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Bolted circular flange connections undesstatic bending moment and
axial force

PAR M. COUCHAUX, M. HJIAJ, I. RYAN, A. BUREAU

Abstract
The available design rules to evaluate the force distributions in the tension and the

compression parts of bolted circular flange connections under bending moment and axial are
often based on the beam theory which is not adequate. The aim of this paper is to propose an
analytical model for the calculation of th&ticresistance of bolted circular flange connections
subjected to a combined bending moment and an axial force considering the influence of the
joint ductility. An analytical model is also proposed to evaluate the stiffness of the tensile and
the compressive parts of the connection and thus its initial rotational stiffness. The results
obtained via the proposed analytical model are compared favourably against experimental tests

and numerical simulations.

1. Introduction
Bolted circular flange connections are used in tubular members such as chimneys, pylons for

wind turbines and ski-lift installations. Most of these connections should be designed for a
combination of bending moment and axial load. Several models have been proposed to evaluate
the tensile resistance of bolted circular flange connections under tension ([1], [2], [3], [4]). The
L-stub model has also been developed to predict the resistance of the tensile part in connections
subjected to combined loading ([5], [6], [7]).

Two types of model have been developed to evaluatstétie resistance of bolted circular
flange connections subjected to a bending moment and/or an axial force. In the first group of
models, which are based on elastic analysis ([6], [8], [9]), the ultimate limit state is assumed to
be attained when the resistance of the most critical component of the connection (tensile or
compressive) is reached. This approach does not always reflect the observed ultimate behaviour
of the connection as other components may possibly reach their full ultimate state before
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complete failure of the joint. However, for non-tilecjoint (tube-wall buckling, premature bolt
failure in tension), this assumption is not famfrthe experimental and numerical observations
[10].

Stamatopoulos & Ermopoulos ([11]-[12]) have develb@a model where all the components
of the connection are assumed to reach their faitic resistance at ultimate state. Hence, the
tensile components would have to be sufficientlyctile” to permit the mobilization of all

components and tube-wall buckling should be avoid.
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Figurel: Bolted circular flange joint subjected to a bendingment and an axial force

The strength of a connection plays an importarg ioldesign. However, its stiffness can
have an important impact on the overall behaviduhe structure. A model has been proposed
by Kozlowski & Wojnar ([13], [14], [15]) to evaluatthe initial rotational stiffness of these
connections but the calculation method involvestarative procedure and is not suitable for a
day-to-day design.

The objective of this paper is to propose a newehtitht fully characterize the behaviour of
this type of connection, and particularly the motremation curve (see Figure 1). As suggested
in EN 1993-1-8, the moment rotation curve is drdvased on two essential characteristics of
the connection: the bending resistance and thialimdtational stiffness. The proposed model

provides the static resistance of a bolted circiliésrge connection subjected to the full range of
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combinations of bending moment and compressivemsile axial load. This model considers
two statically admissible force distributions degiaig on the ductility of the tensile part and the
shell buckling resistance of the compressive @dré resistance of all components can be fully
reached provided that they are sufficiently ductiles mode is then called “ductile mode”. In
the case of a “non-ductile mode”, the resistancthefconnection is considered to be attained
once the most loaded component fails. The compenasthod is considered to determine the
initial rotational stiffness. To validate this méde bending test has been performed on a ring
flange connection and completed by a parametritystonsidering 20 connections subjected to
the combination of a bending moment and an axia&lefalt is shown that the proposed models
predict well the initial stiffness as well as th@noection resistance.

2. Experimental test

2.1. Test set-up and specimen geometry
An experimental test has been performed in theré&bry of INSA in Rennes on a bolted

circular ring flange connection subjected to a lmeganoment. This connection, typically used
in pylon of sky-lift, is composed of two forged fiiges of 40 mm thickness welded on a tube
762x6 (see Figure 2). Flanges are bolted usingdt4 BIR M24 [16]. The steel grade of the

tubes and the flanges is S355, and the bolts ass &/0.9.
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Figure 2 : Specimen tested and main dimensions (in mm)
Figure 3 gives an overview of the four point begdifexural test set-up. The specimen

comprises two tubular segments of 3,75 m connebiedhe bolted circular flanges. The
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specimen is loaded by two load-jacks with a capaoft 1500 kN. The loading is force-

controlled during the elastic stages and displacéroentrolled during the elasto-plastic stage.

) x 41 [

Portal
frame

Load jacl
|_— 1500kN
| ™~

Axial bracing Linear support

Joint &d\

Figure3: Set-up of 4 points bending test (dimensions in mm)

The connection was initially tested in the elassicge for three levels of bolt tightening: 10,
50 and 100 % of the nominal preloading accordingfb1090-2 [17] with the aim to evaluate
the effect of preloading on the bolt forces disttibn. The nominal preloading forces are
increased by 10 % as required by the torque mefkee Table 1). Half of the bolts were
instrumented (see Figure 5). For these bolts, g¢ighg was performed by reading the strain
gauge according to the calibration factor. Nonfunsented bolts were tightened applying the
torque method of EN 1090-2 [17]. During these stagige magnitude of the bending moment
was selected to avoid any yielding for each legbreloading. These three cycles are named

stage 1, 2 and 3 respectively.

Bo (kN)
Stage 1 Stage 2 Stage 3 Bolt
27 135 270 M24

Table 1 : Bolt preloading force
After these three elastic cycles, HR bolts werégaged to 20 % of the nominal preloading

as specified in EN 1090-2. The specimen was loaohill failure of the connections so as to
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evaluate the elasto-plastic behaviour and partilyuthe plastic and ultimate resistances. This

step corresponds to stage 4.

2.2. |Initial imperfections of the flanges
Near each bolt, the position of the flanges has beeasured at the outer edge (point 2 in

Figure 4) and at the inner edge of the flanges{pbin Figure 4). The difference between these
two points corresponds to the imperfection of thade:

A =Position2- Position Q)

The mean value of initial flange imperfection [i8]equal to 1,09 mm and tends to favour

contact at the outer edge of the flanges as ireticat Figure 4.

Position

Marble

L
Figure4: Measurement of the initial imperfections of thefas

2.3. Measurements
During the test, bolt forces, displacements aralrstrin the connection were measured. Two

rosette strain gauges (BR1 and BR2) have beenglatehe flange to measure radial and hoop
strains (see Figure 5). Two rosette strain gau@d (@nd TR2) have also been positioned on
the tube at 15 mm of the weld toe for the sameoreabhirteen axial strain gauges located at
300 mm of the weld toe have been used to estinmeeatial strain distribution in the tube.

Thirteen bolts have been instrumented with axiaistgauges BTM-6C in order to measure the
axial strain and thus by calibration, the tensdecé in the bolts. Instrumented bolts have also

been used to control the bolt preload during tiging as explained in section 2.1. The main

5
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displacement transducers (LVDT) positioned to meathe displacements at different locations

on the test specimen are presented in Figure 3.

Tube 2

TR 9
Q TR1 - L2 ©
B

. Tube 1
G QOO @) Tensile are
R BR2,
B1
EL13
EL1 25 o TR
ELLF 3 onm '_I 15mm
10mm
IL1-1 15mm
1 50mm

Figure5: Strain gauges on the flange and on the tube-wall
2.4. Mechanical characteristics of steel

Coupons extracted from the tube and the flangewedk as the bolts have been tested

according to NF EN 10002-1. The mean value of meich& characteristics of the bolts, the

flanges and the tubes are given in Table 2.

Thickness/ Module Yield Tensile . .
Component length f . strength  strength Elongation Necking
elasticity
mm N/mm  N/mnf N/mnt % %
Tube 6 215717 351 492 16,2 60
Flange 40 214419 328 529 16 73
Bolts 120 212792 1110 1156 21 59

Table 2 : Mechanical characteristics of tubes, flanges aotish
2.5. Testresults

2.5.1. Moment-rotation curve

Failure of the specimen occurred by local tube-wimltkling at the junction with the

connections just above the weld (see Figure 6)vals observed that the three most tension-

6
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loaded bolts yielded just prior the end of the {sge section 2.5.2). The maximum bending

moment resisted by the connection during the sestjual to 925 kNm.

