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Abstract

In practice, the elastic lateral-torsional buckling of doubly symmetric I-section steel members is analyzed assuming free warping at supports.
However, welded stiffeners, bolted end-plate con-nections or column base plates maintain elastically the opposite flange out-of-plane rotations
and thus induce substantial warping restraints.

This paper proposes analytical formulations for the evaluation of the elastic critical bending mo-ment for lateral-torsional buckling of beams
taking into account warping restraints at supports. Assuming series of displacement and rotation fields containing one or two terms, the
energy method permits to derive expressions of the critical bending moment under constant and linear distribution of the bending moment. A
single expression of the warping coefficient & is proposed whatever the shape of the bending moment diagram. The factor Ci can be
conveniently calculated by multiplying two coefficients that depend on the shape of the bending moment diagram and on the warping restraint
stiffness, respectively.

Finite Elements analyses of beams with warping restraints at supports have been performed con-sidering a beam element model developed
with LTBeamN and a shell element model created in ANSYS. The analytical model is in good agreement with the numerical results obtained by
the two finite element models.

Keywords Elastic critical bending moment, Warping restraints, Lateral-torsional buckling.

1 Introduction

The elastic critical bending moment is commonly determined con-
sidering theoretical fork support conditions at both ends, i.e. fixed
lateral displacement and torsional rotation but free warping. Be- * &
cause very few authors have proposed expressions for the critical ?
moment of a beam elastically restraint against warping, the influ- t
ence of the warping restraints on the critical moment is usually ne-

glected. he

Inthis paper,the influence of warpingrestraints on the criticalbend- /
ing moment is investigated. After a brief review of the literature ot
about the determination of the elastic critical moment of a uniform I
beam with doubly symmetric cross-section and with warping re-
straints at supports (see Figure 1), an analytical model is described.
Considering appropriate series of displacement and rotation fields, R A
the energy method is used to derive a formula of the elastic critical | | \
bending moment under constant and linear distribution of the bend- Beam with doubly symmetrical
ing moment. It is shown that the use of displacement and rotation End plate = warpingrestraint and uniform |-cross section
fields approximated with one term is correct for uniform bending

moment but for a linear moment diagram two terms are necessary. Figure 1 End of abeam with plates restraining warping

The derived expression for the critical bending moment depends on
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the warping stiffness through the coefficients G and k. While the
warping coefficient &, has a single expression, G also depends on
the shape of the bending moment distribution.

Finally,the predictions of the analytical modelare compared against
finite element results of beams with warping restraints at supports,
computed either using beam elements model with the software
LTBeamN [1] or shell elements model with ANSYS. A good agree-
ment between the analytical model and finite element analyses is
observed.

2 Literature overview

Inthe French National Annexto Eurocode 3 Part 1-1 [2],the formula
of the elastic critical bending moment can account for warping re-
straints only through the warping coefficient 4. No expression is
given to determine &, considering potential warping restraints. The
critical moment of a beam with doubly symmetric cross-section and
with free out-of-plane rotation considering a linear distribution of
the bending moment is:

GIL?
El,m?

m2El 1\%1,
cr = L1 12 <_) E

o ®

Where:

— @G :Equivalent uniform moment factor

—  E:Modulus of elasticity

— [ z-axis second moment of area (see Figure 2)
—  L:distance between lateral restraints

— kv :Warping constant

—  k:Torsional constant

—  G:Shear modulus.

The warping coefficient &, varies between 0,5 when warping is fixed
to 1 when warping is free. However, no expression is given to com-
pute ky and it is assumed that G depends only on the bending mo-
ment diagram without any influence of the warping restraints.

b My

Figure2 Axesand notationsfor the analytical derivation

Based on the work of Lindner and Gietzelt [3], it has been suggested
in [4] to evaluate ., for I-beams with end plates at both ends using
the following expression:

0.5

— 2El, ()
1+

ky=1-

1 3
Cy = ngtphs @)

Where:

- Gy:Stiffnessof the warpingrestraints (see Figure 3)
— I Thickness of the end plates
—  hs:Distance between flanges centres.

