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Abstract 

The available design rules to evaluate the force distributions in the tension and the 

compression parts of bolted circular flange connections under bending moment and axial are 

often based on the beam theory which is not adequate. The aim of this paper is to propose an 

analytical model for the calculation of the static resistance of bolted circular flange connections 

subjected to a combined bending moment and an axial force considering the influence of the 

joint ductility. An analytical model is also proposed to evaluate the stiffness of the tensile and 

the compressive parts of the connection and thus its initial rotational stiffness. The results 

obtained via the proposed analytical model are compared favourably against experimental tests 

and numerical simulations. 

 

1. Introduction 
Bolted circular flange connections are used in tubular members such as chimneys, pylons for 

wind turbines and ski-lift installations. Most of these connections should be designed for a 

combination of bending moment and axial load. Several models have been proposed to evaluate 

the tensile resistance of bolted circular flange connections under tension ([1], [2], [3], [4]).  The 

L-stub model has also been developed to predict the resistance of the tensile part in connections 

subjected to combined loading ([5], [6], [7]). 

Two types of model have been developed to evaluate the static resistance of bolted circular 

flange connections subjected to a bending moment and/or an axial force. In the first group of 

models, which are based on elastic analysis ([6], [8], [9]), the ultimate limit state is assumed to 

be attained when the resistance of the most critical component of the connection (tensile or 

compressive) is reached. This approach does not always reflect the observed ultimate behaviour 

of the connection as other components may possibly reach their full ultimate state before 
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complete failure of the joint. However, for non-ductile joint (tube-wall buckling, premature bolt 

failure in tension), this assumption is not far from the experimental and numerical observations 

[10].  

Stamatopoulos & Ermopoulos ([11]-[12]) have developed a model where all the components 

of the connection are assumed to reach their full plastic resistance at ultimate state. Hence, the 

tensile components would have to be sufficiently “ductile” to permit the mobilization of all 

components and tube-wall buckling should be avoid. 

    Mj 
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φj 

 Mj 

Sj,ini 

  Mj,pl 

 
Figure 1 :   Bolted circular flange joint subjected to a bending moment and an axial force 

The strength of a connection plays an important role in design. However, its stiffness can 

have an important impact on the overall behaviour of the structure. A model has been proposed 

by Kozlowski & Wojnar ([13], [14], [15]) to evaluate the initial rotational stiffness of these 

connections but the calculation method involves an iterative procedure and is not suitable for a 

day-to-day design. 

The objective of this paper is to propose a new model that fully characterize the behaviour of 

this type of connection, and particularly the moment-rotation curve (see Figure 1). As suggested 

in EN 1993-1-8, the moment rotation curve is drawn based on two essential characteristics of 

the connection: the bending resistance and the initial rotational stiffness. The proposed model 

provides the static resistance of a bolted circular flange connection subjected to the full range of 
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combinations of bending moment and compressive or tensile axial load. This model considers 

two statically admissible force distributions depending on the ductility of the tensile part and the 

shell buckling resistance of the compressive part. The resistance of all components can be fully 

reached provided that they are sufficiently ductile, this mode is then called “ductile mode”. In 

the case of a “non-ductile mode”, the resistance of the connection is considered to be attained 

once the most loaded component fails. The components method is considered to determine the 

initial rotational stiffness. To validate this model, a bending test has been performed on a ring 

flange connection and completed by a parametric study considering 20 connections subjected to 

the combination of a bending moment and an axial force. It is shown that the proposed models 

predict well the initial stiffness as well as the connection resistance.  

2. Experimental test 

2.1. Test set-up and specimen geometry 

An experimental test has been performed in the laboratory of INSA in Rennes on a bolted 

circular ring flange connection subjected to a bending moment. This connection, typically used 

in pylon of sky-lift, is composed of two forged flanges of 40 mm thickness welded on a tube 

762×6 (see Figure 2). Flanges are bolted using 24 bolts HR M24 [16]. The steel grade of the 

tubes and the flanges is S355, and the bolts are class 10.9.  

         
φ 896 

φ 845 25,5 

φ 26 

40 

φ 762 

  6 

φ 734 

 

Figure 2 : Specimen tested and main dimensions (in mm) 

Figure 3 gives an overview of the four point bending flexural test set-up. The specimen 

comprises two tubular segments of 3,75 m connected by the bolted circular flanges. The 
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specimen is loaded by two load-jacks with a capacity of 1500 kN. The loading is force-

controlled during the elastic stages and displacement-controlled during the elasto-plastic stage. 
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Figure 3 : Set-up of 4 points bending test (dimensions in mm) 

 

The connection was initially tested in the elastic range for three levels of bolt tightening: 10, 

50 and 100 % of the nominal preloading according to EN 1090-2 [17] with the aim to evaluate 

the effect of preloading on the bolt forces distribution. The nominal preloading forces are 

increased by 10 % as required by the torque method (see Table 1). Half of the bolts were 

instrumented (see Figure 5). For these bolts, tightening was performed by reading the strain 

gauge according to the calibration factor. Non-instrumented bolts were tightened applying the 

torque method of EN 1090-2 [17]. During these stages, the magnitude of the bending moment 

was selected to avoid any yielding for each level of preloading. These three cycles are named 

stage 1, 2 and 3 respectively.  

B0 (kN) 
Bolt 

Stage 1 Stage 2 Stage 3 
27 135 270 M24 

Table 1 : Bolt preloading force 

After these three elastic cycles, HR bolts were preloaded to 20 % of the nominal preloading 

as specified in EN 1090-2. The specimen was loaded until failure of the connections so as to 
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evaluate the elasto-plastic behaviour and particularly the plastic and ultimate resistances. This 

step corresponds to stage 4.  

2.2. Initial imperfections of the flanges 

Near each bolt, the position of the flanges has been measured at the outer edge (point 2 in 

Figure 4) and at the inner edge of the flanges (point 1 in Figure 4). The difference between these 

two points corresponds to the imperfection of the flange: 

Position2 Position1∆ = −
 

  (1) 
 

The mean value of initial flange imperfection [18] is equal to 1,09 mm and tends to favour 

contact at the outer edge of the flanges as indicated in Figure 4.  
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Figure 4 : Measurement of the initial imperfections of the flanges 

2.3. Measurements 

During the test, bolt forces, displacements and strains in the connection were measured. Two 

rosette strain gauges (BR1 and BR2) have been placed on the flange to measure radial and hoop 

strains (see Figure 5). Two rosette strain gauges (TR1 and TR2) have also been positioned on 

the tube at 15 mm of the weld toe for the same reason. Thirteen axial strain gauges located at 

300 mm of the weld toe have been used to estimate the axial strain distribution in the tube. 

Thirteen bolts have been instrumented with axial strain gauges BTM-6C in order to measure the 

axial strain and thus by calibration, the tensile force in the bolts. Instrumented bolts have also 

been used to control the bolt preload during tightening as explained in section 2.1. The main 
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displacement transducers (LVDT) positioned to measure the displacements at different locations 

on the test specimen are presented in Figure 3.  
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Figure 5 : Strain gauges on the flange and on the tube-wall 

2.4. Mechanical characteristics of steel  

Coupons extracted from the tube and the flanges as well as the bolts have been tested 

according to NF EN 10002-1. The mean value of mechanical characteristics of the bolts, the 

flanges and the tubes are given in Table 2. 

Component 
Thickness/ 

length 

Module 
of 

elasticity 

Yield 
strength 

Tensile 
strength 

Elongation Necking 

mm N/mm2 N/mm2 N/mm2 % % 
Tube  6 215717 351 492 16,2 60 

Flange 40 214419 328 529 16 73 
Bolts 120 212792 1110 1156 21 59 

Table 2 : Mechanical characteristics of tubes, flanges and bolts 

2.5. Test results 

2.5.1. Moment-rotation curve 

Failure of the specimen occurred by local tube-wall buckling at the junction with the 

connections just above the weld (see Figure 6). It was observed that the three most tension-
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loaded bolts yielded just prior the end of the test (see section 2.5.2). The maximum bending 

moment resisted by the connection during the test is equal to 925 kNm. 