Figure 6 : Specimen after local buckling

The connection rotation has been evaluated usmgigplacement given by transducer n°21

(see Figure 3):

521,measured_ 5 21,theoretic
2. 2)
I-21

9=
whered merasuredS the displacement measured by LVDT n°21 (see@irBid), &1 theoreticathe
theoretical displacement calculated at the locatbihVDT n°21 andL,; the distance from
LVDT n°21 to support n°2.

The moment-rotation curve is depicted in Figureoi7 dtage 4. The elastic stage is rapidly
followed by a drop of the bending moment. This iy@cal situation observed with shell-type

local buckling behaviour.



Bolted circular flange connections undgaticbending moment and axial force
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Figure 7 : Moment rotation curve — experimental test

2.5.2. Bolt forces
The relationships between the force in bolt n°1 #redbending moment in the connection

during the four stages is presented in Figure 8irQustages 1, 2 and 4 the variation of the bolt
force is almost linear in contrast with what happeéuring stage 3 where 110 % of nominal
preloading according to EN 1090-2 is applied. Bffgicpreloading on the variation of the bolt

force is irrelevant during phases 1, 2 and 4 mailig to the initial imperfections (see section

2.2). At the end of stage 4, bolt n°1 yields insien.

Bolt force (kN)

500
4
rd
/ -~ -
300 | _
.- - -
"’.’ // — Stage 1
Lo - -
200 P - — > = « =Stage 2
- - -~
e ‘7 ——Stage 3
— -~
100 - - = =Stage 4
-
Moment (KNm)
0
0 250 500 750 1 000

Figure 8 : Evolution of bolt force n°1 — experimental test



Bolted circular flange connections undgaticbending moment and axial force

The distribution of the bolt forces for differerdlues of the bending moment applied to the
connection in function of their location relatively the mid-axis of the tube is presented in
Figure 9. For bolts located in the compressive,aeadecrease of the bolt force is observed due
to the transverse local deformation of the flargeincrease of the bolt force is obtained in the
tensile area that is lower during stage 3 thanestadg-or large values of the bending moment,
the distribution of the bolt forces in the tensiene is almost linear during stage 4. A mildly
non-linear response of bolt forces can be obseagdonsequence of bolt preloading (see
Figure 8). A plastic redistribution of bolt forcess not possible due to the local buckling of the

tube that appears just after yielding of threedioltthe tensile area.

AB (kN) AB (kN)
60 - 300
©Mj = 104kNm L]
®Mj =277kNm
mMj = 230kNm
mMj = 560kN;
40 B Mj = 375kNm | ] 200 ) "
s mMj =924kNm
" [ ]
20 " 100 |
- .. -
¢ *
[ ] . L]
[ ] z (mm) * z (mm)
. ] 0 - — - i - 0
-200 0 - 200 ] Hg400 -400 -200 0 200 400
] - : i & g ™
]
20 -100
a- Stage 3 b- Stage 4

Figure 9 : Variation of bolt forces — experimental test
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2.5.3. Strain gauge measurements
Rosette strain gauges BR1 and BR2 show that atréathe flanges remain elastic in the

tensile area. The elongations of bolts was noiaefft in the tensile area to lead to a cambering
of the flanges as it was observed for the boltecliar flange connections subjected to a tensile

force tested by Couchaux et al [4]. Stresses atledlwith strains measured by axial gauges

placed at 300 mm of the connections T'ulﬁ'ezl - 13) are presented in Figure 10.

" 2 Stress (N/) 2
400 Stress (N/mm?) 100 ress (N/mm?)

Tube 1

BMj=277kNm M Mj=560kNm - Tube2

=M;j = 848KNm W Mj = 924kNm — Tube3

——-Tube4

------- Tube 5

--------- ——— Tube 6

zmm) | | Moment (k7

m)

-400

o
=Y

----Tube7

-200 0 1000

------- Tube 8

Tube 9
-=---Tube 10

-200 - 200

Tube 11
----Tubel2

------- Tube 13

-400 -400

a- Distribution of stresses b- Evolution of stresses
Figure 10 : Axial stresses on the tube during sta

The evolution of stresses as a function of bending moment is lingathe development of
stresses close to the yield strength in the tensile and coiwpressas for a bending moment
close to 850 kNm. Then, the stresses decrease in the mgstessed strain gauges (Tube 11,
12 and 13) and increase in the remaining strain gauges placee dortipression area. This
redistribution of stresses is caused by the local buckifrttye tube-wall in the vicinity of the
connection. At the end of the test, strain gauges Tube 1, 2 mrati3 the yield stress. The tube

was able to develop its elastic bending moment.

3. Numerical analysis
3.1. Presentation of the finite element model
A numerical model has been developed to carry out a pararsetdg and to complete the

available experimental results ([19], [20], [21], [22]).eThumerical model was built using the
Finite element code ANSYS V11.0. This model is quite sintitathat developed for bolted

10
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circular flange connections subjected to a tensile forcejdhnections are generated with 3D
solid elements (hexahedral or tetrahedral bricks). The lbodt modelled considering a constant
cross-section equal to the effective arkaspecified by EN1993-1-8. The model domain

consists of 1/4 of the full geometry, since there are taogd of symmetry (see Figure 11).

z

A N A
M, ] M

N 2/

JN\

Contact between solid
oooxm gnd a rigid plane

e Symmetry

Rigid plane

Figure 11 : Symmetries of the model and contact elements

Contact between solids

[==aaa]

Contact between soli
and rigid plane

OO

INEEN iEEE

Rigid plane

Contact area

Figure 12 : Contact areas

Contact elements are used between the flange and the dudtsigid contact elements
between one flange and the horizontal plane of symmetry. Aromot€Coulomb friction law
(4= 0,25) is used to reproduce sliding/sticking conditions betwkerflange and the bolt.
Friction is neglected between the two flanges because of aestyy.

The stress-strain relationship for steel (flange, tube and)bslassumed to be multi-linear
(see Figure 13). Large deformations are also consideredods as the deformation level

reachesg, the stress drops to 10 N/rhrim order to model the failure of the element. This

11
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phenomenon leads either to a drop-off of the force applied to theection or to the
termination of the calculation. This latter state is agslnto be the ultimate state for the
connection. The Von Mises criterion is retained to monitor iplgstlding. A complete curve
has been used for the analysis of the tested specimen andecenraie stress and true strain.
For the parametric study, a simple bi-linear curve has lbesed (see Figure 13-b). The true
stress-strain curve was built considerifg &), (fy, &), (fn, &m) and ¢, &) that were determined
from coupon test results (see section 2.4 and Couchaux et al [7]).

The extremity of the tube is linked to a pilot node where rotatiohending moment are
applied. Loading is controlled in rotation for pure bending moment inr dalde able to
observe the post-critical regime. In the case of combinedirlg, the normal force (force
controlled loading) is firstly applied. Next the rotation of thiéot node is progressively

increased.

a (N/mn) o (N/mnv¥)
fu - - fu

Failure:0=10
£= g+1

Failure:0=10
= g+1

£(%)

& & &m & g+l £ (%) & £ el

a- Complete curve b-Simplified curve
Figure 13 : Stress-strain curves

3.2. Comparison to test results

3.2.1. Geometrical and mechanical characteristics
A quarter of the connection is modelled as explained in thequewgection and presented in

Figure 14. The length of the tube is equal to 1250 mm. Analyaes heen performed
considering four levels of bolt preloading:
» Stage NP: Bolts are not preloaded and a bending moment eqd@DtkNm is
applied,
e Stage 2: Bolts are preloaded to half the nominal preloading ofl@-2 and a

bending moment equal to 580 kNm is applied,
12
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» Stage 3: Bolts are preloaded to the complete nominal preloafiley 1090-2 and a
bending moment equal to 360 kNm is applied,
» Stage 4: Bolts are preloaded to 20 % of the nominal preloadiigN 1090-2 and

the rotation is increased until post-buckling.

A geometrical imperfection homothetic to the buckling modepshabtained at failure (see

Figure 15) was applied with a magnitude equal to 1,4 mm.

Figure 14 : Finite element mesh

The mechanical properties used with the strain-stress qresented in Figure 13-a are

given in Table 3.

