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Lateral-Torsional Buckling of beams with warping 
restraints at Supports 

Maxime Lebastard1,2, Maël Couchaux2, Alain Bureau1, Mohammed Hjiaj2. 

1 Int roduct ion 

The elastic crit ical bending moment is commonly determined con-
sidering theoretical fork support  conditions at  both ends, i.e. fixed 
lateral displacement and torsional rotation but free warping. Be-
cause very few authors have proposed expressions for the crit ical 
moment of a beam elastically restraint against warping, the influ-
ence of the warping restraints on the crit ical moment is usually ne-
glected. 

In this paper, the influence of warping restraints on the crit ical bend-
ing moment is investigated. After a brief review of the literature 
about the determination of the elastic crit ical moment of a uniform 
beam with doubly symmetric cross-section and with warping re-
straints at  supports (see Figure 1), an analytical model is described. 
Considering appropriate series of displacement and rotation fields, 
the energy method is used to derive a formula of the elastic crit ical 
bending moment under constant and linear distribution of the bend-
ing moment. It  is shown that the use of displacement and rotation 
fields approximated with one term is correct for uniform bending 
moment but for a linear moment diagram two terms are necessary. Figure 1 End of a beam with plates restraining warping 

The derived expression for the crit ical bending moment depends on 

Abstract  

In practice, the elastic lateral-torsional buckling of doubly symmetric I-section steel members is analyzed assuming free warping at supports. 
However, welded stiffeners, bolted end-plate con-nections or column base plates maintain elastically the opposite flange out-of-plane rotations 
and thus induce substantial warping restraints.  

This paper proposes analytical formulations for the evaluation of the elastic critical bending mo-ment for lateral-torsional buckling of beams 
taking into account warping restraints at supports. Assuming series of displacement and rotation fields containing one or two terms, the 
energy method permits to derive expressions of the critical bending moment under constant and linear distribution of the bending moment. A 
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the warping st iffness through the coefficients C1 and kw. While the 
warping coefficient kw has a single expression, C1 also depends on 
the shape of the bending moment distribution. 

Finally, the predictions of the analytical model are compared against 
finite element results of beams with warping restraints at  supports, 
computed either using beam elements model with the software 
LTBeamN [1] or shell elements model with ANSYS. A good agree-
ment between the analytical model and finite element analyses is 
observed. 

2 Literature overview 

In the French National Annex to Eurocode 3 Part  1-1 [2], the formula 
of the elastic crit ical bending moment can account for warping re-
straints only through the warping coefficient kw. No expression is 
given to determine kw considering potential warping restraints. The 
crit ical moment of a beam with doubly symmetric cross-section and 
with free out-of-plane rotation considering a linear distribution of 
the bending moment is: 

𝑀𝑀𝑐𝑐𝑐𝑐 = 𝐶𝐶1
𝜋𝜋²𝐸𝐸𝐼𝐼z
𝐿𝐿²

���
1
𝑘𝑘w
�
2 𝐼𝐼𝑤𝑤
𝐼𝐼z

+
𝐺𝐺𝐼𝐼t𝐿𝐿²
𝐸𝐸𝐼𝐼𝑧𝑧𝜋𝜋2

� (1)   

Where: 

− C1 : Equivalent uniform moment factor 
− E : Modulus of elasticity 
− Iz : z-axis second moment of area (see Figure 2) 
− L : distance between lateral restraints 
− Iw : Warping constant  
− It : Torsional constant  
− G : Shear modulus. 

The warping coefficient kw varies between 0,5 when warping is fixed 
to 1 when warping is free. However, no expression is given to com-
pute kw and it  is assumed that C1 depends only on the bending mo-
ment diagram without any influence of the warping restraints. 

  

Figure 2  Axes and notat ions for the analyt ical derivat ion 

Based on the work of Lindner and Gietzelt [3], it  has been suggested 
in [4] to evaluate kw for I-beams with end plates at both ends using 
the following expression: 

𝑘𝑘𝑤𝑤 = 1 −
0.5

1 + 2𝐸𝐸𝐼𝐼𝑤𝑤
𝑐𝑐𝑤𝑤𝐿𝐿

 (2)   

𝑐𝑐𝑤𝑤 =
1
3𝐺𝐺𝐺𝐺𝑡𝑡𝑝𝑝

3ℎ𝑠𝑠 (3)   

Where: 

− cw : Stiffness of the warping restraints (see Figure 3) 
− tp : Thickness of the end plates 
− hs : Distance between flanges centres. 

Therefore, the warping coefficient depends on the warping st iffness 

EIw, the length L of the beam, and on the st iffness of the warping re-
straint cw. The bending moment distribution assumed for expression 
(2) is not specified. No expression is given for C1; the values given in 
the French National Annex [2] considering free warping at supports 
should therefore be used. 

  

a) Free warping b) Warping restraint 
Figure 3 Flanges longitudinal displacements when warping is a) free and b) re-
strained 

For a uniform bending moment distribution, Pi and Trahair [5] pro-
posed the following approximation for kw: 

𝑘𝑘𝑤𝑤 =
6,5 + 𝑐𝑐𝑤𝑤𝐿𝐿

𝐸𝐸𝐼𝐼𝑤𝑤
6,5 + 2,25 𝑐𝑐𝑤𝑤𝐿𝐿𝐸𝐸𝐼𝐼𝑤𝑤

 (4)   

Details on the derivation of expressions (2) to (4) in references [3]-
[5] are missing. Piotrowski and Szychowski [6] used the energy 
method to propose a general expression of the elastic crit ical mo-
ment account ing for warping restraints. The out-of-plane displace-
ment v and torsional rotation 𝜃𝜃 are approximated using power poly-
nomials. The proposed expression for the crit ical moment of a beam 
under linear bending moment with free out of plane rotation is: 

𝑀𝑀𝑐𝑐𝑐𝑐 = 𝐷𝐷1
�𝐸𝐸𝐼𝐼𝑧𝑧(𝐶𝐶1𝐺𝐺𝐼𝐼𝑇𝑇𝐿𝐿2 + 𝐶𝐶2𝐸𝐸𝐼𝐼w)

𝐶𝐶3𝐿𝐿²
 (5)   

The values of C1, C2, C3 and D1, depending on the ratio ψ between end 
moments, are given in Table 1. 

