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Abstract17

Populations often inhabit multiple ecological patches and thus experience diver-18

gent selection, which can lead to local adaptation if migration is not strong enough19

to swamp locally adapted alleles. Conditions for the establishment of a locally ad-20

vantageous allele have been studied in randomly mating populations. However, many21

species reproduce, at least partially, through self-fertilization, and how selfing affects22

local adaptation remains unclear and debated. Using a two-patch branching process23

formalism, we obtained a closed-form approximation under weak selection for the prob-24

ability of establishment of a locally advantageous allele (P ) for arbitrary selfing rate25

and dominance level, where selection is allowed to act on viability or fecundity, and26

migration can occur via seed or pollen dispersal. This solution is compared to diffu-27

sion approximation and used to investigate the consequences of a shift in a mating28

system on P , and the establishment of protected polymorphism. We find that selfing29

can either increase or decrease P , depending on the patterns of dominance in the two30

patches, and has conflicting effects on local adaptation. Globally, selfing favors local31

adaptation when locally advantageous alleles are (partially) recessive, when selection32

between patches is asymmetrical and when migration occurs through pollen rather33

than seed dispersal. These results establish a rigorous theoretical background to study34

heterogeneous selection and local adaptation in partially selfing species.35
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1 Introduction36

Most advantageous alleles are lost from populations (Haldane, 1927), but those that escape37

extinction are ultimately destined to fix, providing that the fitness effect of an allele remains38

positive over space and time. However, fitness effects can vary across species’ range, so that39

an allele that is advantageous in one ecological patch might be deleterious in another. Two40

mutually exclusive outcomes are then possible: a locally advantageous allele is maintained by41

divergent selection as polymorphism, or the allele with the best overall performance across42

the patches becomes fixed. Since ranges of essentially all species are spread across hetero-43

geneous environments, it is of some interest to understand the conditions under which these44

outcomes are materialized. Although previous works investigated these conditions for ran-45

domly mating populations in both a deterministic (Bulmer, 1972, Felsenstein, 1976, Levene,46

1953, Maynard Smith, 1970) and a stochastic setting (Tomasini and Peischl, 2018, Yeaman47

and Otto, 2011), conditions for maintenance of local adaptation in partially self-fertilizing48

populations remain unexplored. Partial selfing is widespread among eukaryotes and well-49

described in plants (Igic and Kohn, 2006), animals (Jarne and Auld, 2006), algae (Hanschen50

et al., 2018), and fungi (Billiard et al., 2012), and considering its effect on spatially hetero-51

geneous selection is especially relevant for at least two reasons. First, partial selfing is more52

frequently found among sessile or less mobile organisms, for which landscape heterogeneity53

directly translates into local selective pressures because of the absence of the homogenizing54

effect of movements across the environment. Second, partial selfing likely influences the con-55

ditions for local adaptation by altering the effective population size and effective migration56

rate, hence the genetic structure of a population, but also by reducing the role of heterozy-57

gotes’ fitness in the dynamics of allelic frequencies.58

59

In a single population, selfing exerts two opposing effects on the fixation probability of an60

advantageous allele (Pollak (1987), Pollak and Sabran (1992),Charlesworth (1992), Caballero61

and Hill (1992)). Firstly, it increases the rate at which a rare advantageous allele spreads62

through the population. As the selfing rate increases, homozygotes appear more quickly so63

that the spread of an advantageous allele becomes increasingly decoupled from the fitness64

of the heterozygote. In other words, selfing increases the effective dominance coefficient:65

the rate of spread in a partially selfing population with dominance coefficient h, would be66

equal to the rate of spread in a randomly mating population with dominance coefficient67

h̃ = F + (1− F )h (where F is the equilibrium population inbreeding coefficient). Secondly,68

since alleles making up the progeny are not independently sampled, selfing also reduces the69

efficacy of selection by reducing the effective population size, Ñ , by a factor of 1 + F (Gale70
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(1990)). These two opposing effects cancel out when an advantageous allele is codominant71