                  
Figure 6 : Specimen after local buckling 

The connection rotation has been evaluated using the displacement given by transducer n°21 

(see Figure 3): 

 
21,measured 21,theoretical

j
21

2.
δ δ

φ
−

=
L

   (2) 

where δ21,merasured is the displacement measured by LVDT n°21 (see Figure 3), δ21,theoretical the 

theoretical displacement calculated at the location of LVDT n°21 and L21 the distance from 

LVDT n°21 to support n°2. 

The moment-rotation curve is depicted in Figure 7 for stage 4. The elastic stage is rapidly 

followed by a drop of the bending moment. This is a typical situation observed with shell-type 

local buckling behaviour. 
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Figure 7 : Moment rotation curve – experimental test 

2.5.2. Bolt forces 

The relationships between the force in bolt n°1 and the bending moment in the connection 

during the four stages is presented in Figure 8. During stages 1, 2 and 4 the variation of the bolt 

force is almost linear in contrast with what happens during stage 3 where 110 % of nominal 

preloading according to EN 1090-2 is applied. Effect of preloading on the variation of the bolt 

force is irrelevant during phases 1, 2 and 4 mainly due to the initial imperfections (see section 

2.2). At the end of stage 4, bolt n°1 yields in tension. 

 
Figure 8 : Evolution of bolt force n°1 – experimental test 
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The distribution of the bolt forces for different values of the bending moment applied to the 

connection in function of their location relatively to the mid-axis of the tube is presented in 

Figure 9. For bolts located in the compressive area, a decrease of the bolt force is observed due 

to the transverse local deformation of the flange. An increase of the bolt force is obtained in the 

tensile area that is lower during stage 3 than stage 4. For large values of the bending moment, 

the distribution of the bolt forces in the tensile zone is almost linear during stage 4. A mildly 

non-linear response of bolt forces can be observed as consequence of bolt preloading (see 

Figure 8). A plastic redistribution of bolt forces was not possible due to the local buckling of the 

tube that appears just after yielding of three bolts in the tensile area.  

 

 

 

  

a- Stage 3 b- Stage 4 
Figure 9 : Variation of bolt forces – experimental test 
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2.5.3. Strain gauge measurements 

Rosette strain gauges BR1 and BR2 show that at failure the flanges remain elastic in the 

tensile area. The elongations of bolts was not sufficient in the tensile area to lead to a cambering 

of the flanges as it was observed for the bolted circular flange connections subjected to a tensile 

force tested by Couchaux et al [4]. Stresses calculated with strains measured by axial gauges 

placed at 300 mm of the connections Tube i ( )1 13= →i  are presented in Figure 10. 

 

  

a- Distribution of stresses b- Evolution of stresses 
Figure 10 : Axial stresses on the tube during stage 4 

 

The evolution of stresses as a function of bending moment is linear until the development of 

stresses close to the yield strength in the tensile and compressive areas for a bending moment 

close to 850 kNm. Then, the stresses decrease in the most compressed strain gauges (Tube 11, 

12 and 13) and increase in the remaining strain gauges placed in the compression area. This 

redistribution of stresses is caused by the local buckling of the tube-wall in the vicinity of the 

connection. At the end of the test, strain gauges Tube 1, 2 and 3 reach the yield stress. The tube 

was able to develop its elastic bending moment.  

3. Numerical analysis 

3.1. Presentation of the finite element model 

A numerical model has been developed to carry out a parametric study and to complete the 

available experimental results ([19], [20], [21], [22]). The numerical model was built using the 

Finite element code ANSYS V11.0. This model is quite similar to that developed for bolted 
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circular flange connections subjected to a tensile force [4]. Connections are generated with 3D 

solid elements (hexahedral or tetrahedral bricks). The bolts are modelled considering a constant 

cross-section equal to the effective area As specified by EN1993-1-8. The model domain 

consists of 1/4 of the full geometry, since there are two planes of symmetry (see Figure 11). 

Rigid plane 

Contact between solid 
and a rigid plane 

Symmetry 

N
jM j

2

M
2

N

 
Figure 11 : Symmetries of the model and contact elements 

Contact area  

Rigid plane 

Contact between solids 

Contact between solid 
and rigid plane 

 

Figure 12 : Contact areas 

Contact elements are used between the flange and the bolts, and rigid contact elements 

between one flange and the horizontal plane of symmetry. An isotropic Coulomb friction law 

(µ = 0,25) is used to reproduce sliding/sticking conditions between the flange and the bolt. 

Friction is neglected between the two flanges because of the symmetry.  

The stress-strain relationship for steel (flange, tube and bolts) is assumed to be multi-linear 

(see Figure 13). Large deformations are also considered. As soon as the deformation level 

reaches εu, the stress drops to 10 N/mm2 in order to model the failure of the element. This 
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phenomenon leads either to a drop-off of the force applied to the connection or to the 

termination of the calculation. This latter state is assumed to be the ultimate state for the 

connection. The Von Mises criterion is retained to monitor plastic yielding. A complete curve 

has been used for the analysis of the tested specimen and considers true stress and true strain. 

For the parametric study, a simple bi-linear curve has been used (see Figure 13-b). The true 

stress-strain curve was built considering (fy, εy), (fy, εh), (fm, εm) and (fu, εu) that were determined 

from coupon test results (see section 2.4 and Couchaux et al [7]).  

The extremity of the tube is linked to a pilot node where rotation or bending moment are 

applied. Loading is controlled in rotation for pure bending moment in order to be able to 

observe the post-critical regime. In the case of combined loading, the normal force (force 

controlled loading) is firstly applied. Next the rotation of the pilot node is progressively 

increased.   

ε (%) εy εh εm εu 

fm 

σ (N/mm2) 

fy 

fu 

Failure: σ =10 
    ε = εu+1 

εu+1  εy εu 

σ (N/mm2) 

ε (%) 

fu 

fy 

εu+1 

Failure: σ =10 
    ε = εu+1 

 
a- Complete curve b- Simplified curve 

Figure 13 : Stress-strain curves 

3.2. Comparison to test results 

3.2.1. Geometrical and mechanical characteristics 

A quarter of the connection is modelled as explained in the previous section and presented in 

Figure 14. The length of the tube is equal to 1250 mm. Analyses have been performed 

considering four levels of bolt preloading: 

• Stage NP: Bolts are not preloaded and a bending moment equal to 400 kNm is 

applied, 

• Stage 2: Bolts are preloaded to half the nominal preloading of EN 1090-2 and a 

bending moment equal to 580 kNm is applied, 
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• Stage 3: Bolts are preloaded to the complete nominal preloading of EN 1090-2 and a 

bending moment equal to 360 kNm is applied, 

• Stage 4: Bolts are preloaded to 20 % of the nominal preloading of EN 1090-2 and 

the rotation is increased until post-buckling.  

 

A geometrical imperfection homothetic to the buckling mode shape obtained at failure (see 

Figure 15) was applied with a magnitude equal to 1,4 mm. 

 

Figure 14 : Finite element mesh 

The mechanical properties used with the strain-stress curve presented in Figure 13-a are 

given in Table 3. 

Element 
Thickness/ 
Diameter 

E fy εh fm εm fu εu 
N/mm2

 N/mm2
 % N/mm2 % N/mm2 % 

tube 6 215717 352 2,00 578 16,1 940 90,9 
flange 40 214419 329 1,33 621 16,0 1230 130,9 
bolt 24 210154 1122 0,56 1264 4,40 1402 89 

Table 3 : Mechanical characteristics used to model experimental test 

3.2.2. Moment rotation curves  

The failure mode obtained with the finite element model corresponds to local buckling of the 

tube at the junction with the flange (see Figure 15-b). Most tension-loaded bolts yield before the 

maximum bending moment is reached. The ultimate bending moment obtained numerically is 

equal to 911 kNm and close to the measured ultimate bending moment equal to 925 kNm.  
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a- Test b- Numerical 

Figure 15 : Local buckling of the tube-wall 

The moment-rotation curves of the connection obtained numerically and experimentally 

during stage 4 are depicted in Figure 16. Overall a fairly good match is observed as the global 

behaviour is well reproduced. The stiffness in the elastic domain is very well estimated, 

however the decrease of the bending moment occurring after tube buckling is more progressive 

and regular (constant slope). 