Table 1 Coefficients to determine the crit ical moment  

−𝟎𝟎,𝟓𝟓 < 𝝍𝝍 ≤ −𝟏𝟏 

C1 57,6(1,457− 2,4𝜅𝜅w + 𝜅𝜅w2 )  

C2 691,2(1,2− 𝜅𝜅w)  

C3 �(1 + 𝜓𝜓)2(2,124− 3,497𝜅𝜅w + 1,440𝜅𝜅w2 )  

D1 
1,018 + 0,000297𝜅𝜅w2 − 0,009𝜅𝜅w6 − 𝑒𝑒−2,5𝜓𝜓(0,108− 0,001𝜅𝜅w −
0,014𝜅𝜅w6 )  

−𝟏𝟏 ≤ 𝝍𝝍 ≤ −𝟎𝟎,𝟓𝟓 

C1 345,75(1,457− 2,4𝜅𝜅w + 𝜅𝜅w2 )  

C2 4148,98(1,2− 𝜅𝜅w)  

C3 �(1− 𝜓𝜓)2(1,681− 2,880𝜅𝜅w + 1,235𝜅𝜅w2 )  

D1 1,068 + 0,014𝜅𝜅w2 − 𝑒𝑒3𝜓𝜓(1,704 + 0,099𝜅𝜅w + 0,215𝜅𝜅w6 )  
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The index of fixity against warping κw varies between 0 when warp-
ing is free, and 1 when warping is fixed. It  can be obtained by the fol-
lowing expression: 

𝜅𝜅𝑤𝑤 =
1

1 + 2𝐸𝐸𝐼𝐼𝑤𝑤
𝑐𝑐𝑤𝑤𝐿𝐿

 
(6)   

From expression (5), the warping coefficient is identified as : 

𝑘𝑘𝑤𝑤 =
𝜋𝜋

2√3
�

1,457 − 2,4𝜅𝜅𝑤𝑤 + 𝜅𝜅𝑤𝑤²
1,2 − 𝜅𝜅𝑤𝑤

 (7)   

The coefficient C1 (when referring to equation (1)) is extracted from 
expression (5) and depends on the bending moment distribution, 
through the ratio ψ, and the warping restraints, through κw. Some 
values of C1 are given in Table 2 according to expression (5) and ac-
cording to TableM.1 from the French National Annex to Eurocode 3 
Part 1-1 [2]. 

Table 2 highlights the evolution of the coefficient C1 with bending 
moment distribution and warping restraints. The values of C1 when 
warping is fully restrained increase from 10% when the bending mo-
ment is constant to more than 30% when ψ is equal to -1 when com-
pared to free warping.  

Besides, the values of C1 given by the French National Annex [2] are 
lower than those given by Piotrowski [6] for free warping. Finite el-
ement analyses should be performed to assess the safety level of the 
approaches of the French National Annex and of Piotrowski. 

Table 2 C1 for different  values of ψ 

Reference κw  
ψ 

1 0,5 0 -0,5 -1 

French NA 
[2] 0 1,00 1,31 1,77 2,33 2,55 

Piot rowski 
[6] 

0 1,010 1,317 1,822 2,527 2,709 

∞ 1,114 1,458 2,040 3,010 3,566 

 

Simple expressions have been proposed to take into account the ef-
fect of warping restraints on the elastic crit ical moment, mainly 
through the warping coefficient kw. However, expressions (2) and (4) 
seem to be valid only for beams under uniform bending moment. Pi-
otrowski [6] proposed to account for the bending moment distribu-
tion but the expressions are complex for a daily use in design office. 
Expressions based on consistent  derivation of an analytical model 
are yet to be developed. 

3 Analyt ical Model 

3.1 Int roduct ion 

The energy method is used to derive an analytical expression of the 
elastic crit ical bending moment of a beam with warping restraints at  
supports. Firstly, the model is defined in the simple case of a beam 
under uniform bending moment in §3.2, using one term for the out-
of-plane displacement v and the torsional rotation 𝜃𝜃 fields. A second 
term is then added to enhance the displacement and rotation fields 
in presence of a linear distribution of the bending moment in §3.3. 

The analytical model relies on the following assumptions: 

− Uniform beam with doubly symmetrical I-cross-section 
− Fork supports conditions 
− Warping restraints at  supports (stiffness cw). 

Figure 2 present the coordinate system, consistent with Eurocode 3 
Part1-1 [7] and notations used to develop the analytical model. 

3.2 Uniform bending moment dist ribut ion 

3.2.1 Displacements and rotations fields 
For a beam under constant bending moment My,0  with free warping 
and out-of-plane rotat ion at  both supports, the exact solution of the 
lateral displacement and the torsional rotation has the shape of half 
of a sine-wave: 

𝑣𝑣(𝑥𝑥) = 𝑣𝑣0 sin�
𝜋𝜋𝜋𝜋
𝐿𝐿 � (8)   

𝜃𝜃(𝑥𝑥) = 𝜃𝜃0 sin �
𝜋𝜋𝜋𝜋
𝐿𝐿 � (9)   

 Where: 

− v0 : Magnitude of the lateral displacement  
− 𝜃𝜃0 : Magnitude of the torsional rotation. 