(h = 0.5), implying that the fixation probability of a codominant advantageous allele is in-72

variant across populations with different selfing rates. If an advantageous allele is partially73

recessive (h < 0.5), then the effect of increased efficacy of selection through increased ef-74

fective dominance outweighs the reduction in Ñ yielding an increase in the establishment75

probability. Conversely, partially dominant advantageous alleles (h > 0.5) are less likely to76

fix because the reduced efficiency due to lower effective population size trumps increased77

efficacy of selection due to increased homozygosity. These predictions are altered for male78

and fecundity selection. Under selfing, no selection occurs on the male function, but the79

strength of selection on the female function is doubled because two gametes are transmitted80

for one selected parent (Damgaard, 2000).81

82

The evolutionary dynamic becomes further elaborated in structured populations with di-83

vergent selection. The simplest scenario involves two patches with an invading allele being84

advantageous in one but deleterious in the other patch. The dynamic of local adaptation85

then further depends on the effect that selfing has on gene flow. Partial selfing reduces the86

effective haploid migration rate due to the reduction in the number of female gametes that87

can be sired by immigrating male gametes, for individuals in the selfing population will have88

already fertilized themselves to a large extent. This reduction in gene flow has been pro-89

posed to prevent the spread of maladaptive alleles from neighboring populations and thus90

to promote local adaptation (Linhart and Grant, 1996), but two meta-analyses of reciprocal91

transplant experiments reported the absence of correlation between local adaptation and the92

mating system (Hereford, 2010, Leimu and Fischer, 2008). However, it is not immediately93

clear how the interplay between the mating system, migration, and selection modes affects94

the propensity for local adaptation. When local reproduction is panmictic, maintenance of95

local polymorphism roughly requires that local selection is stronger than migration. On the96

one hand, selfing reduces effective migration. On the other hand, it may either increase or97

decrease the efficacy of local selection, depending on the balance between the effect of in-98

creasing effective dominance and increasing genetic drift. In addition, in diploids, conditions99

where alleles are (partially) dominant when locally beneficial and (partially) recessive when100

locally deleterious are especially favorable to the maintenance of polymorphism (Yeaman101

and Otto, 2011). By unmasking recessive alleles, selfing is expected to reduce the range of102

applicability of those conditions. Overall, we still lack correct theoretical predictions, which103

makes it difficult to interpret the empirical results such as in Leimu and Fischer (2008) and104

Hereford (2010).105

106
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In the present work, we extend the results of previous theoretical models of local adaptation107

to partially self-fertilizing populations. We first derive a closed-form approximation for the108

probability that a locally advantageous allele escapes extinction. We then use this result109

to examine how previously described effects of selfing affect (1) the probability that allele110

escapes extinction, (2) conditions required for the establishment of protected polymorphism,111

and (3) the dependence of these properties on the mode of selection and migration.112

2 Methods113

We work with a hermaphroditic population that is divided into two patches connected by114

bidirectional migration. Migration can occur during both the haploid and the diploid phase.115

In the following, we will use the example of a plant life cycle, but results can readily be116

transposed to other life cycles. Thus, only male migration, pollen dispersal, occurs during117

the haploid phase, and diploid migration corresponds to seed dispersal. Fitness is controlled118

by a single biallelic locus, with allele A favored in the first patch and allele a favored in the119

other patch. These patches are referred to as favored and disfavored patch, respectively. The120

life cycle of the modeled organism is composed of the following sequential stages: (1) male and121

female meiosis leading to to the production of male gametophyte (pollen containing sperm122

cell) and female gametophyte (embryo sac, containing egg cell), (2) pollen dispersal, (3)123

mating (including selfing) and seed formation, (4) seed dispersal, and (5) seed establishment124

and development, which yields adults of the next generation. To make the model general,125

we allow selection to operate on viability and on male and female fecundity. More precisely,126

adults in patch i with genotype k (AA, Aa, or aa) produce W
♀
i,k female and W♂

i,k male127

gametophytes. We do not consider haploid selection, but this could readily be included128

in the model setting. Finally, each offspring with genotype k survives to maturity with129

probability Vi,k. The population selfing rate, S, is defined as the proportion of individuals in130

the population that self-fertilize and is equal across patches. Following previous works (ex:131

Hartfield and Glémin, 2016, Hössjer and Tyvand 2016) we assume that the population reaches132

equilibrium for inbreeding coefficient F and genotypic composition on a much shorter time-133

scale than the change in allelic frequencies (separation of time scale argument). Within each134

patch, we can thus write genotype frequencies directly as a function of allelic frequencies and135

F . If selection is not too strong, we can also use the neutral expectation: F = S/(2 − S).136