 
Figure 16 : Moment rotation curve 

3.2.3. Bolt forces 

The evolution of the bolt forces during phases 2, 3 and 4 is presented in Figure 17 as a 

function of the bending moment. During stage 4, the evolution of the bolt forces is clearly linear 

until the bending moment reaches 900 kNm. During stages 2 and 3, the variation of bolt forces 

is more progressive at the beginning of loading than at the end due to the effect of bolt 

preloading. This phenomenon also happens in L-stub and bolted circular flange in tension ([4], 
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[7]). At the beginning of loading, the contact area is located behind the bolts (see Figure 18-a) 

and the bolt elongation, and thus the bolt tensile force, is limited. The bolt forces further 

increase after partial uplift of the flanges occurs (see Figure 18-b). 

The evolution of the force in the most tension-loaded bolt (in fact bolt n°1) is presented in 

Figure 19 as a function of the bending moment applied to the connection during stages 2, 3 and 

4. The increase of bolt forces is more important in the test than in the numerical model. This 

difference is mainly due to the initial deformed shape of flanges (see section 2.2) that improves 

the contact at the outer edge of flanges. Effect of preloading decreases with increasing value of 

the applied load. As a result, the variation of bolt force is more pronounced. These phenomena 

were highlighted by Jakubowski & Schmidt [20]. 

 

  
a- Stage 2 b- Stage 3 

 

 

c- Stage 4  
Figure 17 : Evolution of bolt forces 
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c- Stage 2 : Mj=358 kNm a- Stage 2 : Mj=50 kNm 

 
Figure 18 : Contact stress (in N/mm2) in the tensile area 

 

 
Figure 19 : Evolution of bolt force n°1 

3.3. Parametric study 

3.3.1. Dimensions of specimens 

A parametric study has been performed considering 20 bolted circular flange connections 

(see Table 4 and Figure 20) subjected to either a pure bending moment or to a combination of  

bending moment and axial force (compression or tension). Specimens M15 to M19 are made of 

blank flanges whilst the remaining specimens are ring flanges. Bolts were not preloaded.  
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Specimen 
Rf Rb R0 tf R tt L1 Bolt  nb 

mm mm mm mm mm mm mm mm - 
M1 459 423 368,5 40 374,75 12,5 1500 24 24 
M2 526 463 365 40 373 16 1500 24 24 
M3 459 423 368,5 20 374,75 12,5 1500 24 24 
M4 459 423 368,5 15 374,75 12,5 1500 24 24 
M5 459 423 375 40 378 6 1500 24 24 
M6 459 423 375 20 378 6 1500 24 24 
M7 459 423 375 20 378 6 1500 24 24 
M8 395 350 300 10 302,5 5 900 20 24 
M9 395 350 300 15 302,5 5 900 20 24 
M10 395 350 300 25 302,5 5 900 20 24 
M11 395 350 300 40 302,5 5 900 20 24 
M12 620 560 502 40 508 12 1000 30 24 
M13 620 560 502 30 508 12 1000 30 24 
M14 620 560 502 20 508 12 1000 30 24 
M15 155 132 0 10 97,75 4,5 250 16 8 
M16 155 132 0 20 97,75 4,5 250 16 8 
M17 155 132 0 20 96 8 500 16 8 
M18 160 120 0 20 80,15 8 400 16 8 
M19 160 120 0 15 80,15 8 300 16 8 
M20 160 120 76,15 15 80,15 8 300 16 8 

nb : Number of bolts 
Table 4 : Geometry of connections – parametric study 
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a- Ring flange b- Blank flange 
Figure 20 : Dimensions of specimens studied 

 

The objective of this parametric study is to quantify the effect of the flange and tube 

thicknesses as well as the diameter of the tube. The behaviour of steel is multilinear as described 

in Figure 13-b and mechanical characteristics are given in Table 5. 
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Specimen 
Flange Tube Bolt 

fy,f fu,f εu,f fy,t fu,t εu,t fy,b fu,b εu,b 
N/mm2 N/mm2 % N/mm2 N/mm2 % N/mm2 N/mm2 % 

M1 355 637 30 355 637 30 900 1100 10 
M2 235 468 30 235 468 30 900 1100 10 

M3-M6 355 637 30 355 637 30 900 1100 10 
M7 355 637 30 355 637 30 640 880 10 

M8-M14 355 637 30 355 637 30 900 1100 10 
M15-M17 355 637 30 355 637 30 640 880 10 
M18-M20 355 637 30 460 702 30 640 880 10 

Table 5 : Mechanical characteristics – parametric study 
3.3.2. Failure modes 

Failure modes, plastic and ultimate bending moments, along with yielded components at 

failure are reported in Table 6.  

Specimen 
N Mj,pl Mj,u Mj,u/Mj,pl Yielded 

components 
Failure 

kN kNm kNm - 
M1 0 1469 1809 1,23 Bolt Bolt 

M2 0 1284 1524 1,19 Bolt Bolt 

M3 0 1158 1529 1,32 Bolt Bolt 

M4 0 905 1581 1,75 Bolt-tube Bolt 

M5 0 990 1079 1,09 Bolt, tube Buckling 

M6 0 833 943 1,13 Flange, bolt, tube Buckling 

M7 0 746 882 1,18 bolt, tube Buckling 

M8 0 196 313 1,60 Flange, tube Buckling 

M9 0 336 413 1,23 Flange, tube Buckling 

M9-N=-0,5MN -500 249 424 1,70 Flange, tube Buckling 

M9-N=-1MN -1000 227 456 2,01 Flange, tube Buckling 

M9-N=-1,5MN -1500 - 372 - Flange, tube Buckling 

M9-N=0,5MN 500 405 424 1,05 Flange, tube Buckling 

M9-N=1MN 1000 162 412 2,55 Tube Buckling 

M10 0 523 561 1,07 Bolt, tube Buckling 

M10-N=-1MN -1000 406 541 1,33 Bolt, tube Bolt 

M10-N=-2MN -2000 226 312 1,38 Bolt Bolt 

M10-N=1MN 1000 406 457 1,13 Tube Buckling 

M10-N=2MN 2000 281 307 1,09 Tube Buckling 

M11 0 568 590 1,04 Tube Buckling 

M12 0 2784 3402 1,22 Bolt Bolt 

M13 0 2732 3249 1,19 Bolt Bolt 

M14 0 2122 2917 1,37 Bolt, flange, tube Bolt 

M15 0 39 49 1,25 Bolt, flange, tube Bolt 

M16 0 59 60 1,03 bolt, tube Buckling 

M17 0 71 85 1,20 Bolt Bolt 

M18 0 64 78 1,22 Bolt-flange-tube Bolt 

M19 0 51 64 1,26 Bolt Bolt 

M20 0 42 54 1,27 Bolt Bolt 

Table 6 : Failure modes – parametric study 
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The plastic bending moment Mj,pl is estimated according to the ECCS method via the 

moment-rotation curve [23]. When bolts and/or flanges yield in the tensile part, a yield line 

develops within the tube wall just above the junction with the flange. Failure corresponds either 

to bolt rupture in tension (Figure 21-b) or to buckling of the tube wall above the compressed part 

of the flange (Figure 21-a). For a large number of specimens, buckling of the tube-wall is 

preceded by important yielding of the tensile part of the connection (bolts and/or flanges). 

  
a- Local buckling of the tube wall b- Bolt rupture in tension 

Figure 21 : Failure mode  

3.3.3. Influence of flange thickness 

The geometrical characteristics of specimens M8, M9, M10 and N11 are identical except the 

flange thickness which is equal to 10, 15, 25 and 40 mm, respectively. The moment-rotation 

curves for these specimens are presented in Figure 22-a. An increase of flange thickness leads to 

an increase of initial rotational stiffness, plastic and ultimate bending moments and a decrease 

of the rotation capacity. The resistance is also limited by the local buckling of the tube wall for 

the four specimens even if yielding of flange and bolts are obtained. For specimen M8, the 

rotation capacity is clearly improved due to yielding of the flanges in bending, however the 

buckling of the tube is finally obtained in the compressive area.  
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a- Specimens N8 to N11 

 
b- Specimens N12 to N14 

Figure 22 : Moment rotation curves : Effect of flange thickness 

 

Similarly, the only difference between specimens M12, M13 and M14 is the flange thickness 

which is equal to 40, 30 and 20 mm, respectively.  The moment-rotation curves for specimens 

M12, M13 and M14 are depicted in Figure 22-b. It has been observed that for these three 

specimens failure is due to bolts fracture. Furthermore, a reduction of flange thickness clearly 

increase the rotation capacity of the connections due to the development of plastic yield lines on 

the flange.  
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3.3.4. Influence of axial force 