However, for fixed warping at supports, obtaining the exact expres-
sion of the torsional rotation is not obvious. Vlasov [8] and Djalaly 
[9] have proposed the following approximation, considering a co-
sine-wave: 

𝜃𝜃(𝑥𝑥) = 𝜃𝜃0 �1 − cos �2
𝜋𝜋𝜋𝜋
𝐿𝐿 �� (10)   

Elastic warping restraints at  beam ends induce the following bound-
ary conditions between the bimoment B, the warping stiffness cw, 
and the torsional rotation: 

𝐵𝐵(0) = −𝑐𝑐w
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(0) and 𝐵𝐵(𝐿𝐿) = 𝑐𝑐w
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐿𝐿) (11)   

Besides, the bimoment is connected to the beam’s warping stiffness 
and torsional rotation by: 

𝐵𝐵(𝑥𝑥) = −𝐸𝐸𝐼𝐼w  
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑥𝑥2

(𝑥𝑥) (12)   

The rotation has to comply with the following kinematic boundary 
conditions at  supports, obtained by combining expressions (11) and 
(12): 

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑥𝑥2

(0) =
𝑐𝑐w
𝐸𝐸𝐼𝐼w

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(0) and 
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑥𝑥2

(𝐿𝐿) = −
𝑐𝑐w
𝐸𝐸𝐼𝐼w

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐿𝐿) (13)   

An approximate distribution of the torsional rotation is developed 
from equations (9) and (10), in agreement with boundary conditions 
(13): 

𝜃𝜃(𝑥𝑥) = 𝜃𝜃0 �4𝜋𝜋 sin�
𝜋𝜋𝜋𝜋
𝐿𝐿 � +

𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�1 − cos �2
𝜋𝜋𝜋𝜋
𝐿𝐿 ��

� (14)   

The torsional rotation distribution and its first  derivative are com-
pared to finite element analyses. Figure 4 shows the results given by 
equation (14) and the results of an analysis performed with 
LTBeamN [1] using beam elements. The example correspond to a 8 
m-span beam under uniform bending moment with a 800x8 web, 
200x14 flanges and end-plates of 30 mm thickness. 
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a) 𝜃𝜃(𝑥𝑥) 

 
b) 𝜃𝜃′(𝑥𝑥) 

Figure 4 a) Rotat ion and b) first  derivat ive along a beam with warping restraints 
under constant  bending moment  

The analyt ical and finite element models give very close results. 
Some discrepancies appear when looking at the derivative at sup-
ports, explaining that small differences might be encountered be-
tween the analyt ical model to be developed and the numerical 
model. 

3.2.2 Potential energy 
The energy method is based on the minimisat ion of the potential en-
ergy Π, defined as the difference between the elast ic strain energy U 
and the work of external loads W that can be expressed as (see Ti-
moshenko [10]): 

𝛿𝛿2𝛱𝛱 = 𝛿𝛿2(𝑈𝑈 −𝑊𝑊) = 0 (15)   

The total potential energy is a function of the magnitudes v0 and 𝜃𝜃0. 
Minimisation of the total potential energy is obtained by equating to 
0 its partial derivatives. Expression (15) then rewrites as: 

⎩
⎨

⎧
𝜕𝜕𝛱𝛱
𝜕𝜕𝑣𝑣0
𝜕𝜕𝛱𝛱
𝜕𝜕𝜃𝜃0⎭

⎬

⎫
=  �

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22� �

𝑣𝑣0
𝜃𝜃0� = �00� (16)   

Considering the previous assumptions described in 3.1, the total po-
tential energy is given by: 

𝛱𝛱 = 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑊𝑊 (17)   

With: 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
1
2
��𝐸𝐸𝐼𝐼z𝑣𝑣,𝑥𝑥𝑥𝑥

2 + 𝐸𝐸𝐼𝐼w𝜃𝜃,𝑥𝑥𝑥𝑥
2 + 𝐺𝐺𝐼𝐼t𝜃𝜃,𝑥𝑥

2�𝑑𝑑𝑑𝑑 

𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑐𝑐w
𝜃𝜃′(0)2 + 𝜃𝜃′(𝐿𝐿)2

2  

𝑊𝑊 = −��𝑀𝑀𝑦𝑦,0𝜃𝜃𝑣𝑣,𝑥𝑥𝑥𝑥�𝑑𝑑𝑑𝑑 

Where “,x” stands for the first  derivative by x and “’,xx” for the sec-
ond. 

The contribution of the in-plane displacement is generally negligible 
when compared to that of the out-of-plane displacement and tor-
sional rotation. This contribution is therefore omitted in the expres-
sion (17) of the potential energy. Replacing the lateral displacement  
and the torsional rotat ion by expressions (8) and (14), the potential 
energy becomes: 

𝛱𝛱 =
1
2
�
𝜋𝜋
𝐿𝐿
�
2
�𝐸𝐸𝐼𝐼z �

𝜋𝜋
𝐿𝐿
�
2
𝑣𝑣02

𝐿𝐿
2

 + 𝐸𝐸𝐼𝐼w𝜃𝜃0
2 �
𝜋𝜋
𝐿𝐿
�
2
𝜉𝜉w   + 𝐺𝐺𝐼𝐼t𝜃𝜃0

2𝜉𝜉t

− 2𝑀𝑀y,0𝜃𝜃0𝑣𝑣0√2𝐿𝐿𝜉𝜉M�+
𝜃𝜃0

2

2
�
𝜋𝜋
𝐿𝐿
�
2
𝜉𝜉s 

(18)   

With: 

