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Abstract

We present a novel technique that enables 3D artists to synthesize
camera motions in virtual environments following a camera style, while
enforcing user-designed camera keyframes as constraints along the se-
quence. To solve this constrained motion in-betweening problem, we de-
sign and train a camera motion generator from a collection of temporal
cinematic features (camera and actor motions) using a conditioning on
target keyframes. We further condition the generator with a style code
to control how to perform the interpolation between the keyframes. Style
codes are generated by training a second network that encodes different
camera behaviors in a compact latent space, the camera style space. Cam-
era behaviors are defined as temporal correlations between actor features
and camera motions and can be extracted from real or synthetic film clips.
We further extend the system by incorporating a fine control of camera
speed and direction via a hidden state mapping technique. We evalu-
ate our method on two aspects: i) the capacity to synthesize style-aware
camera trajectories with user defined keyframes; and ii) the capacity to
ensure that in-between motions still comply with the reference camera
style while satisfying the keyframe constraints. As a result, our system is
the first style-aware keyframe in-betweening technique for camera control
that balances style-driven automation with precise and interactive control
of keyframes.

1 Introduction

Designing a camera trajectory in a virtual environment is a demanding task gen-
erally achieved by a skilled artist through a sequence of keyframe refinements
(placing camera keyframes and tangents, checking results visually, and moving
the keyframes until completion). In the literature, only a few techniques have
been proposed to ease this design stage. Based on algebraic methods [2], visual

∗CFCS, Peking University
†University Rennes, Inria, CNRS, IRISA
‡Beijing Institute for General Artificial Intelligence

1



Figure 1: Our proposed deep-learning framework for camera keyframing offers
both high-level style specification and low-level keyframe control. The designer
specifies a desired camera style extracted from a reference movie clip (left side)
together with a set of camera keyframes as constraints (red cameras in the
middle image), and our framework automatically generates in-between camera
motions which comply with the specified style while satisfying the keyframe
constraints (snapshots on the right). As displayed, different input styles (from
Donen, Stanley. 1963. Charade. Universal Pictures, hereinafter “Charade,
1963”) correspond to different camera motions.

servoing [25], motion planning [28] or numerical optimization [27, 18], these
techniques generally provide a good level of automation at the cost of losing
fine-grain user control. Despite these advances, keyframing remains one of the
main methods used to produce animations as pointed out in Zhang and van de
Panne zhang2018data. Traditional keyframe interpolators however remain ag-
nostic to the type of motion, stylistic influence, or what they may be linked to,
which makes keyframing a labor-intensive and challenging process. An underly-
ing key issue in the design of interactive or automated camera control techniques
also stems from the difficulty to encode many cinematographic principles and
rules which guide the design of camera motions and placements [9].

Cinematography is indeed by nature an empirical process which rules and
conventions have been forged through years, tailored by experience and creativ-
ity. Rules also evolve over time and principles are often deconstructed, altered
or violated to convey specific narrative intentions. As a result, the selection of
an appropriate combination of rules and conventions to place and move a camera
requires to account for a broad set of factors ranging from low-level geometric
features (visibility, lighting, composition) to high-level cognitive and emotional
dimensions, all which increase the challenging nature of such a task.

In opposition to approaches that would try to encode rules [9], a few data-
driven techniques have displayed qualitative results in a specific class of prob-
lem such as drone cinematography [4, 16, 15] where relations between character
poses (or actions) and camera motions are learned from drone film footage.
To address ambiguities (different camera trajectories for similar character mo-
tions or actions), approaches have either tagged motions by hand according
to styles of motion [16], used reinforcement techniques [4] or one-shot learn-
ing [15]. In the general case of virtual cinematography, a possibility only re-
cently explored [21] is to mimic camera behaviors extracted from film clips. A
camera behavior is defined as a temporal correlation between camera trajecto-
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ries and character/actor features such as distance, relative orientation and size.
Jiang et al. jiang2020example propose to learn these correlations and handle
ambiguities with a Mixture-of-Experts (MoE) approach [20] where different net-
works (the experts) train on different sections of the dataset to avoid network
collapsing. Interestingly, such approaches address the problem of implicitly en-
coding elements of cinematographic style within a latent space representation,
and throughout this paper, we will refer to a cinematographic style as the latent
encoding of a camera behavior.

Yet, despite some degree of control offered through style specification or
a selection of reference clips to be reproduced, such data-driven approaches
do not account for constraints on the trajectories such as handling collisions,
or ways to force camera positions at specific locations and angles. Indeed,
while such learning-based approaches excel in generalizing from a wide range
of examples – and in embedding intrinsic knowledge in compact latent spaces
– the degree of user control they offer remains limited. This central question
of controllability in learning has however been addressed in approaches such
as motion in-betweening for character animation [30, 12] where user-designed
keyframes guide the interpolation, giving the designers an additional degree
of control and greater precision. A number of data-driven motion prediction
approaches [13] can also integrate constraints interweaved within the learning
stage. Current approaches however do not account simultaneously for multiple
styles (in motion) coupled with constraints. Furthermore, this general question
of controllability in learning has not been addressed in camera control, and while
many automated camera control techniques exist, none offer fine-grain control
with high-level style specification.

In this paper, we propose a framework for camera control authoring which
enables both an interactive level of control through the specification of keyframe
constraints, and an automated level of control through the specification of high-
level camera styles. In that, we follow the general recommendation when in-
troducing automation in creative tasks: balancing computer assistance with
feeling in control [14]. The proposed framework is designed to synthesize an-
imations from user-specified dense or sparse keyframes as in Zhang and van
de Panne zhang2018data and yet offers the control and exploration of different
camera motions along the animation as in Jiang et al. jiang2020example.

