𝑥 𝐿𝐿 � (8) 
𝜃𝜃(𝑥𝑥) = 𝜃𝜃 0 sin � 𝜋𝜋𝑥𝑥 𝐿𝐿 � (9) 
Where:

-v0 : Magnitude of the lateral displacement -𝜃𝜃 0 : Magnitude of the torsional rotation.

However, for fixed warping at supports, obtaining the exact expression of the torsional rotation is not obvious. Vlasov [START_REF] Vlasov | Thin-walled elastic beams[END_REF] and Djalaly [START_REF] Djalaly | Calcul de la résistance ultime au déversement[END_REF] have proposed the following approximation, considering a cosine-wave:

𝜃𝜃(𝑥𝑥) = 𝜃𝜃 0 �1 -cos �2 𝜋𝜋𝑥𝑥 𝐿𝐿 �� (10) 
Elastic warping restraints at beam ends induce the following boundary conditions between the bimoment B, the warping stiffness cw, and the torsional rotation:

𝐵𝐵(0) = -𝑐𝑐 w 𝑑𝑑𝜃𝜃 𝑑𝑑𝑥𝑥 (0) and 𝐵𝐵(𝐿𝐿) = 𝑐𝑐 w 𝑑𝑑𝜃𝜃 𝑑𝑑𝑥𝑥 (𝐿𝐿) (11) 
Besides, the bimoment is connected to the beam's warping stiffness and torsional rotation by:

𝐵𝐵(𝑥𝑥) = -𝐸𝐸𝐼𝐼 w 𝑑𝑑 2 𝜃𝜃 𝑑𝑑𝑥𝑥 2 (𝑥𝑥) (12) 
The rotation has to comply with the following kinematic boundary conditions at supports, obtained by combining expressions (11) and (12):

𝑑𝑑 2 𝜃𝜃 𝑑𝑑𝑥𝑥 2 (0) = 𝑐𝑐 w 𝐸𝐸𝐼𝐼 w 𝑑𝑑𝜃𝜃 𝑑𝑑𝑥𝑥 (0) and 𝑑𝑑 2 𝜃𝜃 𝑑𝑑𝑥𝑥 2 (𝐿𝐿) = - 𝑐𝑐 w 𝐸𝐸𝐼𝐼 w 𝑑𝑑𝜃𝜃 𝑑𝑑𝑥𝑥 (𝐿𝐿) (13) 
An approximate distribution of the torsional rotation is developed from equations ( 9) and ( 10), in agreement with boundary conditions (13):

𝜃𝜃(𝑥𝑥) = 𝜃𝜃 0 �4𝜋𝜋 sin � 𝜋𝜋𝑥𝑥 𝐿𝐿 � + 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w �1 -cos �2 𝜋𝜋𝑥𝑥 𝐿𝐿 ��� (14) 
The torsional rotation distribution and its first derivative are compared to finite element analyses. Figure 4 shows the results given by equation ( 14) and the results of an analysis performed with LTBeamN The analytical and finite element models give very close results. Some discrepancies appear when looking at the derivative at supports, explaining that small differences might be encountered between the analyt ical model to be developed and the numerical model.

Potential energy

The energy method is based on the minimisation of the potential energy Π, defined as the difference between the elastic strain energy U and the work of external loads W that can be expressed as (see Timoshenko [START_REF] Timoshenko | Theory of elastic stability[END_REF]):

𝛿𝛿 2 𝛱𝛱 = 𝛿𝛿 2 (𝑈𝑈 -𝑊𝑊) = 0 (15)
The total potential energy is a function of the magnitudes v0 and 𝜃𝜃 0 .

Minimisation of the total potential energy is obtained by equating to 0 its partial derivatives. Expression (15) then rewrites as:

⎩ ⎨ ⎧ 𝜕𝜕𝛱𝛱 𝜕𝜕𝑣𝑣 0 𝜕𝜕𝛱𝛱 𝜕𝜕𝜃𝜃 0 ⎭ ⎬ ⎫ = � 𝑎𝑎 11 𝑎𝑎 12 𝑎𝑎 21 𝑎𝑎 22 � � 𝑣𝑣 0 𝜃𝜃 0 � = � 0 0 � (16)
Considering the previous assumptions described in 3.1, the total potential energy is given by:

𝛱𝛱 = 𝑈𝑈 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑈𝑈 𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 -𝑊𝑊 (17) 
With:

𝑈𝑈 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1 2 ��𝐸𝐸𝐼𝐼 z 𝑣𝑣 ,𝑥𝑥𝑥𝑥 2 + w 𝜃𝜃 ,𝑥𝑥𝑥𝑥 2 + 𝐺𝐺𝐼𝐼 t 𝜃𝜃 ,𝑥𝑥 2 �𝑑𝑑𝑥𝑥 𝑈𝑈 𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑐𝑐 w 𝜃𝜃′(0) 2 + 𝜃𝜃′(𝐿𝐿) 2 2 𝑊𝑊 = -��𝑀𝑀 𝑦𝑦,0 𝜃𝜃𝑣𝑣 ,𝑥𝑥𝑥𝑥 �𝑑𝑑𝑥𝑥
Where ",x" stands for the first derivative by x and "',xx" for the second.

The contribution of the in-plane displacement is generally negligible when compared to that of the out-of-plane displacement and torsional rotation. This contribution is therefore omitt ed in the expression (17) of the potential energy. Replacing the lateral displacement and the torsional rotation by expressions ( 8) and ( 14), the potential energy becomes:

𝛱𝛱 = 1 2 � 𝜋𝜋 𝐿𝐿 � 2 �𝐸𝐸𝐼𝐼 z � 𝜋𝜋 𝐿𝐿 � 2 𝑣𝑣 0 2 𝐿𝐿 2 + 𝐸𝐸𝐼𝐼 w 𝜃𝜃 0 2 � 𝜋𝜋 𝐿𝐿 � 2 𝜉𝜉 w + 𝐺𝐺𝐼𝐼 t 𝜃𝜃 0 2 𝜉𝜉 t -2𝑀𝑀 y,0 𝜃𝜃 0 𝑣𝑣 0 √2𝐿𝐿𝜉𝜉 M � + 𝜃𝜃 0 2 2 � 𝜋𝜋 𝐿𝐿 � 2 𝜉𝜉 s (18) 
With:

𝜉𝜉 M = 𝜋𝜋√2𝐿𝐿 + 4√2 3 √𝐿𝐿 𝜋𝜋 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w -- 𝜉𝜉 t = 8𝜋𝜋 2 𝐿𝐿 + 2𝐿𝐿 � 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w � 2 + 64 3 𝐿𝐿 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w -- 𝜉𝜉 w = 𝜉𝜉 t + 6𝐿𝐿 � 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w � 2 -- 𝜉𝜉 s = 32𝑐𝑐 w 𝜋𝜋 2

Elastic critical moment

Taking the derivative of Π with respect to v0 and 𝜃𝜃 0 , we obtain two equations:

𝐸𝐸𝐼𝐼 z � 𝜋𝜋 𝐿𝐿 � 4 𝑣𝑣 0 𝐿𝐿 2 -𝑀𝑀 y,0,cr 𝜃𝜃 0 � 𝜋𝜋 𝐿𝐿 � 2 𝜉𝜉 M √2𝐿𝐿 = 0 (19) 𝐸𝐸𝐼𝐼 w 𝜃𝜃 0 � 𝜋𝜋 𝐿𝐿 � 2 𝜉𝜉 w + 𝐺𝐺𝐼𝐼 t 𝜃𝜃 0 𝜉𝜉 t -𝑀𝑀 y,0,cr 𝑣𝑣 0 𝜉𝜉 M √2𝐿𝐿 + 𝜃𝜃 0 𝜉𝜉 s = 0 (20) 
From equation ( 19) arises the relationship between the two magnitudes:

𝑣𝑣 0 = 𝜃𝜃 0 𝑀𝑀 y,0,cr 𝐸𝐸𝐼𝐼 z � 𝜋𝜋 𝐿𝐿 � 2 2� 2 𝐿𝐿 𝜉𝜉 M (21) 
The elastic critical bending moment My,0,cr is then derived from expressions (20) and (21):