Thickness/ E f & fn En fy &

y
Element Diameter N/mnf  N/mnf % N/mnd % N/mnf %
tube 6 215717 352 2,00 578 16,1 940 90,9
flange 40 214419 329 1,33 621 16,0 1230 130,9
bolt 24 21015 1122 0,5¢ 126¢ 4.4( 1402 89

Table 3: Mechanical characteristics used to model experimental test

3.2.2. Moment rotation curves
The failure mode obtained with the finite element model correfsptmlocal buckling of the

tube at the junction with the flange (see Figure 15-b). Mostion-loaded bolts yield before the
maximum bending moment is reached. The ultimate bending marb&ibed numerically is

equal to 911 kNm and close to the measured ultimate bending magoaht@ 925 kNm.

13
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a_—

a- Test ~ b- Numerical
Figure 15 : Local buckling of the tube-wall

The moment-rotation curves of the connection obtained numericallyegmerimentally
during stage 4 are depicted in Figure 16. Overall a fgolyd match is observed as the global
behaviour is well reproduced. The stiffness in the eladtimain is very well estimated,
however the decrease of the bending moment occurring aftebtickéing is more progressive

and regular (constant slope).

IWJ- (kNm)
1000
e Experimental == Numerical
750 ’ : \\
500
250
¢ (mrad)
0
0 5 10 15 20

Figure 16 : Moment rotation curve

3.2.3. Bolt forces
The evolution of the bolt forces during phases 2, 3 and 4 i in Figure 17 as a

function of the bending moment. During stage 4, the evolutioneobdlt forces is clearly linear
until the bending moment reaches 900 kNm. During stages 3,ahe variation of bolt forces
is more progressive at the beginning of loading than at thedeadto the effect of bolt

preloading. This phenomenon also happens in L-stub and boltedaciflesige in tension ([4],
14
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[7]). At the beginning of loading, the contact area is locaiehtind the bolts (see Figure 18-a)
and the bolt elongation, and thus the bolt tensile forcdimised. The bolt forces further
increase after partial uplift of the flanges occurs (seerEig8-b).

The evolution of the force in the most tension-loaded bolt (inldalt n°1) is presented in
Figure 19 as a function of the bending moment applied to the connectiog dtages 2, 3 and
4. The increase of bolt forces is more important in thetkest in the numerical model. This
difference is mainly due to the initial deformed shapdasfdges (see section 2.2) that improves
the contact at the outer edge of flanges. Effect of preloat#ngeases with increasing value of
the applied load. As a result, the variation of bolt foscendbre pronounced. These phenomena

were highlighted by Jakubowski & Schmidt [20].

o Bolt force (kN) Bolt force (kN)
320
l "
f 1
1 ! N : a i!
200 ! ! ! ; N Loaa t 300 i ah
g 11 Y
g B | | I S
s B |
| B |
100 280 [ ! 4
1 H
]
M, (KNm) 260 M; (kNm)
0 0 200 400 600 0 100 200 300 400
a- Stage 2 b- Stage 3
Bolt force (kN)
400 .'
[
"
A
300 ¥ N N mBolt1 mBolt2 ®Bolt3
A
[ A .,
L}
200 A A Lot : ABolt4 ABolt 5 A Bolt 6
. A N
A A ° e %o
! s . eBolt7 eBolt8 eBolt9
100 i i : . ot 3%
'
M; (kNm)
0
0 250 500 750 1000
c- Stage 4

Figure 17 : Evolution of bolt forces
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a- Stage 2 : NE50 kNm c- Stage 2 : N=358 kNm

0 20 50 70 110
0 40 60 90

Figure 18 : Contact stress (in N/nfinin the tensile area
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Figure 19 : Evolution of bolt force n°1

3.3. Parametric study
3.3.1. Dimensions of specimens
A parametric study has been performed considering 20 bolted ciftalge connections

(see Table 4 and Figure 20) subjected to either a pure bendimgmhor to a combination of
bending moment and axial force (compression or tension). Speciiignt M19 are made of

blank flanges whilst the remaining specimens are ring flarggts were not preloaded.

16
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Specimen R, Ro t R ! L, Bolt Ny

mm mm mm mm mm mm mm -
M1 459 423  368,5 40 374,75 125 1500 24 24
M2 526 463 365 40 373 16 1500 24 24
M3 459 423  368,5 20 374,75 125 1500 24 24
M4 459 423  368,5 15 374,75 125 1500 24 24
M5 459 423 375 40 378 6 1500 24 24
M6 459 423 375 20 378 6 1500 24 24
M7 459 423 375 20 378 6 1500 24 24
M8 395 350 300 10 302,5 5 900 20 24
M9 395 350 300 15 302,5 5 900 20 24
M10 395 350 300 25 302,5 5 900 20 24
M11 395 350 300 40 302,5 5 900 20 24
M12 620 560 502 40 508 12 1000 30 24
M13 620 560 502 30 508 12 1000 30 24

M14 620 560 502 20 508 12 1000 30

24
M15 155 132 0 10 97,75 4,5 250 16 8
M16 155 132 0 20 97,75 4,5 250 16 8
M17 155 132 0 20 96 8 500 16 8
M18 160 120 0 20 80,15 8 400 16 8
M19 160 120 0 15 80,15 8 300 16 8
M20 160 120 76,15 15 80,15 8 300 16 8

n, : Number of bolts
Table4 : Geometry of connections — parametric study

M"m Mj$

Ro

L & e : 4‘
i R i
—I — 4y O @ ma—
Ttl : R¢ i
‘
a- Ring flange b-Blank flange

Figure 20 : Dimensions of specimens studied

The objective of this parametric study is to quantify #fect of the flange and tube
thicknesses as well as the diameter of the tube. The beha¥isteel is multilinear as described

in Figure 13-b and mechanical characteristics are givenbre Ba

17
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Flange Tube Bolt
Specimen fys fut Eu fy fu &ui fyb fue Euk
N/mnf  N/mnf % N/mmM N/mnt % N/mmM Nmnt %
M1 355 637 30 355 637 30 900 1100 10
M2 235 468 30 235 468 30 900 1100 10
M3-M6 355 637 30 355 637 30 900 1100 10
M7 355 637 30 355 637 30 640 880 10

M8-M14 355 637 30 355 637 30 900 1100 10
M15-M17 355 637 30 355 637 30 640 880 10
M18-M20 355 637 30 460 702 30 640 880 10

Table5: Mechanical characteristics — parametric study
3.3.2. Failure modes

Failure modes, plastic and ultimate bending moments, alotig ywalded components at

failure are reported in Table 6.

M1 M; M; /M o Yielded

Z|z

Specimen kKNm kNm - components Failure
M1 0 1469 1809 1,23 Bolt Bolt
M2 0 1284 1524 1,19 Bolt Bolt
M3 0 1158 1529 1,32 Bolt Bolt
M4 0 905 1581 1,75 Bolt-tube Bolt
M5 0 990 1079 1,09 Bolt, tube Buckling
M6 0 833 943 1,13 Flange, bolt, tube Buckling
M7 0 746 882 1,18 bolt, tube Buckling
M8 0 196 313 1,60 Flange, tube Buckling
M9 0 336 413 1,23 Flange, tube Buckling
M9-N=-0,5MN -500 249 424 1,70 Flange, tube Buckling
M9-N=-1MN -1000 227 456 2,01 Flange, tube Buckling
M9-N=-1,5MN -1500 - 372 - Flange, tube Buckling
M9-N=0,5MN 500 405 424 1,05 Flange, tube Buckling
M9-N=1MN 1000 162 412 2,55 Tube Buckling
M10 0 523 561 1,07 Bolt, tube Buckling
M10-N=-1MN -1000 406 541 1,33 Bolt, tube Bolt
M10-N=-2MN -2000 226 312 1,38 Bolt Bolt
M10-N=1MN 1000 406 457 1,13 Tube Buckling
M10-N=2MN 2000 281 307 1,09 Tube Buckling
M11 0 568 590 1,04 Tube Buckling
M12 0 2784 3402 1,22 Bolt Bolt
M13 0 2732 3249 1,19 Bolt Bolt
M14 0 2122 2917 1,37 Bolt, flange, tube Bolt
M15 0 39 49 1,25 Bolt, flange, tube Bolt
M16 0 59 60 1,03 bolt, tube Buckling
M17 0 71 85 1,20 Bolt Bolt
M18 0 64 78 1,22 Bolt-flange-tube Bolt
M19 0 51 64 1,26 Bolt Bolt
M20 0 42 54 1,27 Bolt Bolt