𝜉𝜉M = 𝜋𝜋√2𝐿𝐿 + 4√2
3

√𝐿𝐿
𝜋𝜋
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

  

-- 

𝜉𝜉t = 8𝜋𝜋2𝐿𝐿 + 2𝐿𝐿 �𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
2

+ 64
3
𝐿𝐿 𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

  

-- 

𝜉𝜉w = 𝜉𝜉t + 6𝐿𝐿 �𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
2
  

-- 
𝜉𝜉s = 32𝑐𝑐w𝜋𝜋2  

3.2.3 Elastic crit ical moment 
Taking the derivative of Π with respect to v0 and 𝜃𝜃0, we obtain two 
equations: 

𝐸𝐸𝐼𝐼z �
𝜋𝜋
𝐿𝐿�

4
𝑣𝑣0
𝐿𝐿
2 −𝑀𝑀y,0,cr𝜃𝜃0 �

𝜋𝜋
𝐿𝐿�

2
𝜉𝜉M√2𝐿𝐿 = 0 (19)   

𝐸𝐸𝐼𝐼w𝜃𝜃0 �
𝜋𝜋
𝐿𝐿
�

2
𝜉𝜉w   + 𝐺𝐺𝐼𝐼t𝜃𝜃0𝜉𝜉t − 𝑀𝑀y,0,cr𝑣𝑣0𝜉𝜉M√2𝐿𝐿 + 𝜃𝜃0𝜉𝜉s = 0 (20)   

From equation (19) arises the relationship between the two magni-
tudes: 

𝑣𝑣0 = 𝜃𝜃0
𝑀𝑀y,0,cr

𝐸𝐸𝐼𝐼z �
𝜋𝜋
𝐿𝐿�

2 2�
2
𝐿𝐿 𝜉𝜉M (21)   

The elastic crit ical bending moment My,0,cr is then derived from ex-
pressions (20) and (21): 

𝑀𝑀y,0,cr = �
𝜉𝜉t
𝜉𝜉M2

𝐸𝐸𝐼𝐼z �
𝜋𝜋
𝐿𝐿�

2
�
𝐼𝐼w
𝐼𝐼z
𝜉𝜉w
𝜉𝜉t

+
𝜉𝜉s
𝜉𝜉t

𝐿𝐿²
𝐸𝐸𝐼𝐼z𝜋𝜋²

+
𝐺𝐺𝐼𝐼t𝐿𝐿²
𝐸𝐸𝐼𝐼z𝜋𝜋²

 (22)  

From the previous expression, the warping coefficient kw and the 
equivalent uniform moment factor C1 are identified as: 

𝑘𝑘w = �
𝜋𝜋2 + 8

3
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

+ �1
2
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
2

𝜋𝜋2 + 20
3
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

+ �𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
2  (23)   
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𝐶𝐶1 =

�𝜋𝜋2 + 8
3
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

+ �1
2
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
2

𝜋𝜋 + 4
3𝜋𝜋
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

 (24)   

The elastic crit ical bending moment of a doubly symmetric beam un-
der constant moment with warping restraints at  supports is given by 
expression (1) with kw and C1 given by (23) and (24). 

3.3 Linear bending moment dist ribut ion 

Considering a beam subjected to a linear bending moment distribu-
tion with ψ being the ratio between end moments, we derive the ex-
pression of the crit ical bending moment based on the out-of-plane 
displacement and torsional rotat ion given by (8) and (14). The fol-
lowing expressions are obtained for coefficients kw and C1: 

𝐶𝐶1 =
2

1 + 𝜓𝜓  

�𝜋𝜋2 + 8
3
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

+ �1
2
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
2

𝜋𝜋 + 4
3𝜋𝜋
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

 (25)   

𝑘𝑘𝑤𝑤 = �
𝜋𝜋2 + 8

3
𝑐𝑐𝑤𝑤𝐿𝐿
𝐸𝐸𝐼𝐼𝑤𝑤

+ �1
2
𝑐𝑐𝑤𝑤𝐿𝐿
𝐸𝐸𝐼𝐼𝑤𝑤

�
2

𝜋𝜋2 + 20
3
𝑐𝑐𝑤𝑤𝐿𝐿
𝐸𝐸𝐼𝐼𝑤𝑤

+ �𝑐𝑐𝑤𝑤𝐿𝐿𝐸𝐸𝐼𝐼𝑤𝑤
�
2  (26)   

Expression (26) for kw is the same as (23) derived under constant 
bending moment. Therefore, the warping coefficient does not de-
pend on the bending moment distribution. Besides, C1 can be ex-
pressed as the product of two distinct factors depending on ψ and 
on the warping stiffness, respectively. The latter is identical to ex-
pression (24) of C1 obtained for a uniform bending moment. 

For free warping at supports, it  is clear that expression (25) leads to 
inconsistencies for negative values of ψ. Indeed, when the ratio 
tends towards -1, C1 tends towards the infinity. This discrepancy 
comes from the displacement and rotation fields used to derive ex-
pressions (25) and (26). Equations (8) and (14) are well suited when 
the bending moment is constant, or if ψ>0,5. Therefore, the displace-
ment and rotat ion fields need to be enriched with a second term for 
v and 𝜃𝜃. 

The general expression of the out-of-plane displacement of a beam 
with free out-of-plane rotation at both supports can be expressed 
by the following sum: 

𝑣𝑣(𝑥𝑥) = �𝑣𝑣𝑖𝑖 sin�𝑖𝑖
𝜋𝜋𝜋𝜋
𝐿𝐿 �

∞

𝑖𝑖=1

 (27)   

To avoid a too cumbersome analytical development, we will con-
sider only the first  two terms of the series. The out-of-plane dis-
placement is finally given by (29). 