This assumption is relaxed in simulations. Mathematical symbols and their meaning are137

outlined in Table 1.138
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2.1 Deriving the difference equation for allele frequency139

Using the preceding definitions, one can derive the difference equations for allele frequencies140

in each patch. Let Xi and Yi be the frequencies of genotypes AA and Aa, and xi be the141

frequency of allele A in ith patch. Our system has two degrees of freedom, given that there142

are three genotype frequencies and they must add up to unity. Thus, we keep track of143

frequencies of genotypes AA and Aa, while the frequency of aa genotype is by definition144

1−Xi − Yi. Adult genotype frequencies in generation t in ith patch are:145

Xi = x2
i (t) + Fxi(t)(1− xi(t)) (1a)

Yi = 2xi(t)(1− xi(t))(1− F ) (1b)

Adult genotypes may produce different number of male and female gametophytes. Let W♂
i,k146

and W
♀
i,k be the number of male and female gametophytes that an adult with genotype k147

(AA, Aa and aa) produces in patch i. Thus, the frequency of female and male gametophyte148

A in ith patch are, respectively:149

x
♀
i =

(
W

♀
i,AAXi +W

♀
i,Aa

Yi
2

)/
W

♀
i (2a)

x♂i =

(
W♂
i,AAXi +W♂

i,Aa

Yi
2

)/
W

♂
i (2b)

where W
♀
i = XiW

♀
i,AA + YiW

♀
i,Aa + (1−Xi − Yi)W

♀
i,aa and W

♂
i = XiW

♂
i,AA + YiW

♂
i,Aa + (1−150

Xi − Yi)W♂
i,aa. After pollen migration, the frequency of allele A in pollen in ith patch is:151

g♂i = (1−mij)x
♂
i +mijx

♂
j (3)

where mij is the fraction of pollen in ith patch that come from jth patch. Pollen dispersal is152

followed by mating, which yields offspring genotypes:153

X ′i = (1− S)x
♀
i g

♂
i + S

(
W

♀
i,AA

W
♀
i

Xi +
Yi
4

W
♀
i,Aa

W
♀
i

)
(4a)

Y ′i = (1− S)
(
x
♀
i (1− g♂i ) + (1− x♀i )g♂i

)
+ S

W
♀
i,Aa

W
♀
i

Yi
2

(4b)
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Seed migration changes the genotype frequency to:154

X ′′i = (1−Mij)X
′
i +MijX

′
j (5a)

Y ′′i = (1−Mij)Y
′
i +MijY

′
j (5b)

where Mij is the fraction of seed in patch i originating from patch j. Genotype j in patch155

i has probability Vi,j to survive to maturity, so the frequency of allele A in the generation156

t+ 1 is:157

xi(t+ 1) =

(
Vi,AAX

′′
i + Vi,Aa

Y ′′i
2

)/
V i (6)

where V i = X ′′iVi,AA + Y ′′iVi,Aa + (1−X ′′i − Y ′′i)Vi,aa.158

159

Equation (6) is our difference equation that expresses the frequency of allele A in the next160

generation in terms of its frequency in the current generation.161

2.2 Analysis of the deterministic model162

We first analyze the deterministic model that gives the conditions for a protected polymor-163

phism. This extends results of Bulmer (1972) to partial selfing and more general forms of164

selection. Given that investigation of the consequences of an arbitrary selection, regime is165

prohibitively complicated, the proceeding analysis is restricted to a few special cases. We are166

ultimately interested in three selection scenarios: (1) when selection operates on differential167

survival to maturity and when selection operates on (2) female and (3) male fecundity. For168

each of these scenarios, we first consider seed migration only, as in Bulmer (1972) initial169

model (also as in Yeaman and Otto, 2011). In addition to the comparison with previous170

models, it allows analyzing the effect of selfing on selection only, as selfing does not affect171

seed migration. Then, we consider pollen migration thus analyzing the joint effect of selfing172

on both selection and migration. In total, we examine six categories of scenarios.173

174

We use the standard approach to obtain conditions for stable polymorphism by considering175

the conditions for which both monomorphic equilibria are unstable. Let both patches be fixed176

for allele a and allele A acts as an invader. Equivalent results can be obtained by considering177

patches fixed for allele A and a acting as the invader. The logic of derivation is the same178

in all cases, wherein we linearize equations (6) around ~x = [0, 0]T to obtain the system of179

linear difference equations, where J is the associated Jacobian. While J captures the invasion180
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dynamics for an arbitrary mode of selection and migration, it is difficult to analyze, so we181

focus on special population genetic cases outlined above. Each of these scenarios will have182

an associated Jacobian J{k}:183

[
x1(t+ 1)

x2(t+ 1)

