High prevalence of OXA-23 carbapenemase-producing Proteus mirabilis among amoxicillin-clavulanate resistant isolates in France

Amélie LOMBES ${ }^{1,2}$, Rémy A. BONNIN ${ }^{2,3}$, Frédéric LAURENT ${ }^{4}$, Hélène GUETREVILLET 5, Emmanuelle BILLE ${ }^{6}$, Vincent CATTOIR ${ }^{7}$, Marie-Sarah FANGOUS ${ }^{8}$, Cécile LE BRUN ${ }^{9}$, Vincent FIHMAN ${ }^{10}$, Frédéric JANVIER ${ }^{11}$, Marie-Pierre Otto ${ }^{11}$, Anais POTRON ${ }^{12}$, Stéphane CORVEC ${ }^{13}$, Louise RUFFIER D'EPENOUX ${ }^{13}$, Assaf MIZRAHI ${ }^{14,15}$, Laurent DORTET ${ }^{1,2,3}$, on behalf of the GMC study group.
${ }^{1}$ CHU de Bicêtre, Laboratoire de Bactériologie-Hygiène, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
${ }^{2}$ INSERM UMR 1184, Team RESIST, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
${ }^{3}$ Centre National de Référence de la Résistance aux Antibiotiques, Le Kremlin-Bicêtre, France
${ }^{4}$ Hospices Civils de Lyon, Department de Bactériologie, Institut des Agents infectieux, Lyon, France
${ }^{5}$ Hôpital Purpan, Laboratoire de Bactériologie-Hygiène, Toulouse, France
${ }^{6}$ CHU Necker-Enfants Malades, Laboratoire de Microbiologie, Assistance Publique des Hôpitaux de Paris, Paris, France
${ }^{7}$ CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, F-35033 Rennes, France
${ }^{8}$ Centre Hospitalier de Cornouaille, Laboratoire de biologie médicale, Quimper, France
${ }^{9}$ CHRU de Tours, Hôpital Bretonneau, Service de Bactériologie-Virologie-Hygiène, Tours, France
${ }^{10}$ CHU Henri Mondor, Service de Bactériologie-Virologie-Hygiène, Créteil, France
${ }^{11}$ Hôpital d'Instruction des Armées Sainte-Anne, Service de microbiologie et hygiène hospitalière, Toulon, France
${ }^{12}$ Centre National de Référence de la Résistance aux Antibiotiques, Laboratoire de Bactériologie, CHU de Besançon, Besançon, France
${ }^{13}$ CHU de Nantes, Service de Bactériologie et des Contrôles Microbiologiques, CRCINA U1232, Nantes, France
${ }^{14}$ Service de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
${ }^{15}$ Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, Châtenay Malabry, France

* Corresponding author's mailing address: Service de Bactériologie-Hygiène, Hôpital de Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre Cedex, France.
Fax: + 33145216340.
E-mail: laurent.dortet@aphp.fr

Key words : carbapenemase, OXA-23, epidemiology, Proteae
Running title: Prevalence of OXA-23 carbapenemase in P. mirabilis
Text: 975 words
Abstract: 74 words

Abstract

In this multicentric study performed in 12 French hospitals, we reported that 26.9% (14/52) of the amoxicillin/clavulanate-resistant Proteus mirabilis isolates produced the OXA-23 carbapenemase. We found that inhibition zone diameter less than 11 mm around amoxicillin/clavulanate disc was an accurate screening cut-off to detect these OXA-23 producers. We confirmed by whole genome sequencing that these OXA-23-producers all belonged to the same lineage that has been demonstrated to disseminate OXA-23 or OXA-58 in P. mirabilis.