A second term is also added to the torsional rotation, fulfilling the 
kinematical boundary conditions given by (13). The number of sine 
waves along the beam is increased, giving the following second term: 

𝜃𝜃2(𝑥𝑥) = 𝜃𝜃2 �
16
3 𝜋𝜋 sin�3

𝜋𝜋𝜋𝜋
𝐿𝐿 � +

𝑐𝑐𝑤𝑤𝐿𝐿
𝐸𝐸𝐼𝐼𝑤𝑤

�1 − cos �
4𝜋𝜋𝜋𝜋
𝐿𝐿
��� (28)   

This second term varies between 𝑠𝑠𝑠𝑠𝑠𝑠 �3 𝜋𝜋𝜋𝜋
𝐿𝐿
� when warping is free and 

�1 − 𝑐𝑐𝑐𝑐𝑐𝑐 �4𝜋𝜋𝜋𝜋
𝐿𝐿
�� when warping is prevented at both ends. Finally, the 

new displacement and rotation fields are: 

𝑣𝑣(𝑥𝑥) = 𝑣𝑣1 sin �
𝜋𝜋𝜋𝜋
𝐿𝐿 � + 𝑣𝑣2 sin �2

𝜋𝜋𝜋𝜋
𝐿𝐿 � (29)   

𝜃𝜃(𝑥𝑥) = 𝜃𝜃1 �4𝜋𝜋 sin �
𝜋𝜋𝜋𝜋
𝐿𝐿 � +

𝑐𝑐𝑤𝑤𝐿𝐿
𝐸𝐸𝐼𝐼𝑤𝑤

�1 − cos �
2𝜋𝜋𝜋𝜋
𝐿𝐿 ��� 

+𝜃𝜃2 �
16
3 𝜋𝜋 sin �3

𝜋𝜋𝜋𝜋
𝐿𝐿 � +

𝑐𝑐𝑤𝑤𝐿𝐿
𝐸𝐸𝐼𝐼𝑤𝑤

�1 − cos �
4𝜋𝜋𝜋𝜋
𝐿𝐿 ��� 

(30)   

From expressions (29) and (30), the potential energy Π of a doubly 
symmetric beam subjected to end moments with warping restraints 
at  supports is calculated. The crit ical moment Mcr is then obtained by 
solving the following equation: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣1
𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃1
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= �

𝐾𝐾11 0
0 𝐾𝐾22

𝑀𝑀cr𝐾𝐾13 𝑀𝑀cr𝐾𝐾14
𝑀𝑀cr𝐾𝐾23 𝑀𝑀cr𝐾𝐾24

𝑀𝑀cr𝐾𝐾13 𝑀𝑀cr𝐾𝐾23
𝑀𝑀cr𝐾𝐾14 𝑀𝑀cr𝐾𝐾24

𝐾𝐾33 𝐾𝐾34
𝐾𝐾34 𝐾𝐾44

� �

𝑣𝑣1
𝑣𝑣2
𝜃𝜃1
𝜃𝜃2

� = �
0
0
0
0

� (31)   

With: 

𝐾𝐾11 = 𝐸𝐸𝐼𝐼z �
𝜋𝜋
𝐿𝐿
�
4 𝐿𝐿
2
  

-- 

𝐾𝐾22 = 8𝐸𝐸𝐼𝐼z �
𝜋𝜋
𝐿𝐿
�
4
𝐿𝐿  

-- 

𝐾𝐾33 = 𝐺𝐺𝐼𝐼t �
𝜋𝜋
𝐿𝐿
�
2
𝜉𝜉t + 𝐸𝐸𝐼𝐼w �

𝜋𝜋
𝐿𝐿
�
4
𝜉𝜉w + �𝜋𝜋

𝐿𝐿
�
2
𝜉𝜉s  

-- 

𝐾𝐾44 = 𝐺𝐺𝐼𝐼t �
𝜋𝜋
𝐿𝐿
�
2
𝜉𝜉t,2 + 𝐸𝐸𝐼𝐼w �

𝜋𝜋
𝐿𝐿
�
4
𝜉𝜉w,2 + 16 �𝜋𝜋

𝐿𝐿
�
2
𝜉𝜉s   

-- 

𝐾𝐾13 = −�𝜋𝜋
𝐿𝐿
�
2
�𝐿𝐿
2
𝜉𝜉M(1 + 𝛹𝛹)   

-- 

𝐾𝐾14 = −�𝜋𝜋
𝐿𝐿
�
2 16
15

𝐿𝐿
𝜋𝜋

 𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

(1 + 𝛹𝛹)  

-- 

𝐾𝐾23 = �𝜋𝜋
𝐿𝐿
�
2 𝐿𝐿
𝜋𝜋

 𝜉𝜉M,2(𝛹𝛹 − 1)   
-- 

 𝐾𝐾24 = �𝜋𝜋
𝐿𝐿
�
2 𝐿𝐿
𝜋𝜋
𝜉𝜉M,3(𝛹𝛹 − 1)  

-- 

𝐾𝐾34 = −𝐺𝐺𝐼𝐼t
𝜋𝜋2

𝐿𝐿
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

256
15

− 𝐸𝐸𝐼𝐼w �
𝜋𝜋
𝐿𝐿
�
2 𝜋𝜋2

𝐿𝐿
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

3328
15

+ 4 �𝜋𝜋
𝐿𝐿
�
2
𝜉𝜉s  

-- 

𝜉𝜉t,2 = 128𝜋𝜋2𝐿𝐿 +
1024

7 𝐿𝐿
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

+ 8𝐿𝐿 �
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
2

 

-- 

𝜉𝜉w,2 = 9𝜉𝜉t,2 + 56𝐿𝐿 �
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
2

 

-- 

𝜉𝜉M,2 =
128

9 +
3
2
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

 

-- 

𝜉𝜉M,3 =
512
25 +

8
3
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

 

The crit ical bending moment is finally derived by equalling to zero 
the determinant of the 4x4 matrix in equation (31). The coefficients 
kw and C1 are then identified in the 4th degree equation on Mcr. 