Table 6 : Failure modes — parametric study
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The plastic bending momem;, is estimated according to the ECCS method via the
moment-rotation curve [23When bolts and/or flanges yield in the tensile part, a yield line
develops within the tube wall just above the junction with thegia Failure corresponds either
to bolt rupture in tensiorfigure 21-b) or to buckling of the tube wall above the compressed part
of the flange Figure 21-a). For a large number of specimens, buckling of the tubeiwall

preceded by important yielding of the tensile part ofctirenection (bolts and/or flanges).

a- Local buckling of the tube wall bBolt rupture in tension
Figure 21 : Failure mode

3.3.3. Influence of flange thickness
The geometrical characteristics of specimens M8, M9, M1(\dridare identical except the

flange thickness which is equal to 10, 15, 25 and 40 mm, résggciThe moment-rotation
curves for these specimens are presented in Figure 22iaciease of flange thickness leads to
an increase of initial rotational stiffness, plastic andndte bending moments and a decrease
of the rotation capacity. The resistance is also limitethbylocal buckling of the tube wall for
the four specimens even if yielding of flange and bolts @&taimed. For specimen M8, the
rotation capacity is clearly improved due to yielding of thedks in bending, however the

buckling of the tube is finally obtained in the compressiva.are
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M (kKN
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—— =10 (M8)
—tf=15 (M9)

— =25 (M10)
400 g

—tf=40 (M11)

200

&% (mrad)
0 10 20 30 40

a- Specimens N8 to N11

M; (KNm)
4000

3000 / \

—tf=20 (M14)
2000

——1f=30 (M13)

1000 —— =40 (M12)

¢ (mrad)

0 5 10 15

b- Specimens N12 to N14
Figure 22 : Moment rotation curves : Effect of flange thickness

Similarly, the only difference between specimens M12, M13Mid is the flange thickness
which is equal tal0, 30 and20 mm, respectively. The moment-rotation curves for specimens
M12, M13 and M14 are depicted in Figure 22-b. It has been oluséha¢ for these three
specimens failure is due to bolts fracture. Furthermoredaction of flange thickness clearly
increase the rotation capacity of the connectibressto the development of plastic yield lines on

the flange
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3.3.4. Influence of axial force
The moment-rotation curves of specimen M9 and M10 obtained fieretit values of the

axial force are presented in Figure 23. Compressive foroeases the initial rotational stiffness
whilst tensile force produces the opposite effect. The cosapdearea is stiffer than the tensile
zone. By increasing this area, the stiffness of the commediincreased. In presence of an
initial tensile force, a decrease of the stiffness meoled (particularly for specimen M10) with
increasing values of the bending moment. Similarly, thiéneis decreases with increasing
values of the bending moment in presence of an initial conipeeisce. This effect results
from the development of a compression area that is stiffer the tensile area.

M, (KNm)

600

400

200

¢ (mrad)

0 10 20 30 40 50
a- Specimen M9

600

400 /\ /

200

) (mrad)

0 3 6 9
b- Specimen M10
Figure 23 : Moment rotation curves : Effect of axial force
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3.3.5. Bolt force distribution at failure
It has been observed during test (see section 2.5.2) that, edwing the ultimate moment,

the distribution of bolt force was almost linear in the terssitsa of the connection. So, the tube
wall buckling occurred just after yielding of the first threetbgreventing yielding of other
bolts. On the contrary, some specimens studied numerically bega able to develop
important rotation capacity with most of the bolts locatethetensile area yielding before the
complete failure of the connection. For instance, Specimenhlidhgs to this latter category.
The evolution of the bolt forces obtained for specimen M12 is piexben Figure 24 as a
function of the bending moment. The yield tensile force ighed for half the bolts of the

connection at failure.

Bolt force (kN)
mBolt] ®=Bolt2 mBolt3 mBolt4 B n .q
i E o @
n A
®Bolt5 eBolt6 aBolt7 eBolt8 ° A
= ° A
[
400 3 ° i
[ ] °
i A
[ ] °
° A
'] )
u A
200 - * 3
A 0
I e ® A 0.
] °
° b A °
| s .
s . °
N B ° . » M; (kKNm)
0 1000 2000 3000 4000

Figure 24 : Evolution of bolt forces : Specimen M12, N =0

4. Analytical model for moment-rotation curve
4.1. Introduction
The objective of this section is to propose a model which @hlracterize the behaviour of

this type of connections, and particularly the moment-rotation cAseuggested in EN 1993-
1-8, the moment rotation curve is built on two essentiatagheristics of the connection: the
static bending resistance and the initial rotational stiffness. dihgc bending resistance of
connection is evaluated considering either a fully plastichan@ism or a deformation mode

where only part of the connection is plasticized (see sedti®). The initial rotational stiffness
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is determined in section 4.2 considering the component methodeibige part is modelled
considering an L-stub in tension [24]. Based on the modelafse by Couchaux et al [25] for
beams in contact with a rigid foundation, a new component, corresgomtaiflanges in

compression, is derived and used to determine the position pnétlieal axis of the connection.
The results obtained via this analytical model are comparesufably against numerical

predictions and experimental results.

4.2. |Initial rotational stiffness

4.2.1. Model assumptions

The flange is subjected to the following set of distributedis (line loads) as depicted in Figure
25-a:

» The contact forcek exerted on the lower face of the flange in the compressaan ar
» A distributed forceb exerted by the bolts on the upper face of the flange in the
tensile zone,
» The prying forcey exerted on the lower face of the flange in the tensile area.
The above loading is statically equivalent to a concentrnatechal forceN placed at the

centroid of the tube and a bending momidpat the same location. The tensile fofeapplied
by the tube-wall to the flange is in longitudinal equilibriunthathe bolt and the prying forces.
Moreover, the tube-wall exert a compressive fofgepn the flange in the compression area. In
presence of thick flanges, the prying force may not exisbahdthe bolts load the flange in the
tensile area. The bolt forces are then equal to the tensilesfapplied by the tube-wall to the
flange and create a local bending moment at the junction betive¢nlte-wall and the flange.
This assumption has been considered by Stamatopoulos [12] and Kozbak[13] either for
the evaluation of the bending resistance or the initial rotatistifthess. In presence of thin
flange, the prying force always exist and tend to decrease the pendiment at the junction
with the tube-wall created by the bolt forces. In ordeavoid complex calculations involving
bolt and prying forces, the tensile force is applied at a r&liwsuch as it reproduces the same

local bending moment at the junction between the tube-wall andathgef(see Figure 25-b).

23



Bolted circular flange connections undgaticbending moment and axial force

This radius will be defined in section 4.2.5. In the meantime,contact stress distribution is

replaced by a line fordg located at a radiu’. that will be determined in section 4.2.4.

Neutral axis YA Neutral axis

|.N N
] MJ
A gl e
N RINIIRI
5 H q £ )/V
Compressive part Tensile part Compressive part  Tensile part
a- Contact force applied to the flange b- Equivalent forces applied to the flange

Figure 25. Forces applied to the connection

The cross-section at the junction between the tube wdlltlae flange (see Figure 26) is
supposed to be rigid in its own plane and to remain plane dudadinlg (Bernoulli
assumption). A rotatiogy is applied to this cross-section and the interaction betvieeftange
and the tube wall is modelled considering springs placed alongrthenéerence of the tube.
The springs have different stiffness in tension and in comipresghe distribution of the forces
applied by the tube wall to the flange is then linear in bothpression and tension zones.

Considering the plane cross-section assumption, the displaceshahe flange at the

junction with the tube-wall (see Figure 26) can be expresséollows:

_Jcmcolseﬂ for Osgsa

' - coy

o(0) = 3)
cosa — co¥
\m———————— for a<@sm
' cosa+1
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where & nis the maximum displacement in the compressive zdhe (), athe angle
defining the position of the neutral axis afg the maximum displacement in the tensile zone

(6=").