The design of such a framework requires addressing a central challenge which
is how to handle the simultaneous satisfaction of low-level geometric keyframe
constraints and high-level camera style specifications which often are in contra-
diction. To address this challenge, we draw inspiration from the camera style
latent space representation of Jiang et al. jiang2020example. Rather than fol-
lowing a Mixture-of-Experts approach (MoE) where separate experts are trained
and balanced through a gating network, we rely on the design of, first, a Long
Short-Term Memory (LSTM) gating network (the extractor) trained to extract
and identify camera behaviors (geometric correlations of motions) from film se-
quences. These behaviors are encoding in a latent space representing camera
styles. We then design a second LSTM network (the generator) in an autore-
gressive way whose role is to generate a camera trajectory conditioned by (i) a
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Figure 2: Our proposed framework for learning camera together with keyframe
constraints composed of a camera behavior extractor (Gating LSTM), which
extracts camera behaviors from reference clips (from Charade, 1963 ), and a
camera motion generator, which generates camera trajectories that both meet
the camera behaviors and required keyframe constraints, speed and directions.

given style in the latent space and (ii) user-designed keyframe constraints. The
training is performed by sampling keyframes on both synthetic and real datasets
of cinematic features and using a time-to-arrival embedding to ensure keyframe
satisfaction. The sampling is designed to ensure that dense and sparse keyframe
constraints can be satisfied. Finally, a dedicated mapping network is trained
to warm start the hidden states of the generator LSTM, enabling an additional
control of camera velocities by the designer and improving the training loss.

The contributions of this paper are therefore:

• the provision of an interactive camera keyframing tool which mixes low-
level control through user-specified keyframes and high-level control of
in-between motions driven by camera behaviors extracted from example
film clips;

• the design of a two-fold learning framework (gating + generation) which
improves over previous work by exploiting a simpler structure than the
Mixture-of-Experts and is trained on a dataset of motions extracted from
the MovieNet repository [19];

• a validation of the system through the design of specific metrics to en-
sure that a proper balance between style control and keyframe control is
achieved.

2 Related Work

2.1 Keyframe-based animation control

As highlighted in Zhang and van de Panne zhang2018data, given the impor-
tance of keyframing in general animation tasks and the need to assist designers
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in automatically or interactively filling in gaps of animation, a number of tech-
niques have been proposed to constrain the motions such as using space-time
constraints [29], physical models for realism [7], or probabilistic approaches [26].

The problem is actually similar to curve-fitting with a sparse dataset and is
often addressed through optimization (see the tangent-space technique [6]). In
the specific case of camera keyframing, optimization has been used for tasks such
as designing overviews of car motions [18], generating in-between animations
that ensure visual properties [24] or generating camera rails between specified
viewpoints [8]. In Lino and Christie lino2015intuitive, they rely on the Toric
Space representation to blend visual properties (camera composition, camera
angle and distance to characters) and maintain the blended properties over
time. Yet, the system does not handle style characteristics, nor can it handle
very sparse keyframes.

In character animation, by relying on the availability of rich datasets, ap-
proaches such as motion matching perform a search in motions to match con-
straints such as keyframes or trajectories [5]. This problem of motion in-
betweening has also been addressed through learning. Zhang et al. zhang2018data
designed a Recurrent Neural Network (RNN) that is conditioned on target
keyframes. By learning motion characteristics, together with a dedicated blend-
ing function to ensure keyframe matching, the approach provides both pre-
cise keyframe control and respects motion characteristics from the database,
yet does not offer control in the style of interpolation. More recently, Harvey
et al. harvey2020robust extended the state of the art motion predictors which
using RNNs, by adding a time-to-arrival embedding to inform the network of the
progression towards a keyframe constraint, and a scheduled target noise vector
to enforce stochasticity in the transitions. In addition, a Generative Adversarial
Network (GAN) is exploited to further improve the quality of the transitions.
This method is limited to gaps of short motion intervals, say 40 frames, due
to cyclic motions and despite being able to generate some variety in motions
between the gaps (by using a noise vector), the degree of control on the style
remains limited.

In contrast, we first design an LSTM gating network which identifies varia-
tions in behaviors of the camera, and then design an autoregressive prediction
network that is conditioned on the keyframes and the style label. As a result, not
only can keyframes be enforced, but designers can constrain the camera behav-
iors between the keyframes, by either explicit specification, or extraction from a
reference clip. Given this ability to comply to behaviors, motion sequences can
be generated with far less keyframes than traditional approaches.

2.2 Camera behavior mimicking and learning

As demonstrated through a number of contributions [9], the automated or inter-
active design of camera motions requires manual encoding of cinematographic
rules and conventions which are numerous, and in some cases contradictory.
Among the combinatorial possibilities in placing, moving and cutting between
cameras, only few subsets are valid, and these valid subsets characterize dis-
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tinct cinematic styles. Galvane et al. galvane2015continuity relied on the
manual design of weights between rules, independently of events in the scene.
Other optimization-driven frameworks encoded camera motion characteristics
(smoothness, optic flow) for specific requirements such as route overviews [18] or
virtual walkthroughs [1], with also the burden of balancing weights of different
rules through experiments.

In such a context, the idea of automatically learning how cameras should
be placed, moved and edited from real footage is appealing, but requires to
address challenges such as (i) extracting cinematic features, (ii) accounting
for stylistic variations, and (iii) adapting the learned knowledge to new en-
vironments. By addressing a specific context - drone cinematography - Huang
et al. huang2019learning have been the first to propose the automated learning
of camera motions. After a careful selection and manual classification in four
styles of real drone footage following some characters, the authors proposed an
LSTM structure to learn the correlation between the characters motion and
the drone motion. Extensions were proposed to account for scene background
information in the correlation [17] or use one-shot learning techniques to avoid
manual style classification [15]. In the same context, the learning of artistic prin-
ciples for drone cinematography was addressed by deep Reinforcement Learning
(RL) [11]. Viewpoint selection was supervised by a deep RL agent trained and
evaluated on synthetic content. Later contributions also relied on crowd-sourced
synthetic contents [3] to learn by regression a synthetic descriptor space, estab-
lishing correlations between low-level shot parameters (drone angle, distance,
velocity) and perceptually meaningful parameters such as exciting, enjoyable,
establishing, revealing.