Proteus mirabilis are gram-negative rods belonging to the Morganellaceae family inside the Enterobacterales order. This species is widespread in the environment but is also part of the gastrointestinal tract (GIT) microbiota. P. mirabilis clinical isolates are mainly responsible for urinary tract infections (UTIs), including healthcare-associated infections (1). Intrinsically, P. mirabilis is resistant to polymyxins, nitrofurantoin and tetracyclines. It does not produce any β-lactamase and remains susceptible to all β-lactams except imipenem. Decreased susceptibility to imipenem (but not to the other carbapenems such as meropenem and ertapenem) corresponds to the expression of PBPs (penicillin binding proteins) of low affinity for this molecule (2). Acquired resistance to β-lactams is mainly due to the acquisition of extended-spectrum β-lactamases (ESBLs), cephalosporinases and sporadically carbapenemases (3). These carbapenemases are those usually identified in Enterobacterales such as: KPC (Ambler class A), metallo- β-lactamases of NDM-, VIM- or IMP-type (Ambler class B), and carbapenem-hydrolyzing Ambler class D β-lactamases (CHDLs) of OXA-48 type. In addition, as opposed to other Enterobacterales species, the most prevalent carbapenemases reported in Acinetobacter spp. (i.e., OXA-23, OXA-24/40 and OXA-58) have also been reported in P. mirabilis: OXA-23 in France and Finland, OXA-24/40 in Algeria and OXA-58 in Belgium and Germany (4-9). Recently, a global phylogenetic analysis has demonstrated that a unique clone of P. mirabilis is responsible for the dissemination OXA-23 or OXA-58 carbapenemases in humans and animals since 1996 (10).

Despite OXA-23 and OXA-58 are carbapenemases, the production of these enzymes does not surprisingly lead to multidrug resistance in P. mirabilis. Usually, OXA-23-producing P. mirabilis isolates exhibits an AST profile with only resistance to amoxicillin, ticarcillin, and piperacillin with no recovery of susceptibility when combined with clavulanate or tazobactam. They remain susceptible to third-generation cephalosporins and resistance to carbapenems (meropenem and ertapenem) is difficult to detect due to the poor carbapenem-
hydrolyzing activity of OXA-23, OXA-24/-40 and OXA-58 and the common chromosomal localization of the carbapenemase-encoding genes in this major clone of OXA-23/OXA-58producing P. mirabilis (3). Accordingly, this phenotype is very lucky to be confused with the high-level production of a penicillinase or the expression of a narrow-spectrum oxacillinase (e.g., OXA-1) (Figure S1). In addition, the frequency of the acquisition of carbapenemase from Acinetobacter in P. mirabilis remains unknown.

Here, we aimed to determine the prevalence of Acinetobacter main carbapenemases (i.e., OXA-23, OXA-58 and OXA-24/40) in P. mirabilis clinical isolates resistant to amoxicillinclavulanate collected in a French multicentric cohort.

From January $1^{\text {st }}$ to December $31^{\text {th }} 2019,139$ P. mirabilis isolates recovered from human clinical samples (no screening sample) collected in 12 French hospitals were analyzed. Antimicrobial susceptibility testing was performed using the disc diffusion method on Mueller-Hinton (MH) agar (Bio-Rad, Marnes-La-Coquette, France) and interpreted according to EUCAST guidelines. Among these P. mirabilis isolates, 52 strains with an inhibition diameter zone below 16 mm for urinary samples or below 19 mm for all other clinical samples were included as amoxicillin/clavulanate-resistant isolates, according to EUCAST breakpoints. These strains were isolated from urines ($\mathrm{n}=19$), blood cultures ($\mathrm{n}=3$), mucocutaneous samples $(n=7)$, catheter $(n=1)$, respiratory samples $(n=7)$, genital samples $(n=3)$, abscesses and drainage ($\mathrm{n}=14$) (Figure 1A). One additional ESBL-producing isolate was excluded from the study.