Compressive zone Tensile zone

Figure 26. Deformation of the connection with a dominant bending moment

The displacemen@, and & can be expressed as function of the rotatgprof the
connection:
Om =R 1+ coxr p (4)
O.m =R(1-cosa p, (5)
The relation between the distributed force applied by the tullexadithe displacement is:
f (8) =ko(6) (6)
wherek is a stiffness coefficient per unit length; equaktm the tensile zone and kpin the
compressive zone, respectively.
These stiffness coefficients are calculated via L-stoblets presented in sections 4.2.4 and
4.2.5 for the compressive and tensile parts, respectively.
Let frn be the maximal force per unit length applied by the tubéiwdhe tensile aread= 1)

andfc ., the maximal force per unit length applied by the tube-wathéncompressive ared@ €

0). These forces are related to the maximum displacendgptand J, , through

1:T,m = ktJt,m (7)
fC,m = kca-c,m (8)

Due to circumferential symmetry, the relation between tineef applied by the tube-wall and

those on the flange are:

R

o = frn g
el

= f 9)

tm
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fom=fc (10)

R
,mﬁ

wheref,, is the maximal force applied on the flange in the tensile &earf andf,, the
maximal force applied to the flange in the compressive #edj.

The ratio betweef,,, andf, , reads:

fim _k R l+cosr_ R I cow 1
fom Ko Rigl-cosxy R & cos (11)
The force applied to the flange can be expressed as:

cymcols_eﬂ for O<@<a

1(6)= o (12)
cosa - co¥
m—————— for a<@sm
©ocosa+1

Finally, regarding the connection behaviour, two cases ar@émss
* The bending moment is dominant and both a compressive and & teoisé
develop. It is therefore necessary to find the position of the heutisa which
depends on the loading and the relative stiffness of thdetearsil compressive
parts of the connection,
* The axial force is dominant and large enough to produce tensmngression
over the whole cross-section.
The initial rotational stiffnes§;» is defined as the ratio between the bending morknt

and the connection rotatiag
M;
Siini = p (13)

4.2.2. Position of the neutral axis
If the bending moment is dominant, the stress distribution coespeascompressive and a

tensile zone as indicated in Figure 26. Considering Eq (12), thefeséals generated by the

compressive and the tensile stresses are given by:

sing + (M- a) coxx
1+ cosx

Ft,tot = 2.[ f (G)Rteldg =2 |%,el 1:t,m (14)
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H sing —a cosy
Feot = 2£ FORAO=2R tn— "oy (15)

The equilibrium in the longitudinal direction gives:

N=F,-F

ctot

(16)

t,tot
Inserting equations Eqs (11), (14) and (15) in (16), we getdtression of. , as a function
of Nanda.

f _ N 1-cosx
“M 2R, sing -a cosr - m( simr+ fr-a )cos)

17)

The bending moments about the neutral axis produced by the comprsditensile forces,
respectively, are given by:

a —cosa siny

1- coxy — Fetot Rscom (18)

M, :2j f(6)d.(O)RB=R? {,,
0

T—a +cosa siny
1+ cosr

M;. =2[ f (6)d, (O)R e = Ry f + Ry Reosa (19)

where d.; andd; are the distances between the neutral axis anchthéorces:

d.(6) = R,(cos# - cow)
d,(f) = R.cosa - R, co¥

The total bending momeiM; reads:
M; =M, + M, + NR cosa (20)

Finally, the bending moment has the following esgren:

a —cosa sin T-a+ com Si
————+Ryfn (21)

M. =R*f
i =R o 1- cosy ' H com

Inserting expression df,in (21), one obtains an equation tor

_R.(a-cosa simr }+ m R, (m—a+ cow sim)
- 2(sina—a coxr -m( sim+ f-a )coa))

Y (22)

whereey is the eccentricity :

SN
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The anglea being comprised between 0 ancthe corresponding eccentricity is greater than
R./2 or less thanR /2. For other values of the eccentricity, the flang completely in tension

(-R¢/2< g, < 0) or completely in compressio& e, < R /2).

4.2.3. Initial rotational stiffness

* Dominant bending moment

When the bending moment is dominant, Eq (4) toJ&) ¢an be combined together to yield:

R
fim =K R (1+ cosr ;qR— (23)

el
R
f.m =K. R (- cosx ?WJE (24)

Inserting (23) and (24) into (21), the expressibmhe bending moment applied by the tube

to the connection becomes:

M, =g R(a- 202 )+ g i m-a+ S02 ) @5)
Thus the initial rotational stiffness of the cont@c is:
Siini = R{ R K(a_¥j+ R *{”‘a*' szmﬂ (26)

The above expression is a function solelyoofrhich can be obtained solving equation (22)
and is comprised between 0 awd Outside this range, the axial force is dominamd ¢he
connection is completely in tension or completelgdompression.

* Dominant axial force

When the axial force is dominant, the stiffnesshis same along the circumference of the
connection and is equal to eitHeror k.. The rotation is directly related to the displaesmof
the flange produced by the bending moment. Corisigehe plane cross-section assumption,
the displacemendis given by (see Figure 27):

3(6) =-@Rcosf (27)

The initial rotational stiffness is:

for a dominant compressive forceé€ e, < R /2):

28



Bolted circular flange connections undgaticbending moment and axial force

S.= kR R 29)

for a dominant tensile force-R .,/ 2< g, < 0):

S, =kR R (29)

Deformation of the flange near the tube-wall

\ o

Figure 27. Deformation of the connection due to bending wittominant axial force

4.2.4. Stiffness of the compressive part
The stiffness of the compressive component corretpdo the ratio between the force

applied by the tube wall to the flanfeand the displacement of the flange Kozlowski &
Wojnar [13] proposed a formulation based on a patdmstudy for three types of welds. A
theoretical solution is proposed here for full gestgon butt welds of ring and blank flanges

(see Figure 28).

fC fC

a- L-stub: ring flange b- T-stub : blank flange

Figure 28. L-stubs and T-stubs in compression
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* Full penetration butt welds of ring flanges : L{stin compression
The opposite flanges in contact are modelled vearitodel proposed by Couchaux et al
([24], [25]) for beams in frictionless contact wighrigid foundation. The latter corresponds to
the transverse plane of symmetry passing throughdjposite flanges. Stamatopoulos &
Ermopoulos [11] investigated a flange subjected tmmpressive force when the yield strength
is reached at the tube-wall and proposed, basedumnerical simulations, the following

expression for the contact pressure:

P(X) = Prax for—t/ 2x<t/ 2
PO = oo I or 1 25 ks (30)
fe
i
A
& [Mlpe T \
- TLW. ——————— % V| b
u L \
pnax
ts

Figure 29. L-stub in compression
These expressions of the contact pressure will deptad to simplify the analytical

expressions and, = 0,98, will be considered equal tp Hence, if the flange in contact with a
rigid support is modelled via the mechanical mogelposed by Couchaux et al [25], the

deflectionw at the tube-wall junction is:

1 22 (P - Pu) PZ BVZF
W(X 2)==|2z-3—+ 2 |————M& -~ ——— M X)+w (X
(%2 4{ : tfg} = £ EC )+ w (x) (31)
whereM(X) is the bending moment per unit length in thedknv;(xX) the deflection at = 0. Its

expression is given by:
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t K
W)= =2 (13 3]+ 0 MO (32)

Hence the transverse displacement of the flangeegtinction with the tube-wall is:

5,=-w(0, 1 /2)= 1 Pt Pt (33)

Considering equilibrium in the longitudinal diremti, one obtains:

fC
Prax =
Ll (34)
2
fC
p=-% (35)

tt
Inserting (34) and (35) into (33), we get the atffis per unit length of an L-stub in

compression:

e fo  _gA@A+D
“Ta w0, t/2)  24,+1/2

(36)

with A, = :—‘
f

The distance between the resultant of the conteetses and the centre of the tube is:

L A+203
2 24 +1

R=R (37)
» Full penetration butt welds of blank flanges : Tkstn compression
The component in compression of a blank flange dsletied via a T-stub in contact with a
rigid support and subjected to a compressive fgsee Figure 30). The maximum contact

pressure is thus:

f

=_¢C
Prac =17 (38)
Finally, the stiffness per unit length of a T-stalcompression is:
24, (A, +1)
k.=E— 1=
¢ 24, +1 (39)
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Figure 30. T-stub in compression

4.2.5. Stiffness of the tensile part
The stiffness of the component in tension corredpdn the ratio between the tensile force

applied by the tube wall to the flanfjeand the displacement of the flange
The evaluation of the stiffness is based on theahprbposed for L-stubs by Couchaux et al
[24] and presented in Figure 31. The flange rotaisoprevented by the tube-wall, and the effect
of the bolt is modelled by an axial spring. Théfiséiss of the bolt is defined according to EN

1993-1-8 rules:
E
A (40)

L,/2

k, =

wherelL,, is the tensile bolt length calculated via EN 1998-[26] andAs its cross-section

area.
The flange is in pointwise contact at a point ledabetween the bolt axis and the outer edge

of the flange which corresponds to the point ofliapgion of the prying force. The prying force

is also positioned at a distarrcérom the bolt axis as suggested by Couchaux |24
n=min[ (2 +¢)/3,£+ 0,74 | (41)

with

aR
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_fe) A 2R _eg/e+l
=42 cp = g = |
" [tf] Lo Py P N, ro (e/8)°
FTA
e €1
n
fF—— |
~——= 4

Figure31: Model for L-stubs in tension

To simplify the analysis, the response of thedhaiis studied considering the mechanical
model presented in Figure 32 where the verticapstipat the free edge corresponding to a
point-wise contact has been moved to the junctietween the flange and the tube and
supplemented by a torsional spring that reprodticesflexural interaction between the tube-

wall and the flange. The expression of the stiffnefsthe rotational spring is:

ky=28Dpy (42)

_4/3(1—u2) _ EF
A= R D 12(1-v?)’

In presence of blank flange, the elastic restraia tb the portion of flange present inside the

with

tube can be considered via the circular plate entiieory:

ky =(28D,+D; (1+V)/R) p (43)
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Figure 32 : Analysis of the L-stub
The flange is subjected to the bolt forBeand the prying forc&. These forces are in

equilibrium with the applied tensile forée. In the meantime, compatibility between the bolt
and the flange has to be fulfilled. The prying oand the bolt force act at point 1 and point 2,
respectively. Under a unit prying forc® € 1) alone, the deflections at point 1 and at p@&int
are taken to be&x: and o, respectively. Similarly, under a unit bolt forcB € 1), the
deflections at point 1 and at point 2 are takebd@s; and ds;, respectively. The total flange
deflection at point 2 can be expressed as:

W, = Qdg, ~ Bdg, (44)

with
e€(n, &), (1. .6+tn o & (1 ¢
%z Elf(2+3j+e{GA+ K ]5 3EL GNI@)

3

Similarly, the total flange deflection at pointsldomputed as:

W= QJQl_ BJBl (45)

3 2 >
with le(el-l-n) +e‘L+n+(Q+r) and531:532+n il +i .
% 3ElL,  GA k, 2Bl K

Compatibility demands that the elongation of thé soequal to the difference betweey

andw,:

(46)
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Furthermore, equilibrium in the vertical directigives:
B=F+Q 47)
Combining equations (44) to (47), one obtains #lation between the bolt force and the
tensile force:

5o 31~ 002
1/kb + a-Q1 - JQZ_ (551_ 532)

F=nk (48)

Finally, the stiffness of the tensile part is givin

K, “ho B ! 49
2 W, By [’7(581 _5Ql) +5Ql:| Py (49)

The bending moment at the junction between the-twdleand the flange is equal to:
M. =Bg- Qe+ n= K(7 e-(7-D( g+ )) (50)

The same bending moment can be obtained by appllyetensile forc& at a distance e

from the tube-wall :

Ke =25 =16 =7 -D(g+ 1 6

T

One obtain the equivalent radius of the tensilé gamsidered in Figure 25
Fe(,el = X(,el+ R:’7 Q_ (’7_1)( ?+ DH- I (52)

4.3. Plastic bending moment

4.3.1. General hypothesis
The failure mode depends on the ductility of tHféedént components of the connection. We

have chosen to consider two types of failure mode
e A “ductile” failure mode (see Figure 33-a) where fill resistance of each component
is reached,
* A “non-ductile” failure mode (see Figure 33-b) whehe full resistance of the most
stressed components of the connection is reached.

In section 4.3.2, we explain how to identify theevant failure mode.
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Neutral axis A Neutral axis

N N

J.pl

3*’"}"3"‘ ‘1 1"1 l\l lf‘vpi l ; J__,l_-l.: ‘;‘ ' } M/)*/rrrl/ :

fepl fepl

Compressive part Tensile part

Compressive part  Tensile part

a- “Ductile” failure mode b- “Non-ductile” failure modkt

Figure 33 : Distribution of forces for each failure modes

A distributed force(6) is applied to the flange such as equilibrium wite bending moment
and the axial force applied to the connection iflied (see Figure 33 a and b). In a “ductile”
failure mode, the resistance of each componenteftonnection is reached (see Figure 33-a),

and thus we have the following expressionf(6y:

(53)

f forasfsm

fo for0sf<a
f(@)=1."

where
fepi IS the compressive resistance per unit lengthgseton 4.3.6),
fipi is the tensile resistance per unit length (setwed.3.5),
a is the angle defining the position of the neusds.
Such as for the evaluation of the rotational sti§is the tensile forces are placed at a radius,
R.p, comprised betweeR and R, to take into account the presence of prying fortiee
evaluation ofR, is explained in section 4.3.5 and depends onadheré mode of the tensile

zone.
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In a “non-ductile” failure mode, the resistancesh® most stressed tensile and compressive

components of the connection are reached (seee-8f1b), which gives:

cosf - cosr
1-coxr

cosa — co¥
cosa+1

el , for0O<f=<a

f(6) = (54)

ol , fora<@<sm

For these two failure modes, the position of thatrat axis, defined by the angle will be
determined considering the axial equilibrium ecprati

N=F

c,pltot

Fepiot (55)
where
Fepiot IS the resultant of the compressive pEg}, «: the resultant of the tensile part
and Nthe axial force.
Furthermore, the bending moment acting on the adioreis:

+M, ., + NR, cosa (56)

Mip =M;ip
whereM; ., is the resultant bending moment arising from i@gressive part evaluated at the
neutral axis,
M;.pl is the resultant bending moment arising from #msile part evaluated at the neutral
axis
4.3.2. Ductility of the connection
Each connection components will reach its resigamty if the most deformed components
are sufficiently ductile in both tensile and congwige parts. It is obvious that the tensile part of
the connection is not ductile when its failure maderesponds to the rupture of bolts without
prying action. On the other hand, the compressam @f the connection is ductile when the
tube is class 1 or 2. However, even if the classheftube is 3 or 4, the tensile part of the
connection, when sufficiently ductile, can reachdntire potential resistance if its resistance is
significantly lower than that of the compressivetd the connection. Finally, with the benefit

of a series of comparisons with numerical and érpantal results, the authors have chosen that

a connection can be classified as “non-ductilehé of the following condition is fulfilled:
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* The class of the tube is 4 according to proposdRatter & Sadowski [27hnd prEN
1993-1-1 [29] (see Eq. (57)and the ultimate tensile resistance of the commect
increased of 20% is greater than the compresssistaace of the tuldd, p,

¢ The ultimate tensile resistance of the connectsogréater than 95% of the sum of the
tensile resistance of the bolts.

The boundary between class 3 and 4 is:

D

n =35 = 350Ky (57)
t

lim

whereaz o is the boundary proposed by Rotter & Sadowski farpure bending:

aso=min[ma>{ 8{ 2,4&L1\/?} : 14} ; 19};2
' DVD

[235
£= |—

foe

ki is a reduction factor that consider axial forcedzhon prEN 1993-1-1[29] :

_ 18
N By +23

Y is the ratio between minimal and maximal stressethe tube.