Therefore, the warping coefficient depends on the warping stiffness

Elw, the length Lof the beam, and on the stiffness of the warping re-
straint ;. The bendingmoment distribution assumed for expression
(2) is not specified. No expression is given for G; the values given in
the French National Annex [2] considering free warping at supports
should therefore be used.
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Figure 3 Flanges longitudinal displacements when warping is a) free and b) re-
strained

For a uniform bending moment distribution, Pi and Trahair [5] pro-
posed the following approximation for Ay:
cyL

6,5 +m

k, =———— 4
6,5 +2,25 Wk “)
w

Details on the derivation of expressions (2) to (4) in references [3]-
[5] are missing. Piotrowski and Szychowski [6] used the energy
method to propose a general expression of the elastic critical mo-
ment accounting for warping restraints. The out-of-plane displace-
ment vand torsional rotation 8 are approximated using power poly-
nomials. The proposed expression for the critical moment of abeam
under linear bending moment with free out of plane rotationis:

VEL(C,GI; L2 + C,El,)
My =Dy z C.L2 = (5)
3

The values of G, G, G and D;,dependingonthe ratio ¢ between end
moments, are given in Table 1.

Table 1 Coefficients to determine the critical moment
-0,5<yp<-1

G 57,6(1,457 — 2,41, + K2)

G 691,2(1,2—kKy)

G O +9)2(2124 - 3,497k, + 1,440k2)

1,018 + 0,000297k2, — 0,009k, — e~25% (0,108 — 0,001x,, —

b o 014n8)
-1<$p<-0,5
G 34575(1,457 — 2,4k, + K2,)
G 414898(12 — k)
G J(—9)?(1,681 — 2,880k, + 1,235K2)
D 1,068+ 0,014x2 — e3¥ (1,704 + 0,099k, + 0,215kS,)




The index of fixity against warping kw varies between 0 when warp-
ingis free,and 1 when warping is fixed. It can be obtained by the fol-
lowing expression:

1

Ky = —5%7—

2EI, (6)
1+ ol

From expression (5),the warping coefficient is identified as :

o m |1,457 — 2,4k, + k,,°
v o3 1,2 — Kk, Q)

The coefficient G (when referringto equation (1)) isextracted from
expression (5) and depends on the bending moment distribution,
through the ratio ¢, and the warping restraints, through «,. Some
values of G are given in Table 2 according to expression (5) and ac-
cordingto TableM.1 from the French National Annex to Eurocode 3
Part 1-1[2].

Table 2 highlights the evolution of the coefficient G with bending
moment distribution and warping restraints. The values of G when
warpingisfully restrained increase from 10%when the bending mo-
ment is constant to more than 30%when ¢ isequal to -1 when com-
pared to free warping.

Besides, the values of G given by the French National Annex [2] are
lower than those given by Piotrowski [6] for free warping. Finite el-
ement analysesshould be performed to assessthe safety level of the
approaches of the French National Annex and of Piotrowski.

Table 2 G for different values of ¢

¢
Reference Kw
1 05 0 -05 -1
Fren[;? NA 0 100 131 177 233 255
Piotrowski  ° 1010 1317 1822 2527 2709
[6l o 1114 1458 2,040 3,010 3566

Simple expressions have been proposed to take into account the ef-
fect of warping restraints on the elastic critical moment, mainly
through the warping coefficient k. However,expressions (2)and (4)
seem to be valid only for beams under uniform bending moment. Pi-
otrowski [6] proposed to account for the bending moment distribu-
tion but the expressions are complex for a daily use in design office.
Expressions based on consistent derivation of an analytical model
are yet to be developed.

3 Analytical Model
31 Introduction

The energy method is used to derive an analytical expression of the
elastic critical bending moment of a beam with warping restraints at
supports. Firstly, the model is defined in the simple case of a beam
under uniform bending moment in §3.2, using one term for the out-
of-plane displacement vand the torsionalrotation 6 fields. Asecond
term is then added to enhance the displacement and rotation fields
in presence of a linear distribution of the bending moment in §3.3.

The analytical modelrelies on the following assumptions:

—  Uniform beam with doubly symmetrical I-cross-section
—  Forksupports conditions
—  Warpingrestraints at supports (stiffness ¢,).

Figure 2 present the coordinate system, consistent with Eurocode 3
Part1-1 [7]and notations used to develop the analytical model.