𝑀𝑀 y,0,cr = � 𝜉𝜉 t 𝜉𝜉 M 2 𝐸𝐸𝐼𝐼 z � 𝜋𝜋 𝐿𝐿 � 2 � 𝐼𝐼 w 𝐼𝐼 z 𝜉𝜉 w 𝜉𝜉 t + 𝜉𝜉 s 𝜉𝜉 t 𝐿𝐿² 𝐸𝐸𝐼𝐼 z 𝜋𝜋² + 𝐺𝐺𝐼𝐼 t 𝐿𝐿² 𝐸𝐸𝐼𝐼 z 𝜋𝜋² (22) 
From the previous expression, the warping coefficient kw and the equivalent uniform moment factor C1 are identified as: 

𝑘𝑘 w = � 𝜋𝜋 2 + 8 3 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w + � 1 2 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w � 2 𝜋𝜋 2 + 20 3 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w + � 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w � 2 ( 
𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w + � 1 2 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w � 2 𝜋𝜋 + 4 3𝜋𝜋 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w (24)
The elastic critical bending moment of a doubly symmetric beam under constant moment with warping restraints at supports is given by expression (1) with kw and C1 given by ( 23) and (24).

Linear bending moment distribution

Considering a beam subjected to a linear bending moment distribution with ψ being the ratio between end moments, we derive the expression of the critical bending moment based on the out-of-plane displacement and torsional rotation given by ( 8) and ( 14). The following expressions are obtained for coefficients kw and C1:

𝐶𝐶 1 = 2 1 + 𝜓𝜓 � 𝜋𝜋 2 + 8 3 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w + � 1 2 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w � 2 𝜋𝜋 + 4 3𝜋𝜋 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w (25) 𝑘𝑘 𝑤𝑤 = � 𝜋𝜋 2 + 8 3 𝑐𝑐 𝑤𝑤 𝐿𝐿 𝐸𝐸𝐼𝐼 𝑤𝑤 + � 1 2 𝑐𝑐 𝑤𝑤 𝐿𝐿 𝐸𝐸𝐼𝐼 𝑤𝑤 � 2 𝜋𝜋 2 + 20 3 𝑐𝑐 𝑤𝑤 𝐿𝐿 𝐸𝐸𝐼𝐼 𝑤𝑤 + � 𝑐𝑐 𝑤𝑤 𝐿𝐿 𝐸𝐸𝐼𝐼 𝑤𝑤 � 2 (26) 
Expression (26) for kw is the same as (23) derived under constant bending moment. Therefore, the warping coefficient does not depend on the bending moment distribution. Besides, C1 can be expressed as the product of two distinct fact ors depending on ψ and on the warping stiffness, respectively. The latter is identical to expression (24) of C1 obtained for a uniform bending moment.

For free warping at supports, it is clear that expression (25) leads to inconsistencies for negative values of ψ. Indeed, when the ratio tends towards -1, C1 tends towards the infinit y. This discrepancy comes from the displacement and rotation fields used to derive expressions (25) and (26). Equations ( 8) and ( 14) are well suited when the bending moment is constant, or if ψ>0,5. Therefore, the displacement and rotation fields need to be enriched with a second term for v and 𝜃𝜃.

The general expression of the out-of-plane displacement of a beam with free out-of-plane rotation at both supports can be expressed by the following sum:

𝑣𝑣(𝑥𝑥) = � 𝑣𝑣 𝑠𝑠 sin �𝑖𝑖 𝜋𝜋𝑥𝑥 𝐿𝐿 � ∞ 𝑠𝑠=1 (27) 
To avoid a too cumbersome analytical development, we will consider only the first two terms of the series. The out-of-plane displacement is finally given by (29).

A second term is also added to the torsional rotation, fulfilling t he kinematical boundary conditions given by (13). The number of sine waves along the beam is increased, giving the following second term:

𝜃𝜃 2 (𝑥𝑥) = 𝜃𝜃 2 � 16 3 𝜋𝜋 sin �3 𝜋𝜋𝑥𝑥 𝐿𝐿 � + 𝑐𝑐 𝑤𝑤 𝐿𝐿 𝐸𝐸𝐼𝐼 𝑤𝑤 �1 -cos � 4𝜋𝜋𝑥𝑥 𝐿𝐿 ��� (28) 
This second term varies between 𝑠𝑠𝑖𝑖𝑠𝑠 �3 

�

The positive solution of the previous equation is:

-1 < 𝛹𝛹 < 1 𝐶𝐶 1 = � 4𝜋𝜋 2 𝜉𝜉 1 (𝛹𝛹 2 -1) 2 �∆ -�∆ 2 - (𝛹𝛹 2 -1) 2 4𝜋𝜋 2 𝜉𝜉 1 𝜉𝜉 3 � ∆= (𝛹𝛹 + 1) 2 + 𝜉𝜉 2 (𝛹𝛹 -1) 2 (33) 𝛹𝛹 = 1 𝐶𝐶 1 = 1 � 8𝜉𝜉 3 (34) 𝛹𝛹 = -1 𝐶𝐶 1 = 1 � 8𝜉𝜉 2 𝜉𝜉 3 (35) 
With: C1 depends on the ratio ψ and on the warping stiffness through the parameters ξi. In the specific cases of free and fixed warping at both supports, the values of ξ1, ξ2 and ξ3 are given in Table 3. The values of C1 are calculated in Table 4 for various values of ψ in the two extreme cases of free and fixed warping at supports. We can notice an increase in the values of C1 from 9,4 to almost 20 % when warping is fixed.

𝜉𝜉 1 =
Values of C1 given by TableM.1 from the French National Annex to Eurocode 3 Part 1-1 [START_REF]NF EN 1993-1-1/NA : Eurocode 3 -Design of steel structures -Part 1-1 : General rules and rules for buildings -French National Annex to EN 1993-1-1[END_REF] are also presented in Table 4 for free warping. The analytical model give results close to the French NA even though small differences, below 15%, can be noticed. Again, like in Table 2 where Piotrowski's [START_REF] Piotrowski | Lateral-torsional buckling of steel beams elastically restrained at the support nodes[END_REF] results were found to be greater than the French NA when warping is free, finite element analyses must be computed in order to assess the safety level of the two approaches. 

In Figure 5, the warping coefficient kw is plot ted against t he parameter 𝑐𝑐 w 𝐿𝐿 𝐸𝐸𝐼𝐼 w accounting for the warping restraints . It shows the results obtained with the proposals of Lindner and Gietzelt [START_REF] Lindner | Stabilisierung von biegeträgern mit I-Profil durch angeschweißte kopfplatten[END_REF] and ECCS [START_REF]ECCS, Technical Committee 8 -Stability[END_REF], Pi and Trahair [START_REF] Pi | Distortion and warping at beam supports[END_REF], Piotrowski and Szychowski [START_REF] Piotrowski | Lateral-torsional buckling of steel beams elastically restrained at the support nodes[END_REF] and expression (23).

Figure 5 Warping coefficient kw against

𝑬𝑬𝑰𝑰 𝐰𝐰 𝒄𝒄 𝐰𝐰 𝑳𝑳
The different proposals give close results. Some differences appear when the restraints tend to fix warping, i.e. when 𝒄𝒄 𝐰𝐰 → ∞. Indeed, Pi From the analytical model developed in §3, expressions of the equivalent uniform moment factor C1 and the warping coefficient kw were derived to determine t he elast ic critical bending moment of a uniform beam with doubly symmetric I-section subjected to linear bending moment distribution with warping restraints at support s.

Whatever t he bending moment distribution, kw only depends on the warping stiffness, as expressed in equation ( 23). However, C1 depends on bot h the warping stiffness and the bending moment distribution as expressions (33) t o (35) state. Formulae derived from the analytical model will be compared against finite element analyses in §4.

4 Finit e Element Analyses

Numerical M odels

Two finite element models are used for comparisons:

-Shell elements with ANSYS -Beam elements wit h LTBeamN [1].

Linear Bifurcation Analyses (LBA) are performed considering Young's modulus E = 210 000 MPa and Poisson's ratio ν = 0,3.

The geometry of the studied beams is given in Table 5. Warping is restrained by end plates, fixed or free at both ends. Thickness of the end plates varies between 7 and 70 mm to extend the study beyond the common practice. The shell element model is developed using 8-node elements, with 6 degrees of freedom at each node. The out-of-plane displacement and torsional rotation of the sect ion are fixed at supports as well as the axial displacement of web centre at one end t o reproduce typical fork support conditions (see Figure 6). End plates are modelled at supports with shell elements. In addition, distortion is prevented along the beam.

Event ually, nodal forces along t he x-axis are applied to provoke end moments, leading t o a linear bending moment distribution as shown in Figure 6. The beam element model is developed with two-noded beam elements with 7 degrees of freedom (including warping) at each node. Fork support conditions are enforced by preventing lateral displacement and torsional rotation at both ends and longitudinal displacement at one end.