By addressing virtual cinematography applications, Jiang et al. jiang2020example
proposed the notion of camera behaviors as the temporal evolution of camera
features in correlation with scene features (actors on-screen positions, distances
between actors, relative orientations), and showed how such behaviors could
be learned by automatically extracting features from film footage. To address
ambiguities in the dataset (different camera motions for similar scene features),
the authors propose a Mixture-of-Experts (MoE) deep learning approach, which
yields a latent camera style space that can be used to both identify camera be-
haviors from real footage, and drive camera motion predictors. Yet, the degree
of control for designers is limited to choosing reference clips from which style is
extracted. In contrast, our approach provides designers with additional flexibil-
ity through the specification of keyframe constraints, while enforcing selected
camera styles between keyframes.

3 Overview

Our objective is to provide designers with a camera control tool which can en-
code camera styles from example clips and transfer them to a given 3D animation
while accounting for to user-designed keyframe constraints. In a nutshell, we
want to solve a constrained style-aware camera motion in-betweening problem.
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3.1 Camera behaviors

(a) (b)

Figure 3: Illustration of cinematic features (from Charade, 1963 ): (a) the char-
acter features, such as inter-character distance, absolute and relative orienta-
tions on yaw direction of shoulders and (c) the camera pose expressed in Toric
space coordinates that describes a relative pose using framing features (the 2D
on-screen position of characters) together with pitch and yaw angles (θ, φ).

A camera behavior depicts a specific correlation between character and cam-
era motions. In this paper, we mathematically define this correlation using the
cinematic feature space proposed by jiang2020example. The cinematic feature
space for a given frame is composed of character features xv and camera features
xc, defined as:

xv = {dAB , sA, sB , sAB ,M} ∈ R5, (1)

xc = {pA,pB , θ, ϕ} ∈ R6, (2)

where A and B refer to left and right characters on the screen respectively, dAB

is the 3D distance between the two characters, sA (resp. sB) represents the
angle between line AB and the front vector orthogonal to the segment between
character A (resp. B) shoulders defined as the relative orientation of the torso to
line AB. sAB describes the angle between the characters shoulders orientations.
M is a binary variable indicating the main character of the sequence (usually the
character occupying a larger area in the shot). The camera pose is expressed
in the Toric space coordinate [24] which is an expressive and compact local
representation on two given targets. pA,pB represent the normalized on-screen
position of two characters, θ and ϕ are two parametric angles representing the
yaw and pitch angles towards the targets in 3D space (see Fig. 3 for details).
Based on the preceding definitions, a keyframe constraint can be represented as
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a camera feature xc at a given time; while a camera behavior is the evolution of
cinematic features in a period of time. We denote Xv a sequence of character
features and Xc a sequence of camera features.

3.2 Pipeline

We design a two-stage pipeline (see Fig. 2) comprising a camera behavior ex-
tractor which extracts a camera behavior from a real film clip and encodes it
as a style code in a latent space representation and a camera motion generator
which is a predicting generative LSTM module conditioned on the given style
code as well as user-designed keyframe constraints.

The input of our trained system is a 3D animation with two characters, a
number of user-defined camera keyframes along the animation, and a reference
video sequence to specify the behavior. We first estimate the sequence of cine-
matic features (character features and camera motion) from the reference video
as in Jiang et al. jiang2020example and input the extracted information to the
camera behavior extractor to identify a corresponding style code. Then, we de-
liver the style code to the camera motion generator together with the immediate
next keyframe constraint, the last camera pose, as well as the target 3D charac-
ter animation. The system outputs the current camera pose and feeds it back
as the input of camera motion generator to predict the camera trajectory in an
autoregressive manner. The camera poses generated at different stages of the
system are all expressed in Toric space coordinates which can then be applied
to a 3D animation to yield the final 6D camera pose (position and orientation).

In the following, we introduce our main method and the training details in
Section 4. The ablation study and results are demonstrated in Section 5 and
Section 6, before the limitations and discussion in Section 7.

4 Camera motion in-betweening

We first design a camera behavior gating network able to encode different geo-
metric behaviors from reference clips in a latent space of camera styles. We then
design a camera motion generator network to generate trajectories controlled
by keyframe constraints and style labels, and illustrate how our networks are
trained simultaneously.

4.1 Camera behavior gating network: the extractor

Our gating network acts as a camera style selector through the construction of a
low dimensional manifold of camera styles. It is designed as an encoder network
using a LSTM backbone structure. The sequence of cinematic features Xv,Xc

extracted from a film clip is fed to the gating LSTM network with the hidden
state initialized to zero state. The last vector of the LSTM output is delivered
to a fully connected module to obtain a low dimensional style code zc ∈ R4 (see
appendix A.1 for more details on the network architecture).
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We do not add any constraints to zc since the normalization operations
such as softmax or KL-divergence tend to limit the capacity of style codes
to represent different behaviors, and can require additional weight fine-tuning
(e.g. KL-divergence loss). Despite its low dimension, the latent space provides
a clear separation of behaviors. This is illustrated in Fig. 4 by displaying the
PCA representation of the style code where colors represent the four behaviors
(direct, relative, side and orbit) found in our synthetic dataset. The symmetric
distribution reflects left or right main character on the screen.