The moment-rotation curves of specimen M9 and M10 obtained for different values of the 

axial force are presented in Figure 23. Compressive force increases the initial rotational stiffness 

whilst tensile force produces the opposite effect. The compressed area is stiffer than the tensile 

zone. By increasing this area, the stiffness of the connection is increased. In presence of an 

initial tensile force, a decrease of the stiffness is observed (particularly for specimen M10) with 

increasing values of the bending moment. Similarly, the stiffness decreases with increasing 

values of the bending moment in presence of an initial compressive force. This effect results 

from the development of a compression area that is stiffer than the tensile area. 

 
a- Specimen M9 

 
b- Specimen M10 

Figure 23 : Moment rotation curves : Effect of axial force 



Bolted circular flange connections under static bending moment and axial force 

22 

 

3.3.5. Bolt force distribution at failure 

It has been observed during test (see section 2.5.2) that, when reaching the ultimate moment, 

the distribution of bolt force was almost linear in the tensile area of the connection. So, the tube 

wall buckling occurred just after yielding of the first three bolts preventing yielding of other 

bolts. On the contrary, some specimens studied numerically have been able to develop 

important rotation capacity with most of the bolts located in the tensile area yielding before the 

complete failure of the connection. For instance, Specimen M12 belongs to this latter category. 

The evolution of the bolt forces obtained for specimen M12 is presented in Figure 24 as a 

function of the bending moment. The yield tensile force is reached for half the bolts of the 

connection at failure.  

 
 

Figure 24 : Evolution of bolt forces : Specimen M12, N = 0 

4. Analytical model for moment-rotation curve 

4.1. Introduction 

The objective of this section is to propose a model which fully characterize the behaviour of 

this type of connections, and particularly the moment-rotation curve. As suggested in EN 1993-

1-8, the moment rotation curve is built on two essential characteristics of the connection: the 

static bending resistance and the initial rotational stiffness. The static bending resistance of 

connection is evaluated considering either a fully plastic mechanism or a deformation mode 

where only part of the connection is plasticized (see section 4.3). The initial rotational stiffness 



Bolted circular flange connections under static bending moment and axial force 

23 

 

is determined in section 4.2 considering the component method. The tensile part is modelled 

considering an L-stub in tension [24].  Based on the model developed by Couchaux et al [25] for 

beams in contact with a rigid foundation, a new component, corresponding to flanges in 

compression, is derived and used to determine the position of the neutral axis of the connection. 

The results obtained via this analytical model are compared favourably against numerical 

predictions and experimental results. 

4.2. Initial rotational stiffness 

4.2.1. Model assumptions 

The flange is subjected to the following set of distributed loads (line loads) as depicted in Figure 
25-a: 

• The contact forces fc exerted on the lower face of the flange in the compression area, 

• A distributed force b exerted by the bolts on the upper face of the flange in the 

tensile zone, 

• The prying force q exerted on the lower face of the flange in the tensile area.  

The above loading is statically equivalent to a concentrated normal force N placed at the 

centroid of the tube and a bending moment Mj at the same location. The tensile force fT applied 

by the tube-wall to the flange is in longitudinal equilibrium with the bolt and the prying forces. 

Moreover, the tube-wall exert a compressive force, fC, on the flange in the compression area. In 

presence of thick flanges, the prying force may not exist and only the bolts load the flange in the 

tensile area. The bolt forces are then equal to the tensile forces applied by the tube-wall to the 

flange and create a local bending moment at the junction between the tube-wall and the flange. 

This assumption has been considered by Stamatopoulos [12] and Kozlowski et al [13] either for 

the evaluation of the bending resistance or the initial rotational stiffness. In presence of thin 

flange, the prying force always exist and tend to decrease the bending moment at the junction 

with the tube-wall created by the bolt forces. In order to avoid complex calculations involving 

bolt and prying forces, the tensile force is applied at a radius Rt,el  such as it reproduces the same 

local bending moment at the junction between the tube-wall and the flange (see Figure 25-b). 
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This radius will be defined in section 4.2.5. In the meantime, the contact stress distribution is 

replaced by a line force fc located at a radius Rc that will be determined in section 4.2.4.  

 fT 

fc 

Mj 

N 

α 

y 

z 

θ 

Neutral axis 
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Rb 

 q 

 b 

Compressive part Tensile part 

Rc 

 fC 

 

a- Contact force applied to the flange 

 ft 

    fc 

  Mj 

N 

α 

Compressive part Tensile part 
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z 

θ 

Neutral axis 

R 

Rb 

Rt,el 

Rc 

 

b- Equivalent forces applied to the flange 

Figure 25. Forces applied to the connection 

 

The cross-section at the junction between the tube wall and the flange (see Figure 26) is 

supposed to be rigid in its own plane and to remain plane during loading (Bernoulli 

assumption). A rotation φj is applied to this cross-section and the interaction between the flange 

and the tube wall is modelled considering springs placed along the circumference of the tube. 

The springs have different stiffness in tension and in compression. The distribution of the forces 

applied by the tube wall to the flange is then linear in both compression and tension zones. 

Considering the plane cross-section assumption, the displacement of the flange at the 

junction with the tube-wall (see Figure 26) can be expressed as follows: 

 
c,m

t,m

cos cos
  for    0

1 cos( )
cos cos

     for    
cos 1

θ αδ θ α
αδ θ

α θδ α θ π
α

−− ≤ ≤ −=  − ≤ ≤
 +

   (3) 
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where δc,m is the maximum displacement in the compressive zone (θ = 0), α the angle 

defining the position of the neutral axis and δt,m the maximum displacement in the tensile zone 

(θ = π). 

 Mj  

N 

Compressive zone Tensile zone 

 kt 

kc 
z 

δ 

φj 

 

Figure 26. Deformation of the connection with a dominant bending moment 

The displacement δt,m and δc,m can be expressed as function of the rotation φj of the 

connection: 

 t,m j (1 cos )δ α φ= +R    (4) 

 c,m j(1 cos )δ α φ= −R    (5) 

The relation between the distributed force applied by the tube-wall and the displacement is: 

 t ( ) ( )θ δ θ=f k    (6) 

where k is a stiffness coefficient per unit length; equal to kt in the tensile zone and to kc in the 

compressive zone, respectively.  

These stiffness coefficients are calculated via L-stub models presented in sections 4.2.4 and 

4.2.5 for the compressive and tensile parts, respectively.  

Let  fT,m be the maximal force per unit length applied by the tube-wall in the tensile area (θ = π) 

and fC,m the maximal force per unit length applied by the tube-wall in the compressive area (θ = 

0). These forces are related to the maximum displacements t,mδ  and c,mδ  through 

                      
T,m t t,mδ=f k

   (7) 

                      C,m c c,mδ=f k
 

  (8) 

 

Due to circumferential symmetry, the relation between the force applied by the tube-wall and 

those on the flange are: 

                      
t,m T,m

t,el

= R
f f

R    (9) 
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                      c,m C,m
c

= R
f f

R  
  (10) 

where ft,m is the maximal force applied on the flange in the tensile area (θ = π) and fc,m the 

maximal force applied to the flange in the compressive area (θ = 0). 

The ratio between ft,m and fc,m reads: 

                      

t,m t c c
k

c,m c t,el t,el

1 cos 1 cos

1 cos 1 cos

α α
α α

+ += =
− −

f k R R
m

f k R R    (11) 

The force applied to the flange can be expressed as: 

 

c,m

t,m

cos cos
  for    0

1 cos( )
cos cos

  for    
cos 1

θ α θ α
αθ

α θ α θ π
α

− ≤ ≤ −=  − ≤ ≤
 +

f
f

f

   (12) 

Finally, regarding the connection behaviour, two cases are possible: 

• The bending moment is dominant and both a compressive and a tensile zone 

develop. It is therefore necessary to find the position of the neutral axis, which 

depends on the loading and the relative stiffness of the tensile and compressive 

parts of the connection, 

• The axial force is dominant and large enough to produce tension or compression 

over the whole cross-section. 