All the 52 amoxicillin/clavulanate-resistant P. mirabilis isolates were then screened by conventional PCR for the presence of $b l a_{\mathrm{OXA}-23}, b l a_{\mathrm{OXA}-24 / 40}$ or $b l a_{\mathrm{OXA}-58}$ genes as previously described $(5,11)$. No strain was found to be positive for bla $_{\text {OXA }-24 / 40}$ or bla $_{\text {OXA- }-5}$ gene whereas 26.9% (14/52) of amoxicillin/clavulanate-resistant P. mirabilis isolates gave a positive signal
for $b l a_{\mathrm{OXA}-23}$. The production of the OXA-23 carbapenemase was confirmed with the OXA-23 K-SeT immunochromatographic detection assay (Coris Bioconcept) performed as previously described (12). These OXA-23-producing P. mirabilis were isolated from urines ($\mathrm{n}=7$), respiratory samples $(\mathrm{n}=2)$, abscesses and drainage $(\mathrm{n}=5)$. Of note, all OXA-23-producing P. mirabilis isolates had an amoxicillin/clavulanate inhibition zone diameter between 7 mm and 11 mm (Figure 1B). It suggests that the screening cut-off for OXA-23 production in P. mirabilis might be 11 mm inhibition zone diameter or less around an amoxicillin/clavulanatecontaining disc (20 mg amoxicillin +10 mg clavulanate). The determination of amoxicillin/clavulanate MICs by Etest (BioMérieux) confirmed that all OXA-23-producing P. mirabilis isolates had MICs comprised between 12 and $24 \mathrm{mg} / \mathrm{L}$. According to EUCAST breakpoints, these OXA-23-producing P. mirabilis isolates are categorized as susceptible (MIC $\leq 32 \mathrm{mg} / \mathrm{L}$) if they are responsible for uncomplicated UTIs. Indeed, clavulanate can concentrate in urine leading to a higher breakpoint ($32 \mathrm{mg} / \mathrm{L}$) for uncomplicated UTI compared to strains responsible for other infections (breakpoint at $8 \mathrm{mg} / \mathrm{L}$). However, since the OXA-23 enzyme is not inhibited by clavulanate, it might be possible that such susceptible categorization leads to treatment failure. Unfortunately, we could not have access to clinical data to confirm if such treatment failure occurred. Of note, among the 38 amoxicillin/clavulanate-resistant P. mirabilis isolates that were negative for bla $_{\mathrm{OXA}-23}, 76.3 \%$ (29/38) expressed the TEM-1 penicillinase and the narrow-spectrum oxacillinase OXA-1 (assessed by PCR and sequencing), 13.2% (5/38) were positive only for $b l a_{\mathrm{OXA}-1}, 7.9 \% ~(3 / 38)$ were positive only for $b l a_{\text {TEM-1 }}$ and only one isolates (2.6%) was negative for both $b l a_{\mathrm{TEM}}$ and bla $_{\text {OXA }-1}$.

No obvious epidemiological link could be identified between the 14 OXA-23-producing P. mirabilis isolates since they were recovered in different areas. However, to assess the clonal relationship between these 14 P. mirabilis isolates, we performed a whole genome sequencing
and comparison as previously described (10). The genomes of OXA-23-producing P. mirabilis were submitted to GenBank (Bioproject number PRJNA780406). As previously reported (10), all OXA-23-producing P. mirabilis isolates were part of the major lineage that disseminated in France and Belgium at least since 1996 (Figure 2).

As conclusion, we demonstrated that nearly one quarter of the P. mirabilis clinical isolates with an amoxicillin/clavulanate zone inhibition less than 19 mm were OXA-23-producing strains. We established that an amoxicillin/clavulanate zone inhibition less than 11 mm is an efficient screening cut-off to detect these OXA- 23 producers. However, since currently only one clone of P. mirabilis has been reported to vehiculate bla $_{\text {OXA- } 23}$, such screening cut-off might have to be adapted if the emergence of another clone is further reported. As previously reported, we demonstrated that the immunochromatographic assay OXA-23 K-Set is a useful tool to rapidly identify the production of OXA-23 by P. mirabilis. Amoxicillin/clavulanate MICs of these OXA-23-producing P. mirabilis is comprised between 12 and $24 \mathrm{mg} / \mathrm{L}$. Accordingly, these strains might be categorized as susceptible if they were considered to be responsible for uncomplicated UTIs. Since OXA-23 is not inhibited by clavulanate, clinical failure might occur. However, several therapeutic options are often possible outside the β lactams family (fluoroquinolones, aminoglycosides, sulfamethoxazole-trimethoprim), particularly for urinary-tract infections. In addition, OXA-23 do not hydrolyze $3^{\text {rd }}$ generation cephalosporins and only leads a low-level resistance that often remain undetectable for carbapenems (ertapenem or meropenem) or piperacillin-tazobactam, suggesting potential use of these molecules. But, complementary studies are needed to decipher this hypothesis.