4.2 Camera motion predicting network: the generator

Given a style label from the latent space, our proposed camera motion generator
is in charge of predicting the current camera pose based on the current character
feature vector, the next keyframe constraint and the past camera pose. We use
LSTM as the backbone structure as well, and the system can be formulated as:

xc
i = f(zc,xc

i−1,x
v
i ,K, ztta, h

LSTM
i−1 ), (3)

where xc
i and xv

i represent camera and character feature at frame i respectively;
zc depicts the style code of the reference camera behavior; K ∈ R11 represents
camera and character feature at the next keyframe; time-to-arrival embedding
ztta ∈ R128 indicates the number of frames to the next keyframe and hLSTM

i−1

is the hidden state of LSTM network at frame i − 1. All the above features
except the hidden state are concatenated and entered into an encoder which is
composed of two fully connected layers with ReLU activation in the succession
of each. The LSTM network is fed with the output of the encoder, and the
hidden state hLSTM

i−1 from the previous iteration. The network outputs a hidden
state vector hLSTM

i ∈ R256 to be reused in the next iteration. The decoder is
composed of two fully connected layers with ReLU only after the first one. The
predicted camera poses are generated autoregressively: each predicted frame
serves as input for the next LSTM iteration.

We also designed our system to handle both dense and sparse keyframes.
Inspired by Harvey et al. harvey2020robust, we use the time-to-arrival signal ztta
to measure the time between the current frame and the next target keyframe.
This signal gives the network a hint on the importance of current keyframe
constraint. The time-to-arrival signal embedding is defined as a 2-dimension
vector ztta:

ztta,2i = sin(
tta

b2i/d
), (4)

ztta,2i+1 = cos(
tta

b2i/d
), (5)

where tta is the number of time steps to the next keyframe and d is the dimension
of the input embedding. The basis value b influences the rate of change in
frequencies along the embedding dimension.

The ztta embedding provides a smooth and continuous positional encoding
of the current frame. However, to reduce the influence of ztta with distant
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direct relative side orbit

style code hidden state

Figure 4: To validate the proper identification of camera behaviors, we illus-
trate PCA results of the style code and hidden state vector distribution. Both
distributions display a good separation among camera behaviors, tagged for the
display only and not used in the training. Behaviors are coloured according to
the tags in the synthetic dataset: direct, relative, side and orbit.

Curvature Constraint

h!$%&'

Camera0 Camera1 Camera4...

FC

FC

Style Code

Hidden State 
Mapping

Velocity Constraint

h!$%&'

Camera0 Camera1 Camera4...

FC

FC

Style Code

Hidden State 
Mapping

Figure 5: By learning the mapping from a style code and several camera frames
(5 in this paper) towards the starting hidden state of our autoregressive gen-
erator, we provide an additional degree of control for the users through the
specification of camera velocities.

keyframes, tta is capped to a threshold value ttamax. We empirically set ttamax

to 200. This enables our system to handle both sparse and dense keyframes
(see companion video), and favors the enforcement of the camera style between
distant keyframes.

4.3 Velocity control using hidden state mapping

For some particular types of camera behaviors, camera features xv cannot be
fully determined by character features xc. Extra parameters are required, typ-
ically to encode motions with phase and frequency information for some cyclic
orbit tracks in which the camera oscillates from one side of a character to the
opposite side of the other character. However, utilizing the combination of la-
tent style code zc ∈ R4 and two keyframes as input is not sufficient to enforce
the prediction LSTM network to generate the desired camera motion, especially
when the hidden state of a LSTM network is initialized to zero or a random
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sample from a Gaussian distribution.
To improve our prediction network and extend the range of camera behaviors

it recognizes, we extend our system by adding a hidden state mapping module
H(·) which maps a sequence of five camera configurations xc

0..x
c
4 (representing

the desired local velocity) and a style code zc to a specific starting hidden state,
defined by:

hLSTM
0 = H(zc, ⟨xc

0, ...,x
c
4⟩). (6)

As demonstrated in Fig. 5, the mapping function H(·) has two fully connected
layers with ReLU activation after the first one.

The hidden state of a LSTM network is normally initialized to zero or a
random sample from a Gaussian distribution. However, the hidden state of
our generator is initialized or reset through a learnable hidden state mapping
function H(·). This design helps to resolve the ambiguity issue on camera
behavior classification and endows our system with the ability to control camera
direction and speed at any location along the trajectory by resetting the LSTM
hidden state. More specifically, by simply breaking the original hidden state
feedback loop in LSTM generator network and applying a 5-frames long desired
camera motion to H(·), artists can control camera direction and speed at any
location along the trajectory. A concrete example is displayed in Fig. 6 where
different velocities at initial frame (001) and middle frame (090) are applied. It
is notable that the hidden state mapping is unaware of the history information.

4.4 Training and loss

We trained all three modules simultaneously in an end-to-end fashion with an
objective formulated as a weighted sum of two losses, defined as:

L = Lrec + LK =
1

n

n∑
i=1

||x̂c
i − xc

i ||2 +
1

||K||
∑
k∈K

||x̂c
k − xc

k||2, (7)

in which the reconstruction loss Lrec measures the difference between pre-
dicted camera features x̂c and ground truth camera features xc; while the
keyframe loss evaluates the difference of camera features between the gen-
erated keyframes and the ground truth; and K is the set of keyframes.

We use the Adam [22] adaptive gradient descent algorithm. Training is
performed for 200 epochs and takes around 4 hours on an NVIDIA Tesla V100S
GPU with a batch size of 1024. We use the exponential learning rate policy
with the base learning rate set to 0.001 and decay 0.97 after each epoch.

4.5 Dataset

Our work relies on the creation of a hybrid dataset composed of 2,640 syn-
thetic sequences and 17,700 movie sequences. The synthetic data is the same
one as Jiang et al. jiang2020example generated from 30 manually designed 3D
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frame 001 frame 050

frame 090 frame 200

Figure 6: The proposed system enables designers to specify keyframes with
initial velocities. In this example, the same keyframe positions and camera
style code is used. As displayed, the resulting trajectories are guided by the
different velocity directions defined at the starting keyframe (time 001) and the
mid keyframe (time 090) respectively. This is achieved by updating the LSTM
hidden state through a dedicated network which maps velocities with hidden
states.

animated scenes with a length of 1,500 frames each. Four well-known cine-
matography behaviors (direct track, side track, relative track and orbit track)
are implemented in the dataset.