The expression of the warping coefficient kw is similar to that de-
rived with a constant bending moment (23). The equation on Mcr is 
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then simplified as an equation on C1. To simplify, we assume that the 

ratio �𝐸𝐸𝐼𝐼w 𝐺𝐺𝐼𝐼t𝐿𝐿2�  is null. It  leads to the minimum values of C1 and 

therefore provides conservative values. The equation becomes: 

𝐴𝐴𝐶𝐶14 − 𝐵𝐵𝐶𝐶12 + 𝐶𝐶 = 0 (32)   

With: 

𝐴𝐴 = (𝛹𝛹2 − 1)2 �40856 + 18612 𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

+ 3406 �𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
2

+ 290,1 �𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
3

+

9,51 �𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
4
�    

-- 

𝐵𝐵 = 𝜋𝜋2 �8(𝛹𝛹 + 1)2 �𝜋𝜋
2

2𝐿𝐿2
𝜉𝜉M

2𝜉𝜉t,2 + �16
15

𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
2
�𝜉𝜉t
𝐿𝐿

+ 16𝜋𝜋�2
𝐿𝐿
𝜉𝜉M��+

(𝛹𝛹−1)2

2
�𝜉𝜉M,2

2𝜉𝜉t,2+𝜉𝜉M,3
2𝜉𝜉t

𝐿𝐿
+ 512

15
𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

𝜉𝜉M,2𝜉𝜉M,3��    

-- 

𝐶𝐶 = 4𝜋𝜋4 �𝜉𝜉t𝜉𝜉t,2
𝐿𝐿2

− �256
15

𝑐𝑐w𝐿𝐿
𝐸𝐸𝐼𝐼w

�
2
�  

The positive solution of the previous equation is: 

−1 < 𝛹𝛹 < 1 
𝐶𝐶1 = �

4𝜋𝜋2𝜉𝜉1
(𝛹𝛹2 − 1)2 �∆ − �∆2 −

(𝛹𝛹2 − 1)2

4𝜋𝜋2𝜉𝜉1𝜉𝜉3
� 

∆= (𝛹𝛹 + 1)2 + 𝜉𝜉2(𝛹𝛹 − 1)2 

(33)   

𝛹𝛹 = 1 𝐶𝐶1 =
1

�8𝜉𝜉3

 (34)   

𝛹𝛹 = −1 𝐶𝐶1 =
1

�8𝜉𝜉2𝜉𝜉3

 (35)   

With: 

𝜉𝜉1 =
123058 + 47499 𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w

+ 7324�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
2

+ 543,4�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
3

+ 16,50�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
4

40856 + 18612 𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
+ 3406�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w

�
2

+ 290,1�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
3

+ 9,51�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
4  

-- 

𝜉𝜉2 =
18041 + 6938 𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w

+ 1049�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
2

+ 73,57�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
3

+ 2,01�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
4

123058 + 47499 𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
+ 7324�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w

�
2

+ 543,4�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
3

+ 16,50�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
4 

-- 

𝜉𝜉3 =
123058 + 47499 𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w

+ 7324�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
2

+ 543,4�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
3

+ 16,50�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
4

984463 + 379988 𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
+ 59097�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w

�
2

+ 4572�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
3

+ 157,9�𝑐𝑐w𝐿𝐿𝐸𝐸𝐼𝐼w
�
4 

C1 depends on the ratio ψ and on the warping stiffness through the 
parameters ξi. In the specific cases of free and fixed warping at both 
supports, the values of ξ1, ξ2 and ξ3 are given in Table 3.  

Table 3 Values of ξ1, ξ2 and ξ3 when free or fixed warping 

 𝝃𝝃𝟏𝟏 𝝃𝝃𝟐𝟐 𝝃𝝃𝟑𝟑 

Free warping 
(𝒄𝒄𝐰𝐰 = 𝟎𝟎) 3,012 0,147 0,125 

Fixed warping 
(𝒄𝒄𝐰𝐰 → ∞) 1,735 0,122 0,104 

 

The values of C1 are calculated in Table 4 for various values of ψ in 

the two extreme cases of free and fixed warping at supports. We can 
notice an increase in the values of C1 from 9,4 to almost 20 % when 
warping is fixed.  

Values of C1 given by TableM.1 from the French National Annex to 
Eurocode 3 Part 1-1 [2] are also presented in Table 4 for free warp-
ing. The analyt ical model give results close to the French NA even 
though small differences, below 15%, can be noticed. Again, like in 
Table 2 where Piotrowski’s [6] results were found to be greater than 
the French NA when warping is free, finite element analyses must be 
computed in order to assess the safety level of the two approaches.  

Table 4 C1 for free or fixed warping at  supports 

ψ 

C1 
C1, fixed warp../  
C1, free warp. 

C1 French NA 
[2] Free 

warping 
Fixed 

warping 

1 1,00 1,09 1,094 1,00 

0,75 1,14 1,25 1,094 1,14 

0,5 1,32 1,45 1,096 1,31 

0,25 1,56 1,72 1,102 1,52 

0 1,88 2,10 1,114 1,77 

-0,25 2,28 2,60 1,141 2,05 

-0,5 2,67 3,14 1,179 2,33 

-0,75 2,81 3,37 1,198 2,57 

-1 2,61 3,13 1,198 2,55 

 

In Figure 5, the warping coefficient kw is plot ted against the param-
eter 𝑐𝑐w𝐿𝐿

𝐸𝐸𝐼𝐼w
 accounting for the warping restraints . It  shows the results 

obtained with the proposals of Lindner and Gietzelt [3] and ECCS [4], 
Pi and Trahair [5], Piotrowski and Szychowski [6] and expression 
(23).  