3.2 Uniform bending moment distribution

3.2.1 Displacementsand rotations fields

For a beam under constant bending moment M, with free warping
and out-of-plane rotation at both supports, the exact solution of the
lateral displacement and the torsional rotation has the shape of half
of a sine-wave:

v(x) = vy sin (%) ®)
0(x) = 6, sin (n'L_x) ©)
Where:

— v :Magnitude of the lateral displacement
— 6y :Magnitude of the torsional rotation.

However, for fixed warping at supports, obtaining the exact expres-
sion of the torsional rotation is not obvious. Vlasov [8] and Djalaly
[9] have proposed the following approximation, considering a co-
sine-wave:

X
0(x) =0, [1 — cos (2 T)] (10)
Elastic warping restraints at beam ends induce the following bound-
ary conditions between the bimoment B the warping stiffness ¢
and the torsional rotation:

dao
B(0) = —cyy—

d
i 0) an

do
=cpy— 11
B(L) = cw - (1) (1)
Besides, the bimoment is connected to the beam’s warping stiffness
and torsional rotation by:

dze

B(x) = —EI, — (%) (12)
dx?

The rotation has to comply with the following kinematic boundary

conditions at supports, obtained by combining expressions (11)and
12):

d20 Cw dO d20

Q= x® ad o5

cy dob

L= TEL, dx L)

(13)
An approximate distribution of the torsional rotation is developed
from equations (9) and (10), in agreement with boundary conditions
13):

o= fomsn () 4 521 - ()

The torsional rotation distribution and its first derivative are com-
pared to finite element analyses. Figure 4 shows the results given by
equation (14) and the results of an analysis performed with
LTBeamN [1] using beam elements. The example correspond to a 8
m-span beam under uniform bending moment with a 800x8 web,
200x14 flanges and end-plates of 30 mm thickness.

14)
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Figure 4 a) Rotation and b) first derivative along a beam with warping restraints
under constant bending moment

The analytical and finite element models give very close results.
Some discrepancies appear when looking at the derivative at sup-
ports, explaining that small differences might be encountered be-
tween the analytical model to be developed and the numerical
model.

3.2.2 Potential energy
The energy method is based on the minimisation of the potentialen-
ergy /1, defined as the difference between the elastic strain energy U
and the work of external loads Wthat can be expressed as (see Ti-
moshenko [10]):

’N=68*U-W)=0 (15)
The total potential energy is a function of the magnitudes v, and 6,.

Minimisation ofthe total potentialenergy is obtained by equating to
0 its partial derivatives. Expression (15) then rewrites as:

6_17
{%}?L{Z; aHok=1{5)

\36,)

(16)

Consideringthe previous assumptions described in 3.1, the total po-
tential energy is given by:

IT = Upeam + Uspring -w (17)

With:

1
Upeam =5 f (ELvy? + EL,6 " + G1.0,°)dx

0'(0)2 +6'(L)?
Uspring - wa

wW=-— f (My46v ., )dx

Where “X’stands for the first derivative by x and *’ xx” for the sec-
ond.

The contribution of the in-plane displacement is generally negligible
when compared to that of the out-of-plane displacement and tor-
sional rotation. This contribution is therefore omitted in the expres-
sion (17) of the potential energy. Replacing the lateral displacement
and the torsional rotation by expressions (8) and (14), the potential
energy becomes:

0= %(%)z [EIZ (%)2 vozg +EL,0,° (%)2 & +GLOLE, )

6y /N2
— 2My 0000 VZLew| + 2 (7) &

With:

= V2L + B2 VL cwl
& =nV2L + 3 7 El,

_ g2 cwl\? | 64, cwl
& =8n L+2L(EIW) +Le

Ew =& +6L (%)2

& = 32¢,m?

3.2.3 Hasticcritical moment

Taking the derivative of 7 with respect to 1p and 6,, we obtain two
equations:

m\* L 1T 2
EL(7) vog = Myoebo () EwVZL=0 (19)
TN 2
ELOo(T) &w +Glbofc — MyoervofuVZL+005s =0 (20)

From equation (19) arises the relationship between the two magni-
My,O,cr

tudes:
f
e (F) N

The elastic critical bending moment M, is then derived from ex-
pressions (20)and (21):

S m2 |lwéw | & LP
Myoer = ,—EI ) fwiw b 2y
yoer & Z(L) I, & & ElLm®

From the previous expression, the warping coefficient A, and the
equivalent uniform moment factor G are identified as:

vy =06,

@1)

GI,L?
El,m?