The movie data is extracted from the MovieNet dataset [19] which consists
of 1,100 movies and 1,600,000 clips. We estimated the cinematic features from
a subset of movie clips using the cinematic feature estimator [21] (a convolu-
tional neural network which regresses the cinematic features from 2D skeleton
motions). For the movie dataset, we first filter the sequences according to their
number of characters and clip length. A visibility requirement is also applied to
ensure the target characters are constantly present on the screen. In order to
avoid erroneous estimation and imprecise behavior recognition caused by abnor-
mal data samples, we exclude the clips with unusual character sizes and extreme
recording lengths (overly short or long). We finally select 17,700 movie clips for
a total of 4,900,000 frames. A smoothing filter (average sliding window) was
applied to the output of the cinematic feature estimator to reduce the noise in
the data. Extractor, generator and mapping modules are all trained with this
same dataset, yet dedicated treatments are applied for some modules.

Preparing sequences for the extractor . The identification of camera
behaviors requires a long enough sequence of cinematic features. As reported
in Jiang et al. jiang2020example, 300 frames is sufficient and we therefore
randomly sample sub-sequences of greater length. To accelerate both training
and testing procedures, we reduce the number of input frames using a down-
sampling technique (see Section 4.4). Considering the continuous nature of a
camera motion, this downsampled frame rate has a limited influence on learning
performance.
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Table 1: Influence of different hidden state initializations on trajectory recon-
struction error. The error is expressed as the difference in Toric space coordi-
nates between the generated trajectory and the ground truth trajectory.

Direct track Relative track Side track Orbit track Average
Our method 0.107 0.050 0.025 0.049 0.057
Zero hidden state 0.162 0.081 0.045 0.263 0.138
Gaussian hidden state 0.146 0.074 0.045 0.263 0.132
Warm start hidden state 0.173 0.088 0.071 0.116 0.112

Preparing sequences for the generator . For the generator, we extract
segments of cinematic features at random locations, with a number of frames
larger than ttamax = 200 frames. Then two camera frames are arbitrarily
selected from each segment and will represent the starting and ending keyframes
from which to learn. As a result, training data covers different lengths between
keyframes as well as different locations of keyframes along the trajectories.

While existing motion in-betweening techniques [12, 30] input samples at
every frame, we propose in practice to downsample the input signal (both cam-
era and character features) by only considering every five frames. Resulting
camera motions are smoothed with low frequencies, and filled with cubic inter-
polation when required. Since the autoregression is computationally intensive,
our downsampling strategy can significantly accelerate the camera prediction
process with a limited influence on results.

5 Ablation study

5.1 Evaluating the hidden state mapping

In order to justify the effectiveness of our hidden state mapping function H(·),
we compare our method with three other hidden state initialization methods.
We first test the zero and Gaussian-initialized hidden states which are commonly
used without extra knowledge of the starting camera velocity. We then design
another framework that warm starts the hidden state from zero by inputting
the first five frames of ground truth camera and character features, instead of
using the predicted features, both during the training and testing stage.

We compare the four methods by reporting trajectory error on the synthetic
evaluation dataset. As shown in Tab. 1, our method outperforms the others
for all behaviors; and the warm start scheme exhibits noticeable performance
gain on orbit track compared with zero and Gaussian initialization. These
results confirm the efficiency of the hidden state mapping module in reducing
ambiguities in camera behaviors.
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ground truth

ground truth

direct relative side orbit

Figure 7: User-specified keyframes are placed at increasingly larger distances
from the trajectory of a given style. As displayed, our system adapts well to
the keyframes. We re-extract the style codes from the generated trajectories
(shown with crosses in the PCA representation on the right part of the figure).
As displayed our system moves from the given style to adapt to the keyframe
constraints.

5.2 Evaluating the satisfaction of style and keyframes

In the following, we test the capacity of our method to address conflicting situ-
ations that arise when specified keyframes are distant from what is expected in
a given camera style.

A qualitative evaluation is displayed in Fig. 7 in which we use 5 colors to
represent 5 different situations with identical starting keyframe but different
ending keyframes (represented as the colored camera icons). Among them,
the keyframe and curve with cyan color represent the ground truth (i.e. the
unconstrained trajectory generated by the specified style). The other 4 curves
are generated using the same style code with specific ending keyframes. As
displayed in Fig. 7, all the trajectories pass through their corresponding ending
keyframes. We then project back the generated trajectories in the latent camera
style space (using the gating network). The corresponding style codes gradually
drifts away from the specified style code. Both the resulting trajectory and
latent space representations display a smooth and consistent change.

We further conduct a quantitative comparison with Jiang et al. jiang2020example
on the synthetic dataset.As shown in Fig. 8, our evaluation includes two steps:

i) we extract the style code zc from ground truth trajectories xc with the
gating network, and use the style code to generate the trajectories xc′ with the
same animation but displaced keyframes. The displaced keyframes are generated
by randomly perturbing keyframes on ground truth trajectories with different
magnitudes of noise and clamping them to a valid camera pose.

ii) we then extract the style code zcr from xc′ and generate the trajectories
xc
r with the same animation and the ground truth keyframes.
We designed two metrics, latent normalized silhouette distance (SD) and

trajectory distance (TD) to respectively evaluate how style (SD) and behaviors
(TD) are preserved. The definition of SD is as:

SD(Zr
c , Zc) =

S(Zr
c , Zc)

S(Zc, Zc)
, (8)

where the distance function S(U, V ) describes the average Euclidean distance
of vectors between set U and set V ; Zc and Zr

c are collections of style codes zc
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and zrc respectively. All the zc in Zc should belongs to same style category, and
the SD(Zr

c , Zc) indicates the impact of keyframe perturbation on style.
Another metric TD = ||xc − xc

r|| tends to measure behavior similarity
through trajectory discrepancy. For a valid evaluation, xc

r needs to be generated
using identical keyframe constraints as xc, and with the latent code compatible
with the augmented keyframe constraints. To achieve compatible latent code,
we correct xc′ firstly using a linear interpolation as:

xc
i
′+ = (1− λi)∆xck

i−1 + λi∆xck
i , (9)

where ∆xck
i−1 and ∆xck

i represent keyframe distance of the immediate left and
right keyframes of frame i, and λi ∈ [0, 1] represents the weight. Then, the
compatible zcr is extracted from the corrected trajectory xc