4.3.3. Ductile failure mode
When the failure mode is “ductile”, the resultamtttte compressive and tensile forces are

obtained from (53):

a

I:c,pl,tot = 2_[ 1:c,pIRcdH =2a Rc fc,p (58)
0
Ft,pl,tot = 2J. ft,pIRt,plde = Z(IT_ 0’) I%,pl ft,pl (59)
a

Inserting the resultant forces (58) and (59) irte tial equilibrium equation (55) and
considering Eqgs (71) and (76) one obtain an exfeser the anglex defining the position of

the neutral axis:
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a N + NT'pI

—= (60)
T Nc,pl + NT,pI

One observes that the position of the neutral @eeends on the axial force, the compressive
and tensile resistances of the connection. Whemrdheection is entirely in tensiolN€-Nr ),
ais equal to 0. On the other hand, when the coiorei entirely in compressiomNEN. ), a is
equal tort Similarly to the axial loadl, the bending moments produced by the compressaie a

tensile parts of the connectit) ., andM;,, are:

Micw =2] 1 (O OR = N, RIMT T T (61)
0
My =2] 10, @Ry = N, ST * (T @)C0TR (62
a
where d. andd; are the distances between the neutral axis anidtbes per unit length:
d.(6) = R,(cosd - cowm)
d,(6) = R.cosa - R, co®
Inserting Eq (61) and Eq (62) into Eq (56), wethet plastic bending moment:
Mo =M, pSina (63)
with M, = Nrp R""'; Mo R

The plastic bending moment is relatedMg, > and to the angler which itself depends on

the axial forceN.

4.3.4. Non ductile failure mode
4.3.4.1.Dominant bending moment

When the failure mode is “non-ductile” and the hagdmoment is dominant, the resultant

forces in the compressive and the tensile parte tia following expressions:

a .
N, sina —a cosr
Fc,pl,tot =2| f (9) Rcde =—=P (64)
-([ T 1-coxx
oo 2]’ f )R, o= Ny, sina + (71— a) cosx (65)
t,pltot — ,pl -
o V4 1+ cosxr
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Inserting Eqgs (64) and (65) into the axial equilibr equation (55), we get an equation
where the angle is the unknown variable

N _ Ney 1sing-acowr  1siw+ f-a )cos (66)
Nrg Ny 7 1l-cosx m I+ cowm

An explicit expression for the angke cannot be determined from this equation and only a
numerical solution can be obtained. The bending emsresulting from the compressive and

tensile parts of the connectit) ., andM;,, are:

N. R a —cosa siny
2 1- coxr

Mjcpl = 2_[ f(6)d.(O)R.db = ~ K pliot RCOSY (67)
0

Ny o R 77— a +cosa siny
2 1+ cosy

Mo =2[ (0)d, (O)R 8 = + Ry RCOSI (68)

Inserting Eq (67) and Eq (68) into Eq (56), we tipet closed form expression for the plastic

bending moment:

_ NepR: a —cosa sio . Nr o R 7—a+ cog sior (69)

M j.pl
' 2T 1- cosy ar ¥ cog

The latter expression can be used for all the sabfeN comprised betweeN, /2 and —
Nr /2. When that condition is not fulfilled, the axi@rce is dominant and the connection is
either completely in tension or in compression.

4.3.4.2. Dominant axial force (tension/compression)

When the axial force is dominant, the ultimateesiatreached in the most stressed part of

the connection, and the plastic bending momentrneso

2 Ng
= (70)

N
T'F;R"p' |:1+ N } for =Ny <N<-N;,/2

T,pl

N
mR:l:l_ N } for No,/ ZN< N,

jipl

4.3.5. Resistance of the tensile part
The resistance per unit length of the tensile pathe connectionf;, is derived from the

pure tensile resistance of the connection:

NT,pl

f =
P 2ﬂ.Rt,pI

(71)
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where
Nr i is the plastic resistance of the connection.

The tensile resistance of the connection can btermi@ted via the L-stub model ([5], [6], [7])
or considering the circumferential symmetry of tireular flange [4]. In the present paper, the
latter has been adopted. To evaluate the tensiistaace, four failure modes have been
considered:

* Mode 1: plastic bending mechanism of the flange, the spiwading resistance is
notedNr 1 pi

* Mode 2: yielding of bolts with prying effect, the corresmbing resistance is noted
Nr.2,pi

* Mode 3: yielding of the bolts with full separation of tflange, the corresponding
resistance is noteldr s

* Mode 4:yielding of the tube in tension, the correspondiegjstance is notedr 4

The tensile resistance of the connection is thermim between the four failure modes. As
for the elastic analysis, the position of the tlenfirce that produces the same bending moment

at the junction between the tube-wall and the faisgapproximated by:
Xp =N6=(7-1(g+ 1 (72)

With

> B

N

n=

T,pl
>B: Sum of bolt forces (see Figure 34),

One obtain the equivalent radius of the tensilé par

Ro=Xut REne-n-D(e+ i+ | (73)

The ratios7 depends on the failure mode of the connectioprésence of failure mode 3, the

resistance is:
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NT,S,pI = z BpI = Z B (74)
with By, beingthe tensile resistance of one bolt.

Hencex, = &, andR = R,, the position of the tensile force coincides vtk radius of the

bolt pitch circle. This assumption has been comsilléy Stamatopoulos [12].

\{Lt i
Q n &

Figure 34 : Forces applied to the flanges

In case failure mode 2 occurs, the sum of boltdsris also equal to their tensile resistance,
so the result is trivial. For failure mode 1, thensof bolt forces is lower than their tensile

resistance and the following expression has begposed by Couchaux et al [4]:

Z B=Npyp+27M F&% (75)
Where:
R=R+n
Mpis : Plastic bending moment per unit length of tlaade :
tof,
plf =,
4

For failure mode 4, the value obtained with antalamnalysis can be used.

4.3.6. Resistance of the compressive part
Since the limit state is reached in the compregsare when the tube wall buckles or yields,

the resistance per unit length of the compressivegiahe connectioff , is derived from the

compressive resistance of the tube:
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N

f _ c,pl
"R,

where N is the compressive resistance of the tube evalumtedrding to Eurocode 3 [28]

(76)

considering the classification for class 4 of Bgqra(57).

4.3.7. Comparison against numerical results
In Table 7, the plastic bending resistance obtainachumerical analysis and the analytical

model, notedV; p,numandM; i anafespectively, are compared. In addition, the bendasgstance

of the tube calculated according to the equatidnRatter & Sadowski [27], notetl; gy, has

been added.
Numerical Analytical
Specimen N Ivlj,pl,num Mj,pl,ana Mt,Rk Mj,pl,anJMj,pI,num
kN kNm kKNm kNm -
M1 0 1469 1379 2396 0,94
M2 0 1284 1179 2183 0,92
M3 0 1158 1118 2396 0,97
M4 0 905 782 2396 0,86
M5 0 990 810 848 0,82
M6 0 833 850 848 1,02
M7 0 746 738 848 0,99
M8 0 196 196 523 1,00
M9 0 336 345 523 1,03
M9-N=-0,5MN -500 249 228 465 0,91
M9-N=0,5MN 500 405 401 379 0,99
M9-N=1MN 1000 424 412 302 0,97
M10 0 523 581 523 1,11
M10-N=-1MN -1000 406 447 409 1,10
M10-N=-2MN -2000 226 192 275 0,85
M10-N=1MN 1000 406 351 302 0,87
M10-N=2MN 2000 281 150 148 0,53
M11 0 568 667 523 1,17
M12 0 2784 2994 3902 1,08
M13 0 2732 2844 3902 1,04
M14 0 2122 1864 3902 0,88
M15 0 39 39 64 0,99
M16 0 55 60 64 1,09
M17 0 71 67 114 0,94
M18 0 64 61 104 0,95
M19 0 51 52 104 1,02
M20 0 42 40 104 0,94

Table 7 : Plastic bending resistance: comparison to paranceitudy
Good matching is obtained between the analytical madd the numerical results with a

mean value of the rati; 5 andM;pi.num €qual to 0,96. The analytical model seems slightly
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unsafe for some specimens (M10 and M11), howewebémding resistance obtained with the
numerical simulations is close to the bending momesistance of the tube with a failure
mode corresponding to buckling of the tube-wall.phesence of axial force, the bending
resistance of the tube calculated according toeR@t Sadowski [27] is clearly below that

obtained numerically.