 
Figure 5 Warping coefficient  kw against  𝑬𝑬𝑰𝑰𝐰𝐰

𝒄𝒄𝐰𝐰𝑳𝑳
 

The different proposals give close results. Some differences appear 
when the restraints tend to fix warping, i.e. when 𝒄𝒄𝐰𝐰 → ∞. Indeed, Pi 
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and Trahair tend towards 0,44 while the other proposals tend to-
wards 0,5. 

From the analytical model developed in §3, expressions of the equiv-
alent uniform moment factor C1 and the warping coefficient kw were 
derived to determine the elast ic crit ical bending moment of a uni-
form beam with doubly symmetric I-section subjected to linear 
bending moment distribution with warping restraints at supports. 
Whatever the bending moment distribution, kw only depends on the 
warping st iffness, as expressed in equation (23). However, C1 de-
pends on both the warping st iffness and the bending moment distri-
bution as expressions (33) to (35) state. Formulae derived from the 
analyt ical model will be compared against finite element analyses in 
§4. 

4 Finite Element Analyses 

4.1 Numerical Models 

Two finite element models are used for comparisons: 

- Shell elements with ANSYS 
- Beam elements with LTBeamN [1]. 

Linear Bifurcation Analyses (LBA) are performed considering 
Young’s modulus E = 210 000 MPa and Poisson’s ratio ν = 0,3. 

The geometry of the studied beams is given in Table 5. Warping is 
restrained by end plates, fixed or free at  both ends. Thickness of the 
end plates varies between 7 and 70 mm to extend the study beyond 
the common practice. 

 

Figure 6 End moment and fork support  condit ions  

The shell element model is developed using 8-node elements, with 6 
degrees of freedom at each node. The out-of-plane displacement 
and torsional rotation of the sect ion are fixed at supports as well as 
the axial displacement of web centre at one end to reproduce typical 
fork support condit ions (see Figure 6). End plates are modelled at 
supports with shell elements. In addit ion, distort ion is prevented 
along the beam. 

Eventually, nodal forces along the x-axis are applied to provoke end 
moments, leading to a linear bending moment distribution as shown 
in Figure 6.  

Figure 7 exhibits the out-of-plane displacements corresponding to 
the crit ical mode of beam P2 subjected to a) uniform and b) linear 
bending moment distribution with ψ = -1, along with 20 mm-thick 
end plates. The two modal shapes are quite different. Under con-
stant bending moment, half of a sine wave is visible while a complete 
sine-wave appear for ψ  = -1. These observations are consistent with 
the displacement fields assumed in §3.3. 

 

a) ψ = 1 

 

b) ψ  = -1 

Figure 7 Out-of-plane displacement of P2 with 20 mm-thick end plates 

The beam element model is developed with two-noded beam ele-
ments with 7 degrees of freedom (including warping) at each node. 
Fork support condit ions are enforced by preventing lateral displace-
ment and torsional rotation at both ends and longitudinal displace-
ment at one end. 

The degree of freedom corresponding to warping may be fixed or 
connected to a warping spring with a st iffness cw, calculated accord-
ing to equation (3). End moments are directly applied to induce a lin-
ear bending moment distribution. 

Table 5 Geometry of studied beams 

Beam hs (mm) tw (mm) b (mm) t f (mm) L (m) 

P1 600 6 200 14 6 

P2 800 10 280 14 10 

P3 800 6 280 12 10 

P4 300 4 100 6 6 & 9 

P5 300 6 100 10 6 & 9 

P6 347,3 8 170 12,7 6 

P7 337,5 12,5 300 22,5 3 & 6 

 

4.2 Comparison with the Analyt ical Model 

4.2.1 Equivalent uniform moment factor C1 

Finite element analyses have been performed with the beam model 
using LTBeamN and compared against analyt ical predictions. The 
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coefficient  C1 was determined for a beam under linear bending mo-
ment distribution in the cases of (i) free warping and (ii) fixed warp-
ing at both ends and compared against  both analytical model and the 
French National Annex [2].  

Analyses were performed on beams P1, P2, P3, P6 and P7 (see Table 
5). Figure 8 presents the values of C1 as a function of ψ. 

 
Figure 8 C1 for free or fixed warping 

In addit ion to the values given in the French National Annex [2], the 
figure shows the results obtained with finite element analyses (FEA) 
and the analyt ical model, i.e. expressions (33) to (35), in the cases of 
free warping (referred to as “free”) and fixed warping (referred to as 
“fixed”). 

For free warping, the analyt ical model is in good agreement with 
FEA results. The value of C1 might be slightly overestimated (of less 
than 3%) when ψ is between -0,5 and 0 but the French NA is quite 
conservative : C1 may be underestimated up to 10%. 

For fixed warping, Figure 8 shows a good agreement between the 
numerical and analyt ical models when ψ  is greater than -0,75. When 
the ratio is below that value, the analyt ical model lays on the safe 
side, 15% lower than FEA results. The deviation between the values 
of C1 given by the French NA and FEA results when warping is fixed 
is up to 45%, confirming that the French NA is overly conservative 
when warping is fixed. 

4.2.2 Elastic crit ical bending moment 
To state about the consistency of the complete analytical model, 
analyses were conducted using the two finite element models. The 
values of the elastic crit ical bending moment Mcr resulting from FE 
analyses were then compared against predictions of the analytical 
model as well as Piotrowski’s [6] proposals. 