@2)

@3)
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The elastic critical bending moment ofa doubly symmetricbeam un-
der constant moment with warping restraints at supports is given by
expression (1) with &y and G given by (23) and (24).

33 Linear bending moment distribution

Considering a beam subjected to a linear bending moment distribu-
tion with ¢ being the ratio between end moments, we derive the ex-
pression of the critical bending moment based on the out-of-plane
displacement and torsional rotation given by (8) and (14). The fol-
lowing expressions are obtained for coefficients &y and G:

8cyl  (1cy,L)?
2 +_L+(_L)
\/ 3EL, T\2EI, 25)
4 ¢y L
3m El,

C, =
T 14y

m+

8c,L  (1c,L\’
2 4 —ZwH —w=
m +3EIW+(2EIW)
ky = 2 I\ (26)
2 420Gy (cw )

3EL, T\EL,

Expression (26) for Ay is the same as (23) derived under constant
bending moment. Therefore, the warping coefficient does not de-
pend on the bending moment distribution. Besides, G can be ex-
pressed as the product of two distinct factors depending on ¢ and
on the warping stiffness, respectively. The latter is identical to ex-
pression (24) of G obtained for a uniform bending moment.

For free warping at supports, it is clear that expression (25) leads to
inconsistencies for negative values of . Indeed, when the ratio
tends towards -1, G tends towards the infinity. This discrepancy
comes from the displacement and rotation fields used to derive ex-
pressions (25) and (26). Equations (8) and (14) are well suited when
the bending moment is constant, or if ¢>0,5. Therefore, the displace-
ment and rotation fields need to be enriched with a second term for
vand 6.

The general expression of the out-of-plane displacement of a beam
with free out-of-plane rotation at both supports can be expressed
by the following sum:

[e9)

v(x) = Zvi sin (l%) 27)

i=1

To avoid a too cumbersome analytical development, we will con-
sider only the first two terms of the series. The out-of-plane dis-
placement is finally given by (29).

Asecond term is also added to the torsional rotation, fulfilling the
kinematical boundary conditions given by (13). The number of sine
waves alongthe beam is increased, giving the following second term:

0,(x) =0, {%n sin (3 nL_x) + % [1 — cos (4%)]} (28)

Thissecond termvaries between sin (3 ”L—x) when warpingis free and

[1 —cos (4%)] when warping is prevented at both ends. Finally, the
new displacement and rotation fields are:

v(x) = vy sin (nL_x) + v, sin (2 7rL_x) (29)
0(x) =6, {471 sin (%) + % [1 — cos <2L£>]}
30)
+6, {?n sin (3 1TL_x) + % [1 — cos (4Lﬂ>]}

From expressions (29) and (30), the potential energy /7 of a doubly
symmetric beam subjected to end moments with warping restraints
at supportsis calculated. The criticalmoment M is then obtained by
solving the following equation:

_an_
v,
on Ky 0
v, | 0 Ky,
o |~ | M Ky,
6_91 Mch14
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Mchz4 K34 K44 62

o OO O
— 0

Mch13 MchH vy
[ @31)

With:

k=1 (5)

K,, = 8EI, (%)4 L

K= 6 (5) 6oL (2) 6+ (2) &
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M2 =531,
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The critical bending moment is finally derived by equalling to zero
the determinant of the 4x4 matrix in equation (31). The coefficients
kyand G are then identified in the 4" degree equation on M.

The expression of the warping coefficient &, is similar to that de-
rived with a constant bending moment (23). The equation on M is



then simplified as an equation on G. To simplify, we assume that the

ratio EIW/ 2 is null. It leads to the minimum values of G and
GIL

therefore provides conservative values. The equation becomes:
AC}—BCE+C=0 (32)

With:

A= (P2 -1)? [40856 +18612 3% + 3406 (CW:) +290,1 (CwL)3 +
9,51 (LL)4]

Ely

B=m {8(‘1’ +1)? {ZHLZ En*6iz + (1:%)2 <%+ 167T\/%§M>} +

(W-1)2 (Em2 EotEma e 5125wL§ 3
2 L 15 EI,, *M25M3

_ a4 882 (256 cwl 2
C=dm { 2 (15 Elw)