′.
We compare three methods in Tab. 2. The first one is our proposed method

with the trajectories generated following the preceding instructions; the second
one comes from Jiang et al. jiang2020example with behavior constraint only;
in order to make a fair comparison with Jiang et al. jiang2020example, the
third one labelled as ’only style’ is a modified version of our proposed method.
xc′ in step i) is generated using ground truth keyframes and then refined to
meet the augmented keyframes through linear interpolation. The result in
Tab. 2 shows that our proposed method could maintain the behavior when the
keyframe difference is not too far from the ground truth. With quite different
keyframes, our method better satisfies the behavior specification compared to
Jiang et al. jiang2020example.

Modify
keyframe

Restore
to original
keyframe

Silhouette  
distance

Style Code !!

Trajectory 
distance

Style Code !"!

!#

!#

!#$

!%#

Figure 8: Metric for evaluating our behaviors preservation capacity when con-
flicting with distant keyframes. Two metrics are introduced: i) Silhouette dis-
tance (SD) is style code distance before and after keyframe modification; ii)
Trajectory distance (TD) means the difference in trajectories between the orig-
inal one and the one which reuses the style code from the modified keyframe.
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Table 2: Trajectory reprojection loss for different keyframe bias. Latent normal-
ized silhouette distance (SD), trajectory distance (TD). The top row displays
the distance from the initial ground truth value θ to the new θk value of the
given keyframe in radians. By increasing the distance, we measure the capacity
of the network to meet the keyframe constraint (metric TD) and the style con-
straint (metric SD).

Metric 0 (radian) 0.1 0.3 0.5 0.9 1.2 1.4 1.6 1.8 2.0
Our method SD 1.009 1.009 1.015 1.025 1.058 1.082 1.1 1.12 1.157 1.211
Our method (only style) SD 1.013 1.013 1.023 1.043 1.114 1.224 1.338 1.426 1.487 1.534
[21] SD 1.016 1.012 1.015 1.034 1.099 1.212 1.316 1.401 1.461 1.510
Our method TD 0.065 0.069 0.089 0.115 0.175 0.219 0.24 0.263 0.302 0.359
Our method (only style) TD 0.065 0.072 0.103 0.139 0.254 0.323 0.379 0.41 0.452 0.475
[21] TD 0.147 0.239 0.444 0.554 0.804 0.935 0.979 1.026 1.065 1.102

5.3 Evaluating the influence of movie data

During the training process, the sampled keyframes are all taken from the
ground truth trajectories. However, the risk of over-fitting increases if we only
train with synthetic data. As real movie data contains more complex and natural
camera behaviors, we exploit them to increase the variety in camera behaviors
when training, and hereby demonstrate their influence.

We compare the testing error in evaluation dataset and also evaluate SD
and TD metrics with the process illustrated in Fig. 8. In contrast with Section
6.2, we do not apply trajectory correction via linear interpolation for a strict
keyframe constraint, but calculate the keyframe distance (KD) as another metric
to measure the capacity to meet the keyframe. Tab. 3 demonstrates that the
movie data helps to increase the robustness and the capacity of the network to
meet both behavior and keyframe constraints.

6 Results and experiments

6.1 User interface

To apply our work in practice, we deploy the model in a custom plugin in Unity
2019. With a given 3D animation, the user can set and edit the keyframes on
the timeline. The UI then automatically generates the essential information and
communicates with the trained camera motion predictor by ZeroMQ to produce
trajectories from different style codes and given keyframes.

As shown in Fig. 9, we provide trajectories with camera behaviors from user
specified movie clips or default synthetic trajectories as reference clips. The
user can select trajectories with different behaviors between keyframes (D).
Furthermore, the user can adjust the results by adding or removing keyframes
(C). The running speed of our system is fast enough for animation design. When
working with a new scene, we need to process the scene information in 200 frames
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Table 3: Influence of adding movie data in the training. The above table shows
the generated trajectories distance as testing loss in testing dataset, and the
bottom table shows the capacity to preserve behaviors with different keyframe
and the capacity to meet the keyframe constraints. By increasing the distance
between the groundtruth value and a new keyframe, we measure the capacity
of the network to meet the keyframe constraint (metric TD) and the style con-
straint (metric SD).

Direct track Relative track Side track Orbit track Average
Our method 0.107 0.050 0.025 0.049 0.057
Our method without movie data 0.126 0.056 0.033 0.060 0.069

Metric 0 (radian) 0.1 0.3 0.5 0.9 1.2 1.4 1.6 1.8 2.0
Our method SD 1.009 1.009 1.012 1.019 1.040 1.060 1.075 1.095 1.126 1.168
Our method without movie data SD 1.022 1.022 1.024 1.029 1.045 1.070 1.103 1.147 1.195 1.242
Our method TD 0.064 0.068 0.088 0.114 0.168 0.207 0.227 0.242 0.269 0.311
Our method without movie data TD 0.076 0.078 0.093 0.116 0.177 0.231 0.271 0.321 0.355 0.395
Our method KD 0.016 0.021 0.051 0.085 0.154 0.192 0.216 0.235 0.251 0.277
Our method without movie data KD 0.026 0.037 0.080 0.125 0.212 0.258 0.281 0.299 0.321 0.351

per character per second. After that, we can generate camera trajectories with
user satisfied keyframe constraints in more than 2,000 frames per second.

Keyframe editing and trajectory generation In the user interface, the
user can set keyframes directly on the timeline (B). To adjust the camera view of
a selected keyframe, user can assign the target characters on which the keyframe
focus and set the camera pose. After choosing the favored keyframes, the ‘gen-
erate’ button triggers the computation of trajectories. If no specific style code
is selected, trajectories with different style codes are generated automatically
and listed in the interface for user to select and preview.