The ratio Mcr/Mcr,0, with Mcr,0 being the crit ical bending moment  
when warping is free, is plot ted against the end plates’ thickness for 
beam P2 in Figure 9a) to c). Thickness tp of the end plates is directly 
connected to the warping stiffness cw given by expression (3).  

A jump in the values of tp can be seen on Figure 9a) to c), between a 
70mm thickness and infinite thickness corresponding to fixed warp-
ing conditions. The analyt ical model depicted in this article and for-
mula (5) from Piotrowski [6] are represented by continuous curves 
for thicknesses ranging between 0 and 70mm and by empty trian-
gles for fixed warping. 

Figure 9 shows a significant increase of the crit ical bending moment  

when warping is fixed. In every cases, its value is at  least  almost dou-
bled (+95% or more). 

 
a) ψ = 1 

 
b) ψ = 0 

 
c) ψ = -1 

Figure 9 Increase in Mcr for P2 under linear moment  with warping rest raints  

When the bending moment distribution is uniform or triangular, all 
the methods give the same results up to 30mm-thick end plates. 
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When the warping st iffness increases, the analyt ical model hardly 
overestimates (of no more than 5%) the value of the elastic crit ical 
bending moment when compared to finite element analyses. When 
warping is fixed, the analytical model becomes slightly safer, with a 
difference below 3%. 

When ψ = -1, the results given by the different methods coincide up 
to a higher warping restraint. When the warping stiffness increases, 
the analytical model lays on the safe side but the difference with the 
shell model is not greater than 10%. 

The variation between Piotrowski [6] and the analyt ical model is 
only visible when the warping restraints are significant, particularly 
when ψ = -1. When compared to finite element analyses using shell 
elements, the analytical model always lays on the safe side unlike Pi-
otrowski [6].  

Table 6 shows statistical parameters about the calculated values of 
the crit ical moment of the beams P1 to P5 (included) presented in 
Table 5. The ratios between crit ical bending moments determined 
with the analytical model and the shell finite element model are pre-
sented in Table 6. This table also shows the relations between the 
crit ical bending moment increases Mcr/Mcr,0  calculated with the an-
alytical model and FE analyses. 

Table 6 Comparison between analyt ical results and shell finite element analyses 

ψ 1 0,5 0 -0,5 -1 

� 𝑴𝑴𝐜𝐜𝐜𝐜
𝑴𝑴𝐜𝐜𝐜𝐜,𝟎𝟎

�
𝐚𝐚𝐚𝐚

� 𝑴𝑴𝐜𝐜𝐜𝐜
𝑴𝑴𝐜𝐜𝐜𝐜,𝟎𝟎

�
𝐅𝐅𝐅𝐅𝐅𝐅

 

M 1,006 1,006 1,007 1,005 0,976 

SD 0,0201 0,0201 0,0206 0,0178 0,0352 

𝑴𝑴𝐜𝐜𝐜𝐜,𝐚𝐚𝐚𝐚

𝑴𝑴𝐜𝐜𝐜𝐜,𝐅𝐅𝐅𝐅𝐅𝐅
 

M 1,017 1,021 1,043 1,069 0,954 

SD. 0,0207 0,0206 0,0220 0,0275 0,0345 

Where: 

-  M: Mean 
- SD: Standard deviation 

The elastic crit ical bending moment evolution estimated by the ana-
lytical model is very close to the results of shell finite element anal-
yses. The difference is lower than 1% except when ψ = -1 where it  
increases up to 2,4%. 

Critical bending moments determined with the analytical model and 
FEA are slightly different, but their difference is less than 7%, partic-
ularly when ψ is between -0,5 and 0. It  matches with the values of ψ 
for which the analytical and numerical models show small differ-
ences in the value of C1 for free warping (see Figure 8). 

The displacement and rotation fields could still be refined with a 
third term to improve results. However, it  would lead to heavier an-
alytical developments, leading to a very cumbersome expression for 
the equivalent uniform moment factor C1. In addition, 7% is still an 
admissible difference given that the resistant bending moment de-
termined according to Eurocode 3 Part  1-1 [7], Mb,Rd, depends not 
only on the crit ical bending moment but also on many other param-
eters. 

5 Conclusions 

The energy method has been used to derive an analytical expression 

of the elastic crit ical bending moment of a beam with uniform doubly 
symmetric I-section and warping restraints at  both ends, subjected 
to a uniform or linear bending moment distribut ion. The analytical 
expression is the same as the French National Annex to Eurocode 3 
Part  1-1 [2], but the warping coefficient kw and the equivalent uni-
form moment factor C1 have distinct expressions. 

The warping coefficient kw has been shown to remain unchanged 
whatever the bending moment distribution and only depends upon 
the warping stiffness of the beam EIw, its length L and the stiffness of 
the warping restraints cw. Furthermore, the equivalent  uniform mo-
ment factor C1, only based on the bending moment distribution in 
the French NA [2], is found to also be depending on the stiffness cw 
of the warping restraints. 

Results from the analytical model were shown to be in good agree-
ment with finite element analyses computed with the software 
packages ANSYS and LTBeamN [1]. 

The increase in the value of the crit ical moment is limited if the warp-
ing restraints are only obtained by end plates, but the benefit  can 
become significant if different  end connections are considered 
(fixed column bases, beam-to-beam or beam-to-column joints…).  

Future work may include the derivation of analytical expressions to 
determine the warping stiffness corresponding to realistic support 
conditions. In addition, the bending moment distribution may be ex-
tended to generalise the expression of the elastic crit ical moment. 
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