The degree of freedom corresponding t o warping may be fixed or connected to a warping spring with a stiffness cw, calculated according to equation [START_REF] Lindner | Stabilisierung von biegeträgern mit I-Profil durch angeschweißte kopfplatten[END_REF]. End moments are directly applied to induce a linear bending moment distribution. Finite element analyses have been performed with the beam model using LTBeamN and compared against analytical predictions. The coefficient C1 was determined for a beam under linear bending moment distribution in the cases of (i) free warping and (ii) fixed warping at both ends and compared against both analytical model and the French National Annex [START_REF]NF EN 1993-1-1/NA : Eurocode 3 -Design of steel structures -Part 1-1 : General rules and rules for buildings -French National Annex to EN 1993-1-1[END_REF].

Analyses were performed on beams P1, P2, P3, P6 and P7 (see Table 5). Figure 8 presents the values of C1 as a function of ψ. In addition t o t he values given in the French National Annex [START_REF]NF EN 1993-1-1/NA : Eurocode 3 -Design of steel structures -Part 1-1 : General rules and rules for buildings -French National Annex to EN 1993-1-1[END_REF], the figure shows t he results obtained with finite element analyses (FEA) and the analytical model, i.e. expressions (33) to (35), in the cases of free warping (referred to as "free") and fixed warping (referred to as "fixed").

For free warping, the analyt ical model is in good agreement wit h FEA results. The value of C1 might be overestimated (of less than 3%) when ψ is between -0,5 and 0 but t he French NA is quite conservative : C1 may be underestimated up to 10%.

For fixed warping, Figure 8 shows a good agreement between the numerical and analytical models when ψ is greater than -0,75. When the ratio is below that value, the analytical model lays on the safe side, 15% lower than FEA results. The deviation between the values of C1 given by the French NA and FEA results when warping is fixed is up to 45%, confirming that t he French NA is overly conservative when warping is fixed.

Elastic critical bending moment

To state about the consistency of the complete analytical model, analyses were conducted using the two finite element models. The values of the elastic critical bending moment Mcr resulting from FE analyses were then compared against predictions of the analytical model as well as Piotrowski's [START_REF] Piotrowski | Lateral-torsional buckling of steel beams elastically restrained at the support nodes[END_REF] proposals.

The ratio Mcr/Mcr,0, with Mcr,0 being the critical bending moment when warping is free, is plotted against the end plates' thickness for beam P2 in Figure 9a) to c). Thickness tp of the end plates is directly connected to the warping stiffness cw given by expression (3).

A jump in the values of tp can be seen on Figure 9a) to c), between a 70mm thickness and infinite thickness corresponding to fixed warping conditions. The analytical model depicted in this article and formula (5) from Piotrowski [START_REF] Piotrowski | Lateral-torsional buckling of steel beams elastically restrained at the support nodes[END_REF] are represented by continuous curves for thicknesses ranging between 0 and 70mm and by empty triangles for fixed warping.

Figure 9 shows a significant increase of the critical bending moment when warping is fixed. In every cases, its value is at least almost doubled (+95% or more). When ψ = -1, the results given by the different methods coincide up to a higher warping restraint. When the warping stiffness increases, the analytical model lays on the safe side but the difference with the shell model is not greater than 10%.

a) ψ = 1 b) ψ = 0 c) ψ = -1
The variation between Piotrowski [START_REF] Piotrowski | Lateral-torsional buckling of steel beams elastically restrained at the support nodes[END_REF] and the analytical model is only visible when the warping restraints are significant, particularly when ψ = -1. When compared to finite element analyses using shell elements, the analytical model always lays on the safe side unlike Piotrowski [START_REF] Piotrowski | Lateral-torsional buckling of steel beams elastically restrained at the support nodes[END_REF]. SD. 0,0207 0,0206 0,0220 0,0275 0,0345

Where:

-M: Mean -SD: Standard deviation

The elastic critical bending moment evolution estimated by the analytical model is very close to the results of shell finite element analyses. The difference is lower than 1% except when ψ = -1 where it increases up to 2,4%.