Character transition and cutting For complex scenes with multiple char-
acters, we can specify the two target characters for each individual keyframe
which (C in Fig. 9) so to perform transitions between characters. Changing
character information is sent to the model and the resulting Toric camera pa-
rameters will be applied to the new character targets.

Collision avoidance Collision avoidance is always a critical issue when artists
design animations since the desired camera motion may unexpectedly hit other
objects in the virtual scene. Compared with the example-driven solution [21],
which has to redundantly try multiple references clips to find one without col-
lision, here the designer has the ability to avoid collision by easily inserting a
keyframe or forcing the velocity to where no obstacles blind the camera’s view.
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A

B

C

D

Figure 9: Our camera trajectory editing interface. The scene view (A) displays
the animation. In the timeline (B) the user can add, drag, and delete keyframes
(inverted triangles), as well as drag the process of animation. The keyframe
editing (C) allows the user to select two target characters, shot view and Toric
camera pose at the keyframe. The trajectories selection (D) provides generated
camera trajectories with different behaviors for the user to choose. The button
on the bottom is used to preview a result (Play), generate trajectories (Generate)
and save results (Save).

frame 1 frame 250 frame 500 frame 660 frame 830 frame 900 3D Scene

Figure 10: Experiment with same keyframes and different behaviors: different
colors represent different camera behaviors. Frames with red camera icon at
the corner refer to keyframe constraints. We observe that constraints are well
enforced in the 3D content and in the rendered snapshots.

6.2 Results

Dialogue scene For this result, we choose a fierce argument sequence (900
frames at 30 fps), and generate camera trajectories under different required
camera behaviors and keyframe constraints. We test our method both on style
variation and keyframe matching. As illustrated in Fig. 10 and Fig. 11, we
demonstrate the camera trajectories with different behaviors using the same
keyframes and with the same behavior but different keyframes respectively.

For the former experiment, the main idea is to utilise different camera behav-
iors to generate motions with the same keyframe constraints in order to highlight
that our method is able to converge independently on the behaviors. On the
other hand, in the later experiment, we show that our method can fine-tune the
trajectories in a low-level fashion and retain the behavior style simultaneously.
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3D Sceneframe 1 frame 250 frame 500 frame 660 frame 830 frame 900

Figure 11: Experiment with different keyframes and same behavior: different
colors represent different keyframes fed to the system with the same style code.
All three sequences belongs to a same style but their trajectories adjust well in
response to the required keyframes (frames with different colors of camera icons
at their corner).

frame 250 frame 380 frame 780frame 490frame 001

Figure 12: This figure displays a result designed by an animation artist using
only 10 keyframes for a 24 seconds sequence of a zombie fighting scene. We
show the keyframes and camera trajectory simultaneously with the rendered
animation snapshots.

Zombie scene For the zombie scene, we choose a close quarter battle sequence
(900 frames at 30 fps), and show the camera trajectory evolution followed by
editing the keyframes, as illustrated in Fig. 12. The main challenges in this
scene are the complex and fast-paced motions of all 5 characters and the wide-
spread obstacles which may cause collision with the camera. In this scene the
targets are different from one keyframe to another to make the camera catch
up with the character motions. The sequence was designed by an senior previs
artist. By editing the keyframes, he had interactive control over the trajectories
to both avoid collisions with the scene and fine-tune the camera path.

Hockey scene For the Hockey scene, we choose a hockey game sequence with
ten players and two goalkeepers (1300 frames at 30 fps) and show the camera
trajectories in Fig. 13. The main challenges in this scene are the fast-paced
motion of characters and frequent main characters switch due to the pass of the
hockey ball. By editing keyframes, we have the ability to fine-tune the trajectory
and increase the pitch angle to deal with the occlusion between players. The
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frame 370 frame 560 frame 1150frame 850frame 001

Figure 13: In this hockey game scenario, our method is able to generate dynamic
and qualitative camera motions using only 10 keyframes. Rendered animation
snapshots and the overview trajectory are displayed.

our method  (3 keyframes)                    cam-on-rails (3 keyframes)                  cam-on-rails (20 keyframes)

Figure 14: We show a comparison with the camera-on-rails interpolation
method. The figure illustrates that our proposed method (red) can produce
dynamic and styled camera motion with only 3 keyframes, whereas the camera-
on-rails of 3 keyframes (blue) only interpolates without extra style control be-
tween the keyframes. To achieve a similar result w.r.t our proposed method, 20
keyframes are required to match the camera-on-rails method (cyan).

final result provides a different experience compared to common way to watch
a game.

6.3 Comparison with optimization based methods

To demonstrate the efficiency of our approach, we compare with optimization-
based methods which are also commonly employed in the offline camera path
planing applications. In order to make a fair comparison, we choose the Camera-
on-rails [8] technique as candidate, which handles specifically the framing of two
targets also with the aid of a Toric coordinate representation. Given keyframe
camera set K, the technique searches for the optimal parameters on a third-
degree spline curve (the camera rail) by minimizing a metric expressed on the
framing along this trajectory between adjacent keyframes. The metric is ex-
pressed as a distance between the spline curve and a curve which perfectly
interpolates keyframes’ visual properties along the sequence.

The comparison is conducted between three camera motion in-betweening
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trajectories: i) Xc
ours is generated utilizing the proposed method with 3 user-

designed keyframes and the desired behavior; ii) Xc
opt is generated utilizing the

camera-on-rails method with the same keyframes as Xc
ours; iii) Xc

opt is gener-
ated utilizing the camera-on-rails method as well, but with increasing number
of keyframes until the generated trajectory reaches a qualitative similarity to
Xc

ours. In essence, this mimics the process when an artist manually creates a tra-
jectory by setting keyframes and using optimization-based methods to achieve
the goal in-betweening trajectories. Results are displayed in Fig. 14 and in our
companion video. We observe that the optimization method requires up to 20
keyframes to obtain a relatively similar result. Compared to only 3 keyframes in
the proposed method, we show that our method incorporates better the behavior
with keyframe constraints and provides more realistic and dynamic results.