]
= J{k}

[
x1(t)

x2(t)

]
, (J

{k}
ij ) =


k = ◦, Mij∆V0,i

k = ♀, Mij∆W
♀
0,j

k = ♂, Mij∆W
♂
0,j

(7)

Terms ∆V0,i, ∆W
♀
0,i, and ∆W♂

0,i are the intergenerational change in frequency of A in ith184

patch due to selection on a particular fitness component, and Mij accounts for migration185

between patches, with Mi,i = 1 −Mi,j, with j 6= i. In the case of viability selection, the186

frequency change of A in the patch 1 reflects either the contribution of alleles A that stay in187

patch 1 (1 −M12) and survives to adulthood (∆V0,1), or the contribution of alleles A that188

migrate from patch 2 (M12) and then survive to adulthood (∆V0,1). Similar logic holds for189

female and male fecundity selection but off-diagonal selection terms are exchanged because190

selection occurs prior to migration: note the j indices in ∆W terms instead of i in the191

∆V term in equation (7). Selection terms for the three scenarios are obtained by keeping192

constant the two fitness components not involved in the scenarios in the general recursion193

equations. Thus, under seed migration the three selection terms are:194

∆V0,i =
FVi,AA + (1− F )Vi,Aa

Vi,aa
(8a)

∆W
♀
0,i =

(1− F )(W
♀
i,aa + (1 + 3F )W

♀
i,Aa) + F (1 + 3F )W

♀
i,AA

2(1 + F )W
♀
i,aa

(8b)

∆W♂
0,i =

(1− F )((1− F )W
♀
i,Aa + FW♂

i,AA) + (1 + 3F )W♂
i,aa

2(1 + F )W♂
i,aa

(8c)

These expressions can be made more intuitive by parameterizing fitnesses relative to geno-195

type aa, where s◦i , s
♀
i , s♂i are the reproductive advantage of AA homozygote relative to196

aa homozygote when selection acts on viability, female, and male fecundity, respectively.197

Parameters h̃◦i , h̃
♀
i , h̃♂i represent the effective dominance of the heterozygote in ith patch198

for the three respective selection modes. These are composite parameters that depend on F199

and the actual dominance and are introduced to capture the fact that selfing increases the200

effective dominance of invading heterozygote due to contribution of mutant homozygotes to201

the invasion process. For the three cases of viability, female, and male fecundity effective202
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dominances are respectively:203

h̃◦i = (1− F )h◦i + F (9a)

h̃
♀
i =

(1 + 3F )

2(1 + F )
(F + (1− F )h

♀
i ) =

1

2
(1 + S)(F + (1− F )h

♀
i ) (9b)

h̃♂i =
(1− F )

2(1 + F )
(F + (1− F )h♂i ) =

1

2
(1− S)(F + (1− F )h♂i ) (9c)

These forms capture the fact that selfing increases the effective dominance of invading204

mutants: the invader has dominance hi when it invades in a heterozygous form (that is,205

1− F fraction of time), and dominance of one when it invades in a homozygous form (that206

is, F fraction of time). Selfing also affects the global selection intensity on male and female207

fecundity. The 1/2 factor captures the fact that selection acts only on half of the gametes208

produced by each genotype, the 1− S factor that selection on male fecundity only operates209

under outcrossing and the 1+S factor that under selfing an individual contribute two alleles210

through seed production (female fitness). Taken together:211

∆V0,i = 1 + h̃◦i s
◦
i (10a)

∆W
♀
0,i = 1 + h̃

♀
i s

♀
i (10b)

∆W♂
0,i = 1 + h̃♂i s

♂
i (10c)

The fitness of the mutant always take the same form as in a haploid model with an effective212

selective advantage s̃ = h̃s.213

214

The preceding approach can be readily extended to the selective scenarios where migration215

occurs solely via pollen. One can still use the Jacobian in (7), albeit with the modified216

migration rate to account for the facts that (a) pollen is haploid and thus do not contribute217

in the same way as diploid seed to the gene pool of the next generation, and (b) that in all218

three cases migration operates prior to selection rather than after:219

(J
{k}
ij ) =


k = ◦, M̃◦

ij∆V0,i

k = ♀, M̃
♀
ij∆W

♀
0,i

k = ♂, M̃♂
ij ∆W♂

0,i

(11)