Critical bending moments determined with the analytical model and FEA are slightly different, but their difference is less than 7%, particularly when ψ is between -0,5 and 0. It matches with the values of ψ for which the analytical and numerical models show small differences in the value of C1 for free warping (see Figure 8).

The displacement and rotation fields could still be refined with a third term to improve results. However, it would lead to heavier analytical developments, leading to a very cumbersome expression for the equivalent uniform moment factor C1. In addition, 7% is still an admissible difference given that the resistant bending moment determined according to Eurocode 3 Part 1-1 [START_REF]EN 1993-1-1 : Eurocode 3 -Design of steel structures -Part 1-1 : General rules and rules for buildings[END_REF], Mb,Rd, depends not only on the critical bending moment but also on many other parameters.

Conclusions

The energy method has been used to derive an analytical expression of the elastic critical bending moment of a beam with uniform doubly symmetric I-section and warping restraints at both ends, subjected to a uniform or linear bending moment distribution. The analytical expression is the same as the French National Annex to Eurocode 3

Part 1-1 [START_REF]NF EN 1993-1-1/NA : Eurocode 3 -Design of steel structures -Part 1-1 : General rules and rules for buildings -French National Annex to EN 1993-1-1[END_REF], but the warping coefficient kw and the equivalent uniform moment factor C1 have distinct expressions.

The warping coefficient kw has been shown to remain unchanged whatever the bending moment distribution and only depends upon the warping stiffness of the beam EIw, its length L and the stiffness of the warping restraints cw. Furthermore, the equivalent uniform moment factor C1, only based on the bending moment distribution in the French NA [START_REF]NF EN 1993-1-1/NA : Eurocode 3 -Design of steel structures -Part 1-1 : General rules and rules for buildings -French National Annex to EN 1993-1-1[END_REF], is found to also be depending on the stiffness cw of the warping restraints.

Results from the analytical model were shown to be in good agreement with finite element analyses computed with the software packages ANSYS and LTBeamN [1].

The increase in the value of the critical moment is limited if the warping restraints are only obtained by end plates, but the benefit can become significant if different end connections are considered (fixed column bases, beam-to-beam or beam-to-column joints…).

Future work may include the derivation of analytical expressions to determine the warping stiffness corresponding to realistic support conditions. In addition, the bending moment distribution may be extended to generalise the expression of the elastic critical moment.
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 1 Figure 1 End of a beam wit h plat es restraining warping

  : Equivalent uniform moment factor -E : Modulus of elasticity -Iz : z-axis second moment of area (see Figure 2)
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 4 Figure 4 a) Rot at ion and b) first derivat ive along a beam with warping restraints under const ant bending moment
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  Trahair tend towards 0,44 while the other proposals tend towards 0,5.
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 6 Figure 6 End moment and fork support condit ions

Figure 7 1 b) ψ = - 1 Figure 7

 7117 Figure 7 exhibits t he out-of-plane displacements corresponding t o the critical mode of beam P2 subjected to a) uniform and b) linear bending moment distribution with ψ = -1, along with 20 mm-thick end plates. The two modal shapes are quite different. Under constant bending moment, half of a sine wave is visible while a complete sine-wave appear for ψ = -1. These observations are consistent wit h the displacement fields assumed in §3.3.

Figure 8 C1

 8 Figure 8 C1 for free or fixed warping

Figure 9

 9 Figure 9 Increase in Mcr for P2 under linear moment wit h warping restraintsWhen the bending moment distribution is uniform or triangular, all the methods give the same results up to 30mm-thick end plates.

Table 1

 1 Coefficient s t o det ermine t he crit ical moment

		-𝟎𝟎, 𝟓𝟓 < 𝝍𝝍 ≤ -𝟏𝟏
	C1	57,6(1,457 -2,4𝜅𝜅 w + 𝜅𝜅 w 2 )
	C2	691,2(1,2 -𝜅𝜅 w )
	C3	�(1 + 𝜓𝜓) 2 (2,124 -3,497𝜅𝜅 w + 1,440𝜅𝜅 w 2 )
	D1	1,018 + 0,000297𝜅𝜅 w 2 -0,009𝜅𝜅 w 6 -𝑒𝑒 -2,5𝜓𝜓 (0,108 -0,001𝜅𝜅 w -0,014𝜅𝜅 w 6 )
		-𝟏𝟏 ≤ 𝝍𝝍 ≤ -𝟎𝟎, 𝟓𝟓
	C1	345,75(1,457 -2,4𝜅𝜅 w + 𝜅𝜅 w 2 )
	C2	4148,98(1,2 -𝜅𝜅 w )
	C3	�(1 -𝜓𝜓) 2 (1,681 -2,880𝜅𝜅 w + 1,235𝜅𝜅 w 2 )
	D1	1,068 + 0,014𝜅𝜅 w 2 -𝑒𝑒 3𝜓𝜓 (1,704 + 0,099𝜅𝜅 w + 0,215𝜅𝜅 w 6 )