The initial rotational stiffness Sj,ini is defined as the ratio between the bending moment Mj 

and the connection rotation φj: 

 
j

j,ini
jφ

=
M

S    (13) 

4.2.2. Position of the neutral axis 

If the bending moment is dominant, the stress distribution comprises a compressive and a 

tensile zone as indicated in Figure 26. Considering Eq (12), the axial forces generated by the 

compressive and the tensile stresses are given by: 

 t,tot t,el t,el t,m

sin ( )cos
2 ( ) 2

1 cos

π

α

α π α αθ θ
α

+ −= =
+∫F f R d R f    (14) 
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 c,tot c c c,m

0

sin cos
2 ( ) 2

1 cos

α α α αθ θ
α

−= =
−∫F f R d R f    (15) 

The equilibrium in the longitudinal direction gives: 

 c,tot t,tot= −N F F    (16) 

Inserting equations Eqs (11), (14) and (15) in (16), we get the expression of fc,m as a function 

of N and α: 

                      
 

( )c,m
c k

1 cos

2 sin cos sin ( )cos

α
α α α α π α α

−=
− − + −

N
f

R m  
  (17) 

 

The bending moments about the neutral axis produced by the compressive and tensile forces, 

respectively, are given by: 

 
2

j,c c c c c,m c,tot c

0

cos sin
2 ( ) ( ) cos

1 cos

α α α αθ θ θ α
α

−= = −
−∫M f d R d R f F R    (18) 

 
2

j,t t t,el t,el t,m t,tot c
cos sin

2 ( ) ( ) cos
1 cos

π

α

π α α αθ θ θ α
α

− += = +
+∫M f d R d R f F R    (19) 

where dc and dt are the distances between the neutral axis and the line forces: 

( )c c

t c t,el

( ) cos cos

( ) cos cos

θ θ α
θ α θ

= −
= −

d R

d R R
 

The total bending moment Mj reads: 

 j j,t j,c c cosα= + +M M M NR    (20) 

Finally, the bending moment has the following expression: 

 
2 2

j c c,m t,el t,m
cos sin cos sin

1 cos 1 cos

α α α π α α α
α α

− − += +
− +

M R f R f    (21) 

 

Inserting expression of fc,m in (21), one obtains an equation for α : 

 
( )

( )( )
c k t,el

N
k

( cos sin ) cos sin

2 sin cos sin ( )cos

α α α π α α α
α α α α π α α

− + − +
=

− − + −
R m R

e
m

   (22) 

where eN is the eccentricity : 

 j
N =

M
e

N
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The angle α being comprised between 0 and π, the corresponding eccentricity is greater than 

Rc/2 or less than –Rt,el/2. For other values of the eccentricity, the flange is completely in tension 

( t,el N/ 2 0− ≤ ≤R e ) or completely in compression ( N c0 / 2≤ ≤e R ).  

4.2.3. Initial rotational stiffness 

• Dominant bending moment 

When the bending moment is dominant, Eq (4) to Eq (10) can be combined together to yield: 

 t,m t j
t,el

  (1 cos )α φ= + R
f k R

R
   (23) 

 c,m c j
c

  (1 cos )α φ= − R
f k R

R
   (24) 

Inserting (23) and (24) into (21), the expression of the bending moment applied by the tube 

to the connection becomes: 

 
2

j j c c t,el t
sin 2 sin 2

2 2

α αφ α π α    = − + − +    
    

M R R k R k    (25) 

Thus the initial rotational stiffness of the connection is: 

 
2

j,ini c c t,el t
sin 2 sin 2

2 2

α αα π α    = − + − +    
    

S R R k R k    (26) 

The above expression is a function solely of α which can be obtained solving equation (22) 

and is comprised between 0 and π. Outside this range, the axial force is dominant and the 

connection is completely in tension or completely in compression. 

• Dominant axial force 

When the axial force is dominant, the stiffness is the same along the circumference of the 

connection and is equal to either kt or kc. The rotation is directly related to the displacement of 

the flange produced by the bending moment. Considering the plane cross-section assumption, 

the displacement δ is given by (see Figure 27): 

 j( ) cosRδ θ φ θ= −    (27) 

The initial rotational stiffness is: 

for a dominant compressive force ( N c0 / 2≤ ≤e R ): 
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2

j,c c cπ=S k R R    (28) 

for a dominant tensile force ( t,el N/ 2 0− ≤ ≤R e ): 

 
2

j,t t t,elπ=S k R R    (29) 
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Figure 27. Deformation of the connection due to bending with a dominant axial force 

4.2.4. Stiffness of the compressive part 

The stiffness of the compressive component corresponds to the ratio between the force 

applied by the tube wall to the flange fC and the displacement of the flange δc. Kozlowski & 

Wojnar [13] proposed a formulation based on a parametric study for three types of welds. A 

theoretical solution is proposed here for full penetration butt welds of ring and blank flanges 

(see Figure 28). 

 fC 

 

 fC 

 
a- L-stub : ring flange b- T-stub : blank flange 

Figure 28. L-stubs and T-stubs in compression 
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• Full penetration butt welds of ring flanges : L-stub in compression 

The opposite flanges in contact are modelled via the model proposed by Couchaux et al 

([24], [25]) for beams in frictionless contact with a rigid foundation. The latter corresponds to 

the transverse plane of symmetry passing through the opposite flanges. Stamatopoulos & 

Ermopoulos [11] investigated a flange subjected to a compressive force when the yield strength 

is reached at the tube-wall and proposed, based on numerical simulations, the following 

expression for the contact pressure: 

 

max t t

c t
max t c t

c

( )                          for   2 2

2
( )      for     2 2

= − ≤ ≤
+= ≤ ≤ +

p x p t x t

ξ t - x
p x p  t x ξ t

ξ

   (30) 
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Figure 29. L-stub in compression 

These expressions of the contact pressure will be adopted to simplify the analytical 

expressions and c f0,98ξ t≈ will be considered equal to tf. Hence, if the flange in contact with a 

rigid support is modelled via the mechanical model proposed by Couchaux et al [25],  the 

deflection w at the tube-wall junction is: 

 

2 4 2
t max t

13 3
f f f

( )1 6
( , ) 2 3 2 ( ) ( )

4

ν  −
= − + − − + 

 

p p p zz z z
w x z z M x w x

t E Et Et
   (31) 

where M(x) is the bending moment per unit length in the flange, w1(x) the deflection at z = 0. Its 

expression is given by: 
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 [ ]f
1 max t

f

3
( ) 13 3 ( )

32 2

ν= − + +t
w x p p M x

E Et
   (32) 

Hence the transverse displacement of the flange at the junction with the tube-wall is: 

 
max t

c f f(0,  / 2)
2

δ +
= − =

p p
w t t

E
   (33) 

 

 

Considering equilibrium in the longitudinal direction, one obtains: 

                      
C

max
f

t 2

=
+

f
p

t
t

 
  (34) 

                      C
t

t

=
f

p
t  

  (35) 

Inserting (34) and (35) into (33), we get the stiffness per unit length of an L-stub in 

compression: 

 
C C t t

c
c f t

(2 1)

(0,  / 2) 2 1/ 2

λ λ
δ λ

+= = − =
+

f f
k E

w t
   (36) 

with t
t

f

.
t

t
λ =

 

The distance between the resultant of the contact stresses and the centre of the tube is: 

 
tf

c
t

2 /3

2 2 1

λ
λ
+= +

+
t

R R    (37) 

 

• Full penetration butt welds of blank flanges : T-stub in compression 

The component in compression of a blank flange is modelled via a T-stub in contact with a 

rigid support and subjected to a compressive force (see Figure 30). The maximum contact 

pressure is thus: 

                      C
max

t f

=
+
f

p
t t

   (38) 

 

Finally, the stiffness per unit length of a T-stub in compression is: 

 
t t

c
t

2 ( 1)

2 1
k E

λ λ
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+=
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   (39) 
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Figure 30. T-stub in compression 

4.2.5. Stiffness of the tensile part 

The stiffness of the component in tension corresponds to the ratio between the tensile force 

applied by the tube wall to the flange fT and the displacement of the flange δt.  

The evaluation of the stiffness is based on the model proposed for L-stubs by Couchaux et al 

[24] and presented in Figure 31. The flange rotation is prevented by the tube-wall, and the effect 

of the bolt is modelled by an axial spring. The stiffness of the bolt is defined according to EN 

1993-1-8 rules: 

 s
b

b / 2

EA
k

L
=    (40) 

where Lb is the tensile bolt length calculated via EN 1993-1-8 [26] and As its cross-section 

area. 