The positive solution of the previous equation is:

- 4-7r251 A
1<w<1 L |WE-1)2 33)
A= (W + 1% + &, (¥ — 1)?
1
v=1 G = B, (34)
1
Y=—1 1= (35)
88,8,
With:
123058+47499ﬁ+7324(E1L) +5434( )3+16 50( )
f = W W W
" 40856 + 18612 EIL 3406 (E—Ii) +290,1( L) +951( )
18041+6938El +1049(E1 ) +73 57(51 ) +201(EI )
f = W W
’ 123058+47499%+7324(21VLV) +5434(E—1i) +16, 50(C1L)
i 123058 cylLy’ cul)*
+4749951 +7324( ) +5434( & ) +16,50( )
f = W
’ 984463+37998821L+59097( L) +4572 (%) +1579( IL)

G depends on the ratio ¢ and on the warping stiffness through the
parameters &. In the specific cases of free and fixed warping at both
supports, the values of é1, & and & are given in Table 3.

Table 3 Values of &1, & and & when free or fixed warping

& &, $3
Freewarping 3,012 0,147 0,125
(cw=0)
Fixed warping 1,735 0,122 0,104
(cy = )

The values of G are calculated in Table 4 for various values of ¢ in

thetwo extreme cases of free and fixed warping at supports. We can
notice an increase in the values of G from 9,4 to almost 20 % when
warpingisfixed.

Values of G given by TableM.1 from the French National Annex to
Eurocode 3 Part 1-1 [2] are also presented in Table 4 for free warp-
ing. The analytical model give results close to the French NA even
though small differences, below 15%, can be noticed. Again, like in
Table 2 where Piotrowski’s[6] resultswere found to be greater than
the French NAwhen war pingisfree, finite element analyses must be
computed in order to assessthe safety level of the two approaches.

Table 4 G for free or fixed warping at supports

w “ . G, tixedwarp/ G French NA

Free Fixed Gl freewarp. [2]
warping warping

1 1,00 1,09 1,094 1,00
0,75 1,14 1,25 1,094 1,14
0,5 132 1,45 1,096 131
0,25 1,56 1,72 1,102 1,52
0 1,88 2,10 1,114 1,77
-0,25 2,28 2,60 1,141 2,05
-0,5 2,67 3,14 1,179 2,33
-0,75 2,81 3,37 1,198 2,57
-1 2,61 3,13 1,198 2,55

In Figure 5, the warping coefficient & is plotted against the param-
eter == accountmg for the warping restraints. It showsthe results
obtalned with the proposals of Lindner and Gietzelt[3] and ECCS[4],

Pi and Trahair [5], Piotrowski and Szychowski [6] and expression
(23).

1,00 p--=-------p===-=-=---—-p---—----—-- T--—-—---- — -2
| |
1 1
1 1
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| |
1 1
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0,80 .
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0,70 Piotrowski & Sz.
0,60 ———Pi & Trahair
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0,50
0 5 10 15 20

El /c,L

Figure 5 Warping coefficient kwagainst %

The different proposals give close results. Some differences appear
when the restraintstend to fix warping, i.e. when ¢,, > «. Indeed, Pi



and Trahair tend towards 0,44 while the other proposals tend to-
wards 0,5.

Fromthe analyticalmodeldeveloped in 83,expressions of the equiv-
alent uniform moment factor G and the warping coefficient &, were
derived to determine the elastic critical bending moment of a uni-
form beam with doubly symmetric I-section subjected to linear
bending moment distribution with warping restraints at supports.
Whatever the bending moment distribution, &, only dependson the
warping stiffness, as expressed in equation (23). However, G de-
pendson both the warping stiffness and the bending moment distri-
bution as expressions (33) to (35) state. Formulae derived from the
analytical model will be compared against finite element analysesin
84.

4 Finite Hement Analyses
41 Numerical Models
Two finite element models are used for comparisons:

- Shellelements with ANSYS
- Beamelements with LTBeamN [1].

Linear Bifurcation Analyses (LBA) are performed considering
Young’s modulus £=210 000 MPa and Poisson’s ratio v=0,3.