6.4 User feedback

The prototype UI we implemented in Unity only includes a rough set of camera
control features (select a style code, set and move keyframes with keyboard,
select and generate trajectories). This showed to be insufficient to perform a
thorough user evaluation that would be able to compare traditional keyframing
techniques (for which many graphical gizmos and trajectory editing tools are
available) with our technique. We therefore switched to an interview-driven
approach with one senior previs artist and five senior art students in a film
academy. First feedback from artists who saw or used the tool was that they
appreciated the ability to use reference clips as an input to the system and one
pointed out ”it could be really interesting to analyse and compare the style of
different directors”. The senior previs artist add that ”the tool could be good
to the beginner in movie field since it provides an easy way to generate and
edit camera trajectories” and that ”short clips have become very popular and
applying them to different scenarios has a great potential in production”. He
also insisted on the pedagogical value it could have by ”using it in the film
academies to teach how the cameras should move”. To the question related to
the quality of generated tracks, artists answer that they were mostly impressed
by the cinematic value of the shots with so few keyframes. The zombie sequence
was commented as ”a great fighting scene with a first view camera which makes
the zombie appear suddenly”. The previs artist was more critique ”the tra-
jectories follow some recommendations and some times could give some very
good shots”. The mapping from reference clip to a new scene was sometimes
difficult to comment on given the strong differences in content between the real
sequence and the animation sequence. Artists then required a collection of ad-
ditional features such as framing constraints to keep some characters in specific
screen locations, attachment constraints or virtual targets (targets which are
framed but not seen).
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6.5 Playing with characteristic styles

To illustrate the capacity of our network to reproduce some “iconic” camera
behaviors, we extracted style tags from chosen sequences which contain respec-
tively a classical over-the-shoulder shot, and a low angle shot (camera is placed
below the targets). Results displayed in Fig. 15 show how these iconic behav-
iors are reproduced in a synthetic sequence (see companion video for additional
results).

Figure 15: Two examples of “iconic” cinematic styles in real movies and gener-
ated results in our proposed system. First row displays on the left the reference
shot with an identifiable over-the-shoulder framing (from Charade, 1963 ), and
second row displays a low-angle shot (from Romero, George A. 1968. Night of
the Living Dead. Walter Reade Organization).

7 Limitation and discussion

Artifacts for extreme keyframes With the limitation of the intrinsic rules
in camera behaviors, it is hard to simultaneously maintain the camera behaviors
and the keyframes in all cases. Although our method tries to learn the balance
between them, and despite adding a large amount of real data in the training
to increase the possibilities in keyframes, when the keyframes are on extreme
locations, the output of our method could not satisfy all the constraints.

One solution would be to make the balance between keyframe and style con-
trollable, as a transition from extreme behaviors constraints to extreme keyframe
constraints. An intuitive idea could be to control the ratio of linear interpolation
to meet the keyframes from the generated curve. However, from the discussion
in Section 5, interpolation would not ensure the implicit characteristics of the
behavior. This requires a further exploration.

Camera behaviors limited to two characters Though the proposed model
is tailored to address scenes with two characters only, it can adapt to scenes with
a single character by downsizing the input vector since the camera representation
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we rely on is a generalization of spherical coordinates for 1 to 2 targets (see Lino
and Christie linoefficient2012).Forsceneswiththreetargetsormore, theframingproblemisoftenover−
constrained(seetheP3Pproblem [10, 23])ifonedoesnotuseslantedcameraangle, andcanbetriviallyaddressedbyperformingframingontheleft−
mostandright−mostcharactersasproposedinGalvaneet al. galvane2013steering.However, theveryspecificsituationswherecharactersenterorleavetheframeisapathforfutureresearch.

8 Conclusion

In this paper, we propose a data-driven method for camera motion control.
Given a 3D animation scene, our framework allows camera motion synthesis with
a global similar camera behavior to a given reference film clip, and meanwhile
satisfying local keyframe constraints specified by artist. In order to achieve this
hybrid control strategy, we first designed a LSTM based gating network which
can identify various camera behaviors embedded in the given reference clip and
represent it as a latent style code. We further developed an autoregressive LSTM
network for camera motion generation in which the high- and low- level behavior
preferences are delivered into the system through the style code, the immediate
next keyframe and its arriving time respectively. Moreover, we demonstrated
in the paper that through hidden state mapping, the proposed LSTM camera
motion prediction network can control camera behavior in an even finer manner.

This work represents the first to propose a camera in-betweening technique
with style control through behavior specification. The work enables both very
dense and sparse keyframes along the animation depending on the desired degree
of control or automation. Future work will consist in extending the framework to
handle more complex cinematic features as inputs (e.g. controlling the curvature
of camera paths), more complex animated situations (characters entering or
leaving the frame), and also consider the problem of cutting between multiple
cameras under both high and low level constraints.

We want to thank Anthony Mirabile and Yulong Zhang for the various sup-
port and helpful discussions throughout this project, as well as Yu Xiong for
his help processing the MovieNet dataset. Furthermore, we wish to thank the
anonymous reviewers for their constructive comments. This work was supported
in part by the National Key R&D Program of China (2019YFF0302902).
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A Appendix

A.1 NETWORK STRUCTURE

The full architecture of our network is summarized in the table below, where FC
denote Fully-connected layers. The number of input and output channels are
reported in the rightmost column.

Name Layers in/out

Gating LSTM 60 ∗ 14/256
Network FC 256/4

Prediction FC + ReLU 160/256

Network FC + ReLU 256/256
LSTM 256/256

FC + ReLU 256/256
FC 256/5

Hidden FC + ReLU 29/256
Mapping FC 256/256 ∗ 2
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