The flange is in pointwise contact at a point located between the bolt axis and the outer edge 

of the flange which corresponds to the point of application of the prying force. The prying force 

is also positioned at a distance n from the bolt axis as suggested by Couchaux et al [24]: 

 ( )2 fmin 2 /3;  0,74n e tξ ξ = + +   
  (41) 

with 

R,0
2 2

R

e e
α

ξ
α
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Figure 31 : Model for L-stubs in tension 
 

 To simplify the analysis, the response of the flange is studied considering the mechanical 

model presented in Figure 32 where the vertical support at the free edge corresponding to a 

point-wise contact has been moved to the junction between the flange and the tube and 

supplemented by a torsional spring that reproduces the flexural interaction between the tube-

wall and the flange. The expression of the stiffness of the rotational spring is: 

 θ t b2β=k D p    (42) 

with 

32
t4 t2 2 2

t

3(1 )
,  .

12(1 )

νβ
ν

−= =
−

Et
D

R t  

In presence of blank flange, the elastic restrain due to the portion of flange present inside the 

tube can be considered via the circular plate bending theory: 

 ( )θ t f b2 (1 ) /β ν= + +k D D R p    (43) 

with 

3
f

f 2
.

12(1 )ν
=

−
Et

D
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Figure 32 : Analysis of the L-stub 
The flange is subjected to the bolt force B and the prying force Q. These forces are in 

equilibrium with the applied tensile force FT. In the meantime, compatibility between the bolt 

and the flange has to be fulfilled. The prying force and the bolt force act at point 1 and point 2, 

respectively. Under a unit prying force (Q = 1) alone, the deflections at point 1 and at point 2 

are taken to be δQ1 and δQ2, respectively. Similarly, under a unit bolt force (B = 1), the 

deflections at point 1 and at point 2 are taken to be δB1 and δB2, respectively. The total flange 

deflection at point 2 can be expressed as: 

 2 Q2 B2w Q Bδ δ= −    (44) 

with 
  

2 3
1 1 1 1 1

Q2 1 B2 1
f f θ f f θ

1 1
,  ,
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Similarly, the total flange deflection at point 1 is computed as: 

 1 Q1 B1w Q Bδ δ= −    (45) 

with
 

( ) ( )3 2

1 11
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f f θ3
δ

+ ++= + +
e n e ne n
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2
1 1
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.
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Compatibility demands that the elongation of the bolt is equal to the difference between 1w  

and 2w : 

 1 2
b

B
w w

k
− = −    (46) 



Bolted circular flange connections under static bending moment and axial force 

35 

 

Furthermore, equilibrium in the vertical direction gives: 

 TB F Q= +    (47) 

Combining equations (44) to (47), one obtains the relation between the bolt force and the 

tensile force:  

 
Q1 Q2

T T
b Q1 Q2 B1 B21/ ( )

B F F
k

δ δ
η

δ δ δ δ
−

= =
+ − − −

   (48) 

Finally, the stiffness of the tensile part is given by: 

 
T T

t
t 1 b B1 Q1 Q1 b

1

( )δ η δ δ δ
= = − =

 − + 

f F
k

w p p
   (49) 

The bending moment at the junction between the tube-wall and the flange is equal to: 

 ( )E 1 1 T 1 1( ) ( 1)( )η η= − + = − − +M Be Q e n F e e n    (50) 

The same bending moment can be obtained by applying the tensile force FT at a distance xt,el 

from the tube-wall : 

 E
t,el 1 1

T

( 1)( )η η= = − − +M
x e e n

F
   (51) 

 

One obtain the equivalent radius of the tensile part considered in Figure 25-b: 

 t,el t,el 1 1( 1)( )η η= + = − − + +R x R e e n R   (52) 

4.3. Plastic bending moment 

4.3.1. General hypothesis 

The failure mode depends on the ductility of the different components of the connection. We 

have chosen to consider two types of failure modes: 

• A “ductile” failure mode (see Figure 33-a) where the full resistance of each component 

is reached, 

• A “non-ductile” failure mode (see Figure 33-b) where the full resistance of the most 

stressed components of the connection is reached. 

In section 4.3.2, we explain how to identify the relevant failure mode. 
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a- “Ductile” failure mode b- “Non-ductile” failure mode 

Figure 33 : Distribution of forces for each failure modes 

A distributed force f(θ) is applied to the flange such as equilibrium with the bending moment 

and the axial force applied to the connection is fulfilled (see Figure 33 a and b). In a “ductile” 

failure mode, the resistance of each component of the connection is reached (see Figure 33-a), 

and thus we have the following expression for f(θ): 

 
c,pl

t,pl

,  for 0
( )

,  for 

f
f

f

θ α
θ

α θ π
≤ ≤=  ≤ ≤

   (53) 

where 

fc,pl is the compressive resistance per unit length (see section 4.3.6), 

ft,pl is the tensile resistance per unit length (see section 4.3.5), 

α is the angle defining the position of the neutral axis. 

Such as for the evaluation of the rotational stiffness, the tensile forces are placed at a radius, 

Rt,pl, comprised between R and Rb to take into account the presence of prying force. The 

evaluation of Rt,pl is explained in section 4.3.5 and depends on the failure mode of the tensile 

zone.  
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In a “non-ductile” failure mode, the resistances of the most stressed tensile and compressive 

components of the connection are reached (see Figure 33-b), which gives: 

 

c,pl

t,pl

cos cos
,  for 0

1 cos( )
cos cos

,   for 
cos 1

f
f

f

θ α θ α
αθ

α θ α θ π
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   (54) 

For these two failure modes, the position of the neutral axis, defined by the angle α, will be 

determined considering the axial equilibrium equation: 

 c,pl,tot t,pl,tot= −N F F    (55) 

where  

Fc,pl,tot is the resultant of the compressive part, Ft,pl,tot the resultant of the tensile part 

and  N the axial force. 

Furthermore, the bending moment acting on the connection is: 

 j,pl j,t,pl j,c,pl c cosα= + +M M M NR    (56) 

where Mj,c,pl is the resultant bending moment arising from the compressive part evaluated at the 

neutral axis, 

Mj,t,pl is the resultant bending moment arising from the tensile part evaluated at the neutral 

axis 

4.3.2. Ductility of the connection 

Each connection components will reach its resistance only if the most deformed components 

are sufficiently ductile in both tensile and compressive parts. It is obvious that the tensile part of 

the connection is not ductile when its failure mode corresponds to the rupture of bolts without 

prying action. On the other hand, the compressive part of the connection is ductile when the 

tube is class 1 or 2. However, even if the class of the tube is 3 or 4, the tensile part of the 

connection, when sufficiently ductile, can reach its entire potential resistance if its resistance is 

significantly lower than that of the compressive part of the connection. Finally, with the benefit 

of a series of comparisons with numerical and experimental results, the authors have chosen that 

a connection can be classified as “non-ductile” if one of the following condition is fulfilled: 
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• The class of the tube is 4 according to proposal of Rotter & Sadowski [27] and prEN 

1993-1-1 [29] (see Eq. (57)) and the ultimate tensile resistance of the connection 

increased of 20% is greater than the compressive resistance of the tube Nc,pl, 

• The ultimate tensile resistance of the connection is greater than 95% of the sum of the 

tensile resistance of the bolts. 

The boundary between class 3 and 4 is: 

 3 3,0 N
t lim

= =D
a a k

t
   (57) 

where a3,0 is the boundary proposed by Rotter & Sadowski [27] for pure bending: 

2t1
3,0 min max 83 2,48 ;  140 ;  190ε

   
 = −        

tL
a

D D
 

y,t

235ε =
f

 

     kN is a reduction factor that consider axial force based on prEN 1993-1-1[29] : 

N

18

5 23ψ
=

+
k

 

    ψ  is the ratio between minimal and maximal stresses on the tube. 