Table 2

 2 C1 for different values of ψ

					ψ		
	Reference	κw					
			1	0,5	0	-0,5	-1
	French NA [2]	0	1,00	1,31	1,77	2,33	2,55
	Piot rowski	0	1,010	1,317	1,822	2,527	2,709
	[6]	∞	1,114	1,458	2,040	3,010	3,566

Table 3

 3 Values of ξ1, ξ2 and ξ3 when free or fixed warping

		𝝃𝝃 𝟏𝟏	𝝃𝝃 𝟐𝟐	𝝃𝝃 𝟑𝟑
	Free warping (𝒄𝒄 𝐰𝐰 = 𝟎𝟎)	3,012	0,147	0,125
	Fixed warping (𝒄𝒄 𝐰𝐰 → ∞)	1,735	0,122	0,104

Table 4

 4 C1 for free or fixed warping at support s

		C1			
	ψ	Free	Fixed	C1, fixed warp../ C1, free warp.	C1 French NA [2]
		warping	warping		
	1	1,00	1,09	1,094	1,00
	0,75	1,14	1,25	1,094	1,14
	0,5	1,32	1,45	1,096	1,31
	0,25	1,56	1,72	1,102	1,52
	0	1,88	2,10	1,114	1,77
	-0,25	2,28	2,60	1,141	

Table 5

 5 Geomet ry of st udied beams

	Beam	hs (mm)	t w (mm)	b (mm)	t f (mm)	L (m)
	P1		600	6	200	14	6
	P2		800	10	280	14	10
	P3		800	6	280	12	10
	P4		300	4	100	6	6 & 9
	P5		300	6	100	10	6 & 9
	P6		347,3	8	170	12,7	6
	P7		337,5	12,5	300	22,5	3 & 6
	4.2	Comparison with the Analytical M odel	
	4.2.1 Equivalent uniform moment factor C1	

  When t he warping st iffness increases, the analyt ical model hardly overestimates (of no more than 5%) the value of the elastic critical bending moment when compared to finite element analyses. When warping is fixed, the analytical model becomes slightly safer, with a difference below 3%.

	M cr /M cr,0					
	2,20	FE -shell					
	2,00	FE -beam					
	1,80	Piotrowski & Sz.			
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	1,80	Analytical model			
	1,60						
	1,40						
	1,20						
	1,00						
	0	20	40		60	80	100 ∞
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Table 6

 6 shows statistical parameters about the calculated values of the critical moment of the beams P1 to P5 (included) presented in Table5. The ratios between critical bending moments determined with the analytical model and the shell finite element model are presented in Table6. This table also shows the relations between the critical bending moment increases Mcr/Mcr,0 calculated with the analytical model and FE analyses.

Table 6

 6 Comparison between analytical results and shell finit e element analyses

			ψ		1	0,5	0	-0,5	-1
	� 𝑴𝑴 𝐜𝐜𝐜𝐜,𝟎𝟎 𝑴𝑴 𝐜𝐜𝐜𝐜	𝐚𝐚𝐚𝐚 �	M	1,006	1,006	1,007	1,005	0,976
	� 𝑴𝑴 𝐜𝐜𝐜𝐜,𝟎𝟎 𝑴𝑴 𝐜𝐜𝐜𝐜	𝐅𝐅𝐅𝐅𝐅𝐅 �	SD 0,0201 0,0201 0,0206 0,0178 0,0352
	𝑴𝑴 𝐜𝐜𝐜𝐜,𝐚𝐚𝐚𝐚	M	1,017	1,021	1,043	1,069	0,954
	𝑴𝑴 𝐜𝐜𝐜𝐜,𝐅𝐅𝐅𝐅𝐅𝐅