REFERENCES

1. Canton R, Akova M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, Livermore DM, Miriagou V, Naas T, Rossolini GM, Samuelsen O, Seifert H,

Woodford N, Nordmann P, European Network on C. 2012. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18:413-431.
2. Neuwirth C, Siebor E, Duez JM, Pechinot A, Kazmierczak A. 1995. Imipenem resistance in clinical isolates of Proteus mirabilis associated with alterations in penicillin-binding proteins. J Antimicrob Chemother 36:335-342.
3. Girlich D, Bonnin RA, Dortet L, Naas T. 2020. Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front Microbiol 11:256.
4. Bonnet R, Marchandin H, Chanal C, Sirot D, Labia R, De Champs C, JumasBilak E, Sirot J. 2002. Chromosome-encoded class D beta-lactamase OXA-23 in Proteus mirabilis. Antimicrob Agents Chemother 46:2004-2006.
5. Girlich D, Bonnin RA, Bogaerts P, De Laveleye M, Huang DT, Dortet L, Glaser P, Glupezynski Y, Naas T. 2017. Chromosomal amplification of the bla $a_{\mathrm{OXA}-58}$ carbapenemase gene in a Proteus mirabilis clinical isolate. Antimicrob Agents Chemother 61.
6. Lange F, Pfennigwerth N, Gerigk S, Gohlke F, Oberdorfer K, Purr I, Wohanka N, Roggenkamp A, Gatermann SG, Kaase M. 2017. Dissemination of bla $a_{\mathrm{OXA}-58}$ in Proteus mirabilis isolates from Germany. J Antimicrob Chemother 72:1334-1339.
7. Leulmi Z, Kandouli C, Mihoubi I, Benlabed K, Lezzar A, Rolain JM. 2019. First report of bla $_{\mathrm{OXA}-24}$ carbapenemase gene, armA methyltransferase and $\operatorname{aac}\left(6^{\prime}\right)-\mathrm{Ib}-\mathrm{cr}$ among multidrug-resistant clinical isolates of Proteus mirabilis in Algeria. J Glob Antimicrob Resist 16:125-129.
8. Osterblad M, Karah N, Halkilahti J, Sarkkinen H, Uhlin BE, Jalava J. 2016. Rare detection of the Acinetobacter class D carbapenemase bla ${ }_{\text {OXA }-23}$ gene in Proteus mirabilis. Antimicrob Agents Chemother 60:3243-3245.
9. Potron A, Hocquet D, Triponney P, Plesiat P, Bertrand X, Valot B. 2019. Carbapenem-susceptible OXA-23-producing Proteus mirabilis in the French community. Antimicrob Agents Chemother 63.
10. Bonnin RA, Girlich D, Jousset AB, Gauthier L, Cuzon G, Bogaerts P, Haenni M, Madec JY, Couve-Deacon E, Barraud O, Fortineau N, Glaser P, Glupczynski Y, Dortet L, Naas T. 2020. A single Proteus mirabilis lineage from human and animal sources: a hidden reservoir of OXA-23 or OXA-58 carbapenemases in Enterobacterales. Sci Rep 10:9160.
11. Bonnin RA, Nordmann P, Potron A, Lecuyer H, Zahar JR, Poirel L. 2011. Carbapenem-hydrolyzing GES-type extended-spectrum beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 55:349-354.
12. Riccobono E, Bogaerts P, Antonelli A, Evrard S, Giani T, Rossolini GM, Glupczynski Y. 2019. Evaluation of the OXA-23 K-SeT® immunochromatographic assay for the rapid detection of OXA-23-like carbapenemase-producing Acinetobacter spp. J Antimicrob Chemother 74:1455-1457.

LEGEND OF THE FIGURES

Figure 1. Characteristics of the 52 amoxicillin-clavulanate resistant P. mirabilis isolates A. Geographic distribution and clinical samples. B. Distribution of the amoxicillin-clavulanate zone inhibition diameters. C. Distribution of the amoxicillin-clavulanate minimal inhibition concentrations.

Figure 2. A. Phylogenetic relationship of the 14 OXA-23-producing P. mirabilis isolates with the 145 reference genomes of P. mirabilis reported by Bonnin R.A et al (10). This comparison was performed on 17.83% of the genome of OXA-23-producing P. mirabilis VAC used as reference. B. Phylogenetic relationship of the OXA-23/OXA-58-producing P. mirabilis isolates. This comparison was performed on $57,36 \%$ of the genome of OXA-23producing P. mirabilis VAC used as reference.

OXA-23-producing P. mirabilis from this study are marked by a black point. Scale bar on tree indicates the number of single-nucleotide polymorphisms per position of common sequences.

Carbapenemase

B