4.3.3. Ductile failure mode 

When the failure mode is “ductile”, the resultant of the compressive and tensile forces are 

obtained from (53): 

 c,pl,tot c,pl c c c,pl

0

2 2  
α

θ α= =∫F f R d R f    (58) 

 t,pl,tot t,pl t,pl t,pl t,pl2 2( )  
π

α

θ π α= = −∫F f R d R f
   (59) 

Inserting the resultant forces (58) and (59) into the axial equilibrium equation (55) and 

considering Eqs (71) and (76) one obtain an expression for the angle α defining the position of 

the neutral axis: 
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N N

N N

α
π

+
=

+
   (60) 

One observes that the position of the neutral axis depends on the axial force, the compressive 

and tensile resistances of the connection. When the connection is entirely in tension (N=-NT,pl), 

α is equal to 0. On the other hand, when the connection is entirely in compression (N=Nc,pl), α is 

equal to π. Similarly to the axial load N, the bending moments produced by the compressive and 

tensile parts of the connection Mj,c,pl and Mj,t,pl are: 

 j,c,pl c c c,pl c

0

sin cos
2 ( ) ( )

α α α αθ θ θ
π

−= =∫M f d R d N R    (61) 

 
t,pl c
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2 ( ) ( )

π

α

α π α α
θ θ θ

π
+ −

= =∫
R R

M f d R d N
   (62) 

where dc and dt are the distances between the neutral axis and the forces per unit length: 

( )c c

t c t,pl

( ) cos cos

( ) cos cos

θ θ α
θ α θ

= −
= −

d R

d R R
 

Inserting Eq (61) and Eq (62) into Eq (56), we get the plastic bending moment: 

 j,pl j,pl,D sinM M α=    (63) 

with T,pl t,pl c,pl c
j,pl,D .

π
+

=
N R N R

M  

The plastic bending moment is related to Mj,pl,D and to the angle α which itself depends on 

the axial force N. 

4.3.4. Non ductile failure mode 

4.3.4.1. Dominant bending moment 

When the failure mode is “non-ductile” and the bending moment is dominant, the resultant 

forces in the compressive and the tensile parts have the following expressions: 

 
c,pl

c,pl,tot c

0

sin cos
2 ( )

1 cos

α α α αθ θ
π α
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F f R d    (64) 
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   (65) 
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Inserting Eqs (64) and (65) into the axial equilibrium equation (55), we get an equation 

where the angle α is the unknown variable 

 
c,pl

T,pl T,pl

1 sin cos 1 sin ( )cos

1 cos 1 cos

NN

N N

α α α α π α α
π α π α

− + −= −
− +    (66) 

An explicit expression for the angle α cannot be determined from this equation and only a 

numerical solution can be obtained. The bending moments resulting from the compressive and 

tensile parts of the connection Mj,c,pl and Mj,t,pl are: 
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   (68) 

Inserting Eq (67) and Eq (68) into Eq (56), we get the closed form expression for the plastic 

bending moment: 

 
c,pl c T,pl t,pl
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N R N R
M

 
  (69) 

The latter expression can be used for all the values of N comprised between Nc,pl/2 and –

NT,pl/2. When that condition is not fulfilled, the axial force is dominant and the connection is 

either completely in tension or in compression. 

4.3.4.2. Dominant axial force (tension/compression) 

When the axial force is dominant, the ultimate state is reached in the most stressed part of 

the connection, and the plastic bending moment becomes: 
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   (70) 

4.3.5. Resistance of the tensile part 

The resistance per unit length of the tensile part of the connection, ft,pl, is derived from the 

pure tensile resistance of the connection: 

 
T,pl

t,pl
t,pl2π

=
N

f
R

   (71) 
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where  

NT,pl is the plastic resistance of the connection. 

The tensile resistance of the connection can be determined via the L-stub model ([5], [6], [7]) 

or considering the circumferential symmetry of the circular flange [4]. In the present paper, the 

latter has been adopted. To evaluate the tensile resistance, four failure modes have been 

considered: 

• Mode 1: plastic bending mechanism of the flange, the corresponding resistance is 

noted NT,1,pl 

• Mode 2: yielding of bolts with prying effect, the corresponding resistance is noted 

NT,2,pl 

• Mode 3: yielding of the bolts with full separation of the flange, the corresponding 

resistance is noted NT,3,pl 

• Mode 4: yielding of the tube in tension, the corresponding resistance is noted NT,4,pl 

The tensile resistance of the connection is the minimum between the four failure modes. As 

for the elastic analysis, the position of the tensile force that produces the same bending moment 

at the junction between the tube-wall and the flange is approximated by: 

 t,pl 1 1( 1)( )η η= − − +x e e n    (72) 

With 

T,pl

η = ∑B

N  

ΣB: Sum of bolt forces (see Figure 34), 

One obtain the equivalent radius of the tensile part: 

 t,pl t,pl 1 1( 1)( )η η= + = − − + +R x R e e n R   (73) 

 

The ratio η depends on the failure mode of the connection. In presence of failure mode 3, the 

resistance is: 
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 T,3,pl pl= =∑ ∑N B B   (74) 

with Bpl being the tensile resistance of one bolt.  

Hence xt,pl = e1 and Rt,pl = Rb, the position of the tensile force coincides with the radius of the 

bolt pitch circle. This assumption has been considered by Stamatopoulos [12]. 

ΣB 

n Q 

NT,pl 

e2 

e1 

ξ 

 

Figure 34 : Forces applied to the flanges 

 

In case failure mode 2 occurs, the sum of bolt forces is also equal to their tensile resistance, 

so the result is trivial. For failure mode 1, the sum of bolt forces is lower than their tensile 

resistance and the following expression has been proposed by Couchaux et al [4]: 

 b
T,1,pl pl,f

e b

2π= +
−∑
R

B N M
R R

   (75) 

Where: 

e b= +R R n
 Mpl,f : Plastic bending moment per unit length of the flange : 

2
f y,f

pl,f 4
=

t f
M

 For failure mode 4, the value obtained with an elastic analysis can be used.  

4.3.6. Resistance of the compressive part 

Since the limit state is reached in the compressive part when the tube wall buckles or yields, 

the resistance per unit length of the compressive part of the connection fc,pl is derived from the 

compressive resistance of the tube: 
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c,pl

c,pl
c2π

=
N

f
R

   (76) 

where Nc,pl is the compressive resistance of the tube evaluated according to Eurocode 3 [28] 

considering the classification for class 4  of Equation (57).  

4.3.7. Comparison against numerical results 

In Table 7, the plastic bending resistance obtained via numerical analysis and the analytical 

model, noted Mj,pl,num and Mj,pl,ana respectively, are compared. In addition, the bending resistance 

of the tube calculated according to the equations of Rotter & Sadowski [27], noted Mt,Rk, has 

been added.  

Specimen 

  Numerical Analytical 

N Mj,pl,num Mj,pl,ana Mt,Rk Mj,pl,ana/Mj,pl,num 

kN kNm kNm kNm - 

M1 0 1469 1379 2396 0,94 
M2 0 1284 1179 2183 0,92 
M3 0 1158 1118 2396 0,97 
M4 0 905 782 2396 0,86 
M5 0 990 810 848 0,82 
M6 0 833 850 848 1,02 
M7 0 746 738 848 0,99 
M8 0 196 196 523 1,00 
M9 0 336 345 523 1,03 

M9-N=-0,5MN -500 249 228 465 0,91 
M9-N=0,5MN 500 405 401 379 0,99 
M9-N=1MN 1000 424 412 302 0,97 

M10 0 523 581 523 1,11 
M10-N=-1MN -1000 406 447 409 1,10 
M10-N=-2MN -2000 226 192 275 0,85 
M10-N=1MN 1000 406 351 302 0,87 
M10-N=2MN 2000 281 150 148 0,53 

M11 0 568 667 523 1,17 
M12 0 2784 2994 3902 1,08 
M13 0 2732 2844 3902 1,04 
M14 0 2122 1864 3902 0,88 
M15 0 39 39 64 0,99 
M16 0 55 60 64 1,09 
M17 0 71 67 114 0,94 
M18 0 64 61 104 0,95 
M19 0 51 52 104 1,02 
M20 0 42 40 104 0,94 

Table 7 : Plastic bending resistance: comparison to parametric study 

Good matching is obtained between the analytical model and the numerical results with a 

mean value of the ratio Mj,pl,ana/Mj,pl,num equal to 0,96. The analytical model seems slightly 
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unsafe for some specimens (M10 and M11), however the bending resistance obtained with the 

numerical simulations is close to the bending moment resistance of the tube with a failure 

mode corresponding to buckling of the tube-wall. In presence of axial force, the bending 

resistance of the tube calculated according to Rotter & Sadowski [27] is clearly below that 

obtained numerically. 