The geometry of the studied beams is given in Table 5. Warping is
restrained by end plates, fixed or free at both ends. Thickness of the
end plates varies between 7 and 70 mm to extend the study beyond
the common practice.

Figure 6 End moment and fork support conditions

The shell element model is developed using 8-node elements, with 6
degrees of freedom at each node. The out-of-plane displacement
and torsional rotation of the section are fixed at supports aswell as
the axial displacement of web centre at one end toreproducetypical
fork support conditions (see Figure 6). End plates are modelled at
supports with shell elements. In addition, distortion is prevented
alongthe beam.

Eventually, nodal forces along the x-axis are applied to provoke end
moments, leadingto alinear bending moment distribution as shown
in Figure 6.

Figure 7 exhibits the out-of-plane displacements corresponding to
the critical mode of beam P2 subjected to a) uniform and b) linear
bending moment distribution with ¢ = -1, along with 20 mm-thick
end plates. The two modal shapes are quite different. Under con-
stant bending moment, half of asine wave isvisible while acomplete
sine-wave appear for ¢y =-1.These observationsare consistent with
the displacement fieldsassumed in §83.3.

.137E=12 229686

114843 .344528

459371 - 689057

574214 .B039

LG1E742

1.03359

b) ¢=-1
Figure 7 Out-of-plane displacement of P2 with 20 mm-thick end plates

The beam element model is developed with two-noded beam ele-
ments with 7 degrees of freedom (including warping) at each node.
Fork support conditionsare enforced by preventinglateral displace-
ment and torsional rotation at both ends and longitudinal displace-
ment at one end.

The degree of freedom corresponding to warping may be fixed or
connected to awarping springwith a stiffness Gy, calculated accord-
ingto equation (3). End momentsare directly applied to induce alin-
ear bending moment distribution.

Table 5 Geometry of studied beams

Beam hs(mm) tw (mm) b (mm) ts (mm) L(m)
P1 600 6 200 14 6
P2 800 10 280 14 10
P3 800 6 280 12 10
P4 300 4 100 6 6&9
P5 300 6 100 10 6&9
P6 3473 8 170 12,7 6
P7 3375 125 300 225 3&6

4.2 Comparison with the Analytical Model

4.2.1 Ruivalent uniform moment factorC;

Finite element analyses have been performed with the beam model
using LTBeamN and compared against analytical predictions. The



coefficient G was determined for a beam under linear bending mo-
ment distribution in the cases of (i) free warping and (ii) fixed warp-
ingat bothends and compared against both analytical modeland the
French National Annex [2].

Analyses were performed onbeamsP1,P2,P3,P6 and P7 (see Table
5). Figure 8 presents the values of G as a function of ¢.

French NA

An. free
An. fixed
+ FEA free
FEA fixed

-

-0,5

Figure 8 G for free or fixed warping

In addition to the values givenin the French National Annex [2], the
figure showsthe results obtained with finite element analyses (FEA)
and the analytical model, i.e. expressions (33) to (35), in the cases of
free warping (referred to as“free”) and fixed warping (referred to as
“fixed”).

For free warping, the analytical model is in good agreement with
FEA results. The value of G might be slightly overestimated (of less
than 3%) when ¢ is between -0,5 and 0 but the French NA is quite
conservative : G may be underestimated up to 10%.

For fixed warping, Figure 8 shows a good agreement between the
numerical and analytical modelswhen ¢ isgreater than-0,75.When
the ratio is below that value, the analytical model lays on the safe
side, 15%lower than FEA results. The deviation between the values
of G given by the French NA and FEA results when warpingisfixed
is up to 45%, confirming that the French NA is overly conservative
when warpingisfixed.

4.2.2 Hastic critical bending moment

To state about the consistency of the complete analytical model,
analyses were conducted using the two finite element models. The
values of the elastic critical bending moment M, resulting from FE
analyses were then compared against predictions of the analytical
model as well as Piotrowski’s [6] proposals.

The ratio Myl Mo, with Mo being the critical bending moment
when warping is free, is plotted against the end plates’thickness for
beam P2 in Figure 9a)to c). Thickness #,0f the end plates is directly
connected to the warping stiffness Gy given by expression (3).