Selection terms are still parameterized according to equations (10a–10c), but effective mi-220

9



gration is given by:221

M̃◦
ij = (1− S)

mij

2

1 + h◦i s
◦
i

1 + h̃◦i s
◦
i

(12a)

M̃
♀
ij = (1− S)

mij

2

1

1 + h̃
♀
i s

♀
i

(12b)

M̃♂
ij = (1− S)

mij

2

1 +
h̃♂j s♂j
(1−S)/2

1 + (1−mij)h̃♂i s
♂
i +mijh̃♂j s

♂
j

(12c)

Viability effective migration rate (12a) can be intuitively understood by noting that 1 − S222

corresponds to the fraction of pollen that is exchanged between the patches, mij/2 corrects223

for the fact that haploid phase contributes two-fold less alleles to the gene pool of the224

next generation relative to the diploid progeny dispersal, and the relative fitness ratio (1 +225

h◦i s
◦
i )/(1 + h̃◦i s

◦
i ) accounts for the fold increase in invader frequency in the patch of origin226

due to the inhibitory effect of selfing on gene flow. Similar interpretation holds for (12b)227

and male fecundity selection (12c), except that fitness ratio now corrects for selection acting228

prior to migration. Note that for weak selection, the three effective migration rates reduce to229

(1−S)
mij

2
. The only complication is that when selection acts on the male fitness component,230

one has to modify the effective dominance along with the effective migration rate. More231

precisely, ∆W♂
0,i = 1 + ωh̃♂i s

♂
i , where ω:232

ω = 1−mij

(
1−

h̃♂j s
♂
j

h̃♂i s
♂
i

)
(13)

Overall, a simple parameterization procedure allows the exploration of a wide breadth of233

population genetic scenarios.234

2.3 Branching process approximation235

By analyzing the stability of system 7, one can only examine conditions necessary for the236

invading allele to escape extinction. However, we also want to know the probability of the237

escape. We pursue this by representing the change in the number of invading allele as238

a multi-type branching process. Selection is thus assumed to be stronger than drift (i.e.,239

|Nh̃{k}i s
{k}
i |� 1). We work with two types, each tracking the number of mutant alleles240

in one of the two patches. The number of the mutant alleles is represented by the vector241

~N(t) = [N1(t), N2(t)]T , where N1(t) and N2(t) are the number of mutants in patch 1 and 2 in242

generation t, respectively. Let fi be the probability generating function (PGF) of offspring243
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number of mutant alleles of type i. The ultimate probability of extinction of type i (1− Pi)244

is given by the smallest positive root of the following system of equations (Haccou et al.245

(2005)):246

1− P1 = f1(1− P1, 1− P2) (14a)

1− P2 = f2(1− P1, 1− P2) (14b)

As we can assume that the number of offspring that types i and j leave are uncorrelated,247

then fk(1−P1, 1−P2) = fk,1(1−P1)fk,2(1−P2), with k = {1, 2}. Intuitively, the probability248

that mutant goes extinct conditioning on appearance in patch 1 is the probability that all of249

its offspring left in patch 1 ultimately go extinct (f1,1(1− P1)), and the probability that all250

offspring left in patch 2 via migration (f1,2(1−P2)) are ultimately lost. A similar explanation251

holds when mutant originates in patch 2. To solve the system, one needs to obtain the fi,j(z)252

PGFs.253

254

In the Wright-Fisher model with random mating, the number of mutant offspring is ap-255

proximately Poisson-distributed with mean ∆W0,i, where W stands for the different form of256

selection as described above. Partial self-fertilization affects the mutant offspring distribu-257

tion in two ways. First, it increases the mean number of offspring by inflating the effective258

dominance coefficient (see above). Second, selfing increases the variance in offspring number259

by the factor 1 + F relative to the randomly mating population (Caballero and Hill, 1992,260