4.4. Ultimate bending moment 

The ultimate bending resistance, Mj,u, is evaluated with the model developed in section 4.3. 

However, the plastic resistance in tension NT,pl is replaced with the ultimate resistance in tension 

NT,u as proposed by Couchaux et al [4]. However the engineering ultimate tensile stress is used 

instead of the true ultimate tensile stress for the evaluation of failure modes 1 and 2 as the tube-

wall buckles before developing such high stresses. In Table 8, the ultimate bending resistances 

obtained via numerical analysis and the analytical model, noted Mj,u,num and Mj,u,ana respectively, 

are compared. The bending resistance of the tube is also given. 
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Specimen 

  Numerical Analytical 

N Mj,u,num Mj,u,ana Mt,Rk Mj,u,ana/Mj,u,num Mt,Rk/Mj,u,num 

kN kNm kNm kNm - - 

M1 0 1809 1566 2396 0,87 1,32 

M2 0 1524 1357 2183 0,89 1,43 

M3 0 1529 1303 2396 0,85 1,57 

M4 0 1581 1049 2396 0,66 1,52 

M5 0 1079 875 848 0,81 0,79 

M6 0 943 968 848 1,03 0,90 

M7 0 882 862 848 0,98 0,96 

M8 0 313 264 523 0,84 1,67 

M9 0 413 447 523 1,08 1,27 

M9-N=-0,5MN -500 424 354 465 0,83 1,10 

M9-N=0,5MN 500 424 466 379 1,10 0,89 

M9-N=1MN 1000 412 451 302 1,09 0,73 

M10 0 561 627 523 1,12 0,93 

M10-N=-1MN -1000 541 523 409 0,97 0,76 

M10-N=-2MN -2000 312 295 275 0,95 0,88 

M10-N=1MN 1000 457 363 302 0,79 0,66 

M10-N=2MN 2000 307 150 148 0,49 0,48 

M11 0 590 664 523 1,12 0,89 

M12 0 3402 3301 3902 0,97 1,15 

M13 0 3249 3129 3902 0,96 1,20 

M14 0 2917 2451 3902 0,84 1,34 

M15 0 49 46 64 0,94 1,30 

M16 0 60 69 64 1,14 1,06 

M17 0 85 81 114 0,95 1,33 

M18 0 78 73 104 0,94 1,34 

M19 0 64 63 104 0,99 1,63 

M20 0 54 48 104 0,89 1,94 

Table 8 : Ultimate bending resistance: comparison to parametric study 

The mean value of the ratio Mj,u,ana/Mj,u,num is equal to 0,93 The model is conservative for most 

investigated cases. The analytical model can be over conservative in presence of thin flanges 

(specimens M4 and M8 for example) due to the fact that the ultimate tensile resistance do not 

consider tying effect [4]. The model overestimate the ultimate resistance of specimens M10 and 

M11. However, the bending resistance of the tube seems closer to the numerical resistance. 

In Table 9, the ultimate bending moment calculated according to the proposed model is 

compared against experimental results obtained by Yamaguchi [19], Jakubowski &  Schmidt 

[20], Wang et al [21] and Pavlovic et al [22]. Again, the ultimate bending moment is 

underestimated for thin flanges (BL-L-TH12, BL-S-TH6 and 10). For some specimens tested by 



Bolted circular flange connections under static bending moment and axial force 

46 

 

Yamaguchi, the analytical model overestimated the ultimate resistance with failure caused by 

buckling of the tube-wall far from the connection [19]. In these particular cases, the bending 

resistance of the tube evaluated by the model of Rotter & Sadowski [27] provide accurate 

results.  

Reference Specimen 
  Test Analytical 
N Mj,u,exp Mj,u,ana Mt,Rk Mj,u,ana/Mj,u,exp Mt,Rk/Mj,u,exp 
kN kNm kNm kNm - - 

- INSA 0 925 810 778 0,88 0,84 

Yamaguchi [19] 

BL-L-TH12 0 134 121 158 0,90 1,18 
BL-L-TH19 0 168 162 158 0,97 0,94 
BL-L-TH22 0 166 163 158 0,98 0,95 
BL-S-TH6 0 46 27 77 0,59 1,67 
BL-S-TH10 0 68 60 77 0,89 1,13 
BL-S-TH16 0 77 82 77 1,07 1,00 

CL-S-TH10-P00 0 55 61 83 1,10 1,51 
CL-S-TH22-P00 0 71,5 92 83 1,28 1,16 
CL-S-TH22-P10 -285 81 86 76 1,06 0,94 
CL-S-TH22-P17 -484 65 75 66 1,16 1,02 

Jakubowski [20] VRF1 0 1870 1840 1662 0,98 0,89 
Wang et al [21] J1 0 96 91 107 0,95 1,12 

Pavlovic et al [22] FC1 0 2213 2142 1975 0,97 0,89 
Table 9 : Ultimate bending resistance: comparison to experimental tests 

4.5. Moment-rotation curve 

The moment-rotation curve is fully characterized, as suggested in EN 1993-1-8, by the 

bending resistance and the initial rotational stiffness. The initial rotational stiffness is 

determined using expressions given in section 4.2. The plastic and ultimate bending moments 

are determined via the model presented in sections 4.3 and 4.4 respectively and consider two 

failure modes, ductile and non-ductile. The analytical expression of the moment-rotation curve 

is: 

 

j,ini j j j,pl

1j
ψ 1

j,ini j j,pl j,pl j j,u

                            when       0  

        when       ψ

φ

φ +

≤ ≤
= 
  ≤ ≤ 

S M M

M
S M M M M

   (77) 

In EN 1993-1-8, ψ is equal to 2,7 for bolted flange connections. The bolted circular flange 

connections can be classified in this category. However this formulation leads to an 

overestimation of the rotation capacity when the failure mode is non ductile (buckling just after 

the elastic range). Thus a value of ψ equal to 1 is considered for non-ductile failure modes. 
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Figure 35. Analytical and experimental/numerical curves 

The moment-rotation curves calculated with the analytical model for connection M1, M8, 

M9 and M17 are compared against those obtained with numerical analyses in Figure 36.  

  
a- M1 b- M8 

  
c- M9 d- M17 

Figure 36. Moment-rotation curves 

The initial rotational stiffness is well estimated by the analytical model. For connection M17, 

the initial rotational stiffness is clearly underestimated. For this specimen, the diameter of the 

tube is smaller than for the other specimens (200 mm instead of 600-800 mm) and the 

circumferential symmetry neglected in the L-stub model plays an important. The model could 
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be improved considering the circular bending plate theory instead of the beam theory for the 

evaluation of the stiffness of the tensile part. 

5. Conclusion 
An experimental test has been performed on one ring flange connection typically used in 

pylon of ski-lift. A non-ductile failure mode corresponding to local buckling of the tube-wall 

and yielding of three bolts in tension was observed. Initial imperfections of flanges seem to play 

an important role in the evolution of bolt forces during loading.  

This experimental test has been completed by a set of finite element calculations using the 

code ANSYS. The FE model used solid and contact elements and permitted to observe plastic 

redistribution of bolt forces in presence of ductile failure modes. The influence of normal force 

and flange thickness on the bending resistances has also been investigated.   

A closed-form expression for the moment-rotation curve has been proposed for bolted 

circular flange connections. This expression has been derived considering the initial rotational 

stiffness and the static bending resistance. A model, based on the component method, is 

proposed to determine the initial rotational stiffness and consider different stiffness in the tensile 

and compressive area. A new stiffness component, based on a beam model in contact with a 

rigid support, is evaluated for the compressive area and could be used for different connection 

configurations. The stiffness of the tensile zone is derived from L-stub model. The static 

resistance is determined for a combined bending moment and axial force (tension/compression). 

Two distributions of forces are considered to determine the plastic bending moment depending 

on the ductility of the tensile and the compressive parts of the connection. For the “ductile” 

failure mode, all the components reach their plastic resistance. For the “non-ductile” failure 

mode, only the most stressed components reach their resistance. The resistance calculated via 

this model compares well against those determined experimentally and numerically. It is worth 

to mention that the elastic model proposed in this paper is able to evaluate the force transferred 

by the most tensile bolt rows as well as the maximum tensile bolt force that can be used for a 

fatigue design. Particular attention should be given to the evaluation of the stress concentration 

factor at the weld toe between the tube wall and the flange. This requires further investigation.   
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