Ajump in the values of # can be seen on Figure 9a)to c), between a
70mm thickness and infinite thickness corresponding to fixed warp-
ing conditions. The analytical model depicted in this article and for-
mula (5) from Piotrowski [6] are represented by continuous curves
for thicknesses ranging between 0 and 70mm and by empty trian-
gles for fixed warping.

Figure 9 shows a significant increase of the critical bending moment

when warping s fixed. In every cases, its value is at least almost dou-

bled (+95%or more).
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Figure 9 Increase in M for P2 under linear moment with warping restraints

When the bending moment distribution is uniform or triangular, all
the methods give the same results up to 30mm-thick end plates.



When the warping stiffness increases, the analytical model hardly
overestimates (of no more than 5%) the value of the elastic critical
bending moment when compared to finite element analyses. When
warping is fixed, the analytical model becomes slightly safer, with a
difference below 3%.

When ¢ =-1,the results given by the different methods coincide up
to a higher warping restraint. When the warping stiffness increases,
the analytical model lays on the safe side but the difference with the
shellmodelis not greater than 10%.

The variation between Piotrowski [6] and the analytical model is
only visible when the warping restraints are significant, particularly
when ¢ =-1.When compared to finite element analyses using shell
elements, the analytical modelalways lays on the safe side unlike Pi-
otrowski [6].

Table 6 shows statistical parameters about the calculated values of
the critical moment of the beams P1 to P5 (included) presented in
Table 5. The ratios between critical bending moments determined
with the analytical modeland the shell finite element modelare pre-
sented in Table 6. This table also shows the relations between the
critical bending moment increases M/ Mo calculated with the an-
alytical modeland FE analyses.

Table 6 Comparison between analytical results and shell finite element analyses

1} 1 05 0 -05 -1
(Mcr) M 1,006 1,006 1,007 1,005 0976
Mcr,O an
MCI‘

(M ) SD 00201 00201 00206 00178 0,0352
cr.0/ggA
M M 1,017 1,021 1,043 1,069 0954
M
coFEA Sp. 00207 00206 0,0220 00275 00345
Where:
- M: Mean

- SD:Standard deviation

The elastic critical bending moment evolution estimated by the ana-
lytical model is very close to the results of shell finite element anal-
yses. The difference is lower than 1% except when ¢ = -1 where it
increases up to 2,4%.

Criticalbending moments determined with the analytical modeland
FEAare slightly different, but their difference is less than 7%, partic-
ularly when ¢ is between -0,5 and 0. It matches with the values of ¢
for which the analytical and numerical models show small differ-
ences in the value of C; for free warping (see Figure 8).

The displacement and rotation fields could still be refined with a
third termto improve results. However, it would lead to heavier an-
alytical developments, leadingto a very cumbersome expression for
the equivalent uniform moment factor G. In addition, 7% is still an
admissible difference given that the resistant bending moment de-
termined according to Eurocode 3 Part 1-1 [7], Myr4, depends not
only on the critical bending moment but also on many other param-
eters.

5 Conclusions

The energy method has been used to derive an analytical expression

ofthe elastic criticalbendingmoment ofa beam with uniform doubly
symmetric I-section and warping restraints at both ends, subjected
to a uniform or linear bending moment distribution. The analytical
expression is the same as the French National Annex to Eurocode 3
Part 1-1 [2], but the warping coefficient &y and the equivalent uni-
form moment factor G have distinct expressions.

The warping coefficient &y has been shown to remain unchanged
whatever the bending moment distribution and only depends upon
the warping stiffness of the beam A, its length Land the stiffness of
the warpingrestraints G,. Furthermore, the equivalent uniform mo-
ment factor G, only based on the bending moment distribution in
the French NA [2], is found to also be depending on the stiffness Gy
of the warping restraints.

Results from the analytical model were shown to be in good agree-
ment with finite element analyses computed with the software
packages ANSYSand LTBeamN [1].

The increase inthe value ofthe criticalmoment is limited ifthe warp-
ing restraints are only obtained by end plates, but the benefit can
become significant if different end connections are considered
(fixed column bases, beam-to-beam or beam-to-column joints..).

Future work may include the derivation of analytical expressions to
determine the warping stiffness corresponding to realistic support
conditions. In addition, the bending moment distribution may be ex-
tended to generalise the expression of the elastic critical moment.
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