4.4, Ultimate bending moment
The ultimate bending resistandé;,, is evaluated with the model developed in sectich

However, the plastic resistance in tendit, is replaced with the ultimate resistance in tension
Nryas proposed by Couchaux et al [Apwever the engineering ultimate tensile stresssesd
instead of the true ultimate tensile stress foreauation of failure modes 1 and 2 as the tube-
wall buckles before developing such high streskeJable 8, the ultimate bending resistances
obtained via numerical analysis and the analyticadieh notedV;, ,unandM,; anarespectively,

are compared. The bending resistance of the tuddsdgyiven.
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Numerical Analytical
Specimen N M, u,num M; u,ana M, ri Mj,u,anJMj,u,num Mt,Rk/Mj,u,num
kN kNm kNm kNm - -
M1 0 1809 1566 2396 0,87 1,32
M2 0 1524 1357 2183 0,89 1,43
M3 0 1529 1303 2396 0,85 1,57
M4 0 1581 1049 2396 0,66 1,52
M5 0 1079 875 848 0,81 0,79
M6 0 943 968 848 1,03 0,90
M7 0 882 862 848 0,98 0,96
M8 0 313 264 523 0,84 1,67
M9 0 413 447 523 1,08 1,27
M9-N=-0,5MN -500 424 354 465 0,83 1,10
M9-N=0,5MN 500 424 466 379 1,10 0,89
M9-N=1MN 1000 412 451 302 1,09 0,73
M10 0 561 627 523 1,12 0,93
M10-N=-1MN -1000 541 523 409 0,97 0,76
M10-N=-2MN -2000 312 295 275 0,95 0,88
M10-N=1MN 1000 457 363 302 0,79 0,66
M10-N=2MN 2000 307 150 148 0,49 0,48
M11 0 590 664 523 1,12 0,89
M12 0 3402 3301 3902 0,97 1,15
M13 0 3249 3129 3902 0,96 1,20
M14 0 2917 2451 3902 0,84 1,34
M15 0 49 46 64 0,94 1,30
M16 0 60 69 64 1,14 1,06
M17 0 85 81 114 0,95 1,33
M18 0 78 73 104 0,94 1,34
M19 0 64 63 104 0,99 1,63
M20 0 54 48 104 0,89 1,94

Table 8: Ultimate bending resistance: comparison to paraioettudy

The mean value of the rathd, , ;ndM;unum iS €qual to 0,93 The model is conservative for most
investigated cases. The analytical model can be cweservative in presence of thin flanges
(specimens M4 and M8 for example) due to the faat the ultimate tensile resistance do not
consider tying effect [4]. The model overestimateutignate resistance of specimens M10 and
M11. However, the bending resistance of the tuleensecloser to the numerical resistance.

In Table 9, the ultimate bending moment calculatedoming to the proposed model is
compared against experimental results obtained by Yaaoh& [19], Jakubowski & Schmidt
[20], Wang et al [21] and Pavlovic et al [22]. Agaithe ultimate bending moment is

underestimated for thin flanges (BL-L-TH12, BL-S-Tld6d 10). For some specimens tested by
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Yamaguchi, the analytical model overestimated thienate resistance with failure caused by
buckling of the tube-wall far from the connectio®]1In these particular cases, the bending

resistance of the tube evaluated by the model ofeR& Sadowski [27] provide accurate

results.
Test Analytical
Reference SpeCimen N Mj,u,exp Mj,u,ana Mt,Rk Mj,u,anJMj,u,exp Mt,Rk/Mj,u,exp
kN kNm kNm kNm - -

- INSA 0 925 810 778 0,88 0,84

BL-L-TH12 0 134 121 158 0,90 1,18

BL-L-TH19 0 168 162 158 0,97 0,94

BL-L-TH22 0 166 163 158 0,98 0,95

BL-S-TH6 0 46 27 77 0,59 1,67

yamaguchi [19] BL-S-TH10 0 68 60 77 0,89 1,13

BL-S-TH16 0 77 82 77 1,07 1,00

CL-S-TH10-POO O 55 61 83 1,10 1,51

CL-S-TH22-POO0 O 71,5 92 83 1,28 1,16

CL-S-TH22-P10 -285 81 86 76 1,06 0,94

CL-S-TH22-P17 -484 65 75 66 1,16 1,02
Jakubowski [20] VRF1 0 1870 1840 1662 0,98 0,89
Wang et al [21] J1 0 96 91 107 0,95 1,12
Pavlovic et al [22] FC1 0 2213 2142 1975 0,97 0,89

Table 9 : Ultimate bending resistance: comparison to expeni@letests

4.5. Moment-rotation curve
The moment-rotation curve is fully characterized,saggested in EN 1993-1-8, by the

bending resistance and the initial rotational s&ffs. The initial rotational stiffness is
determined using expressions given in section 4h2. dlastic and ultimate bending moments
are determined via the model presented in sectidhsdd 4.4 respectively and consider two
failure modes, ductile and non-ductile. The anafjtexpression of the moment-rotation curve
is:

Sini¥ when  <OM, < M,
Mj - 1 (77)
[Sj,iniqq Mj,plw:lwﬂ when M, <M<M,

In EN 1993-1-8,¢ is equal to 2,7 for bolted flange connections. Bhéed circular flange
connections can be classified in this category. élew this formulation leads to an
overestimation of the rotation capacity when th&ufaimode is non ductile (buckling just after

the elastic range). Thus a valuegpéqual to 1 is considered for non-ductile failuredes
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Figure 35. Analytical and experimental/numerical curves
The moment-rotation curves calculated with the af@lytmodel for connection M1, M8,

M9 and M17 are compared against those obtainednwitierical analyses in Figure 36.
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Figure 36. Moment-rotation curves

The initial rotational stiffness is well estimateglthe analytical model. For connection M17,

the initial rotational stiffness is clearly unddrested. For this specimen, the diameter of the

tube is smaller than for the other specimens (200 imstead of 600-800 mm) and the

circumferential symmetry neglected in the L-stub mquals an important. The model could
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be improved considering the circular bending ptheory instead of the beam theory for the
evaluation of the stiffness of the tensile part.
5. Conclusion

An experimental test has been performed on one targé connection typically used in
pylon of ski-lift. A non-ductile failure mode corggsnding to local buckling of the tube-wall
and yielding of three bolts in tension was obserVeitial imperfections of flanges seem to play
an important role in the evolution of bolt forcesidg loading.

This experimental test has been completed by a sititdf element calculations using the
code ANSYS. The FE model used solid and contachehés and permitted to observe plastic
redistribution of bolt forces in presence of defailure modes. The influence of normal force
and flange thickness on the bending resistancealbadeen investigated.

A closed-form expression for the moment-rotation cumes been proposed for bolted
circular flange connections. This expression hanlgerived considering the initial rotational
stiffness and thestatic bending resistance. A model, based on the compometiod, is
proposed to determine the initial rotational stifs@nd consider different stiffness in the tensile
and compressive area. A new stiffness componengdbas a beam model in contact with a
rigid support, is evaluated for the compressive argh could be used for different connection
configurations. The stiffness of the tensile zosederived from L-stub model. Thetatic
resistance is determined for a combined bending moamehtxial force (tension/compression).
Two distributions of forces are considered to datee the plastic bending moment depending
on the ductility of the tensile and the compresgiaets of the connection. For the “ductile”
failure mode, all the components reach their plastgistance. For the “non-ductile” failure
mode, only the most stressed components reach tlsistargce. The resistance calculated via
this model compares well against those determinedriexgetally and numericallyit is worth
to mentionthat the elastic model proposed in this paper is &bkvaluate the force transferred
by the most tensile bolt rows as well as the maxintensile bolt force that can be used for a
fatigue design. Particular attention should be wgiteethe evaluation of the stress concentration

factor at the weld toe between the tube wall aedldnge. This requires further investigation.
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