Pollak, 1987). Therefore, offspring number should follow a distribution with mean ∆W0,i261

and variance ∆W0,i(1+F ). To our knowledge, the full distribution has never been obtained,262

even in single populations, probably because only the two first moments are needed for263

branching process and diffusion approximations. In appendix, we derive the exact probabil-264

ity generating function (PGF) of the distribution in different cases. In a single population265

we have:266

fφ(z) = (1− F ) e
−(1−z)


Through outcrossing︷ ︸︸ ︷

(1− S)
W

♀
Aa +W♂

Aa

2
VAa+

Through selfing︷ ︸︸ ︷
S

2
W

♀
AaVAa

︸ ︷︷ ︸
Transmitted in Aa

e−
1
2

(1−z2)S
2
W

♀
AaVAA︸ ︷︷ ︸

Transmitted in AA (only selfing)

+ F e
−(1−z)

(1−S)
W
♀
AA

+W♂
AA

2
VAa

︸ ︷︷ ︸
Transmitted in Aa (only outcrossing)

e−
1
2

(1−z2)SW
♀
AAVAA︸ ︷︷ ︸

Transmitted in AA (only selfing)

(15)

The first term in equation (15) corresponds to a A parental allele coming from an Aa individ-267
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ual (probability 1−F ) and the second term to an AA individual (probability F ). Offspring268

can be transmitted either in AA offspring, which occurs only through selfing (because we269

consider a rare mutant) or in Aa offspring, which can occur either through outcrossing or270

through selfing when the parent is Aa (so with a probability S/2). Note that fecundity selec-271

tion depends on parent genotypes whereas viability selection depends on offspring genotype.272

Using the properties of PGFs we easily retrieve that the mean of the distribution is ∆Wi273

obtained in the deterministic analysis and the variance is ∆Wi(1 +F ). For F = 0, equation274

(15) boils down to the PGF of a Poisson distribution. Hereafter, as for the deterministic275

analysis, we consider the different forms of selection separately by setting constant the other276

fitness components.277

278

For the two-patch model we need to include migration in the fi,j(z) PGFs. For seed migra-279

tion, we show that:280

fi,j(z) = (1− F )e
−(1−z)

(1−S)
W
♀
Aa,i

+W♂
Aa,i

2
Mi,jVAa,j+

S
2
W

♀
Aa,iMi,jVAa,j


e−

1
2

(1−z2)S
2
W

♀
Aa,iMi,jVAA,j

+ Fe
−(1−z)

(1−S)
W
♀
AA,i

+W♂
AA,i

2
Mi,jVAa,j


e−

1
2

(1−z2)SW
♀
AA,iMi,jVAA,j (16)

recalling that Mi,i = 1 −Mi,j with j 6= i. Note that fecundity selection occurs in patch i,281

before seed migration, whereas viability selection occurs in patch j, after seed migration.282

However, the different orderings of migration and selection yield the same results (see Math-283

ematica notebook). We also retrieve that the mean of the four distributions are given by the284

Jacobian terms obtained above, Mi,j∆Wi,j and the variance is also inflated by 1 + F . For285

pollen migration the form is slightly different because migrants can only contribute to the286

next generation through outcrossing and male gametes (whereas selfed seeds can migrate).287

The form of the PGF is thus different for the resident and migrant contribution. We have:288

fi,i(z) = (1− F )e
−(1−z)

(1−S)
W
♀
Aa,i

+W♂
Aa,i(1−mi,j)
2

VAa,i+
S
2
W

♀
Aa,iVAa,i


e−

1
2

(1−z2)S
2
W

♀
Aa,iVAA,i

+ Fe
−(1−z)

(1−S)
W
♀
AA,i

+W♂
AA,i(1−mi,j)
2

VAa,i


e−

1
2

(1−z2)SW
♀
AA,iVAA,i (17a)

fi,j(z) = (1− F )e−(1−z)(1−S)
W♂
Aa,imi,j

2
VAa,j + Fe−(1−z)(1−S)

W♂
AA,imi,j

2
VAa,j for j 6= i (17b)

As expected, the mean of the distributions are still given by the Jacobian terms with the289
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appropriate effective migration rates, M̃i,j∆Wi,j (see above). However, the variances are not290

inflated by 1 + F . For migrant alleles, equation (17b) boils down to a Poisson distribution291

because the contribution is only through outcrossing. In contrast for resident allele, the292

variance is inflated by more than 1 + F (see appendix for details). The reason is that for a293

given selfing rate, only alleles produced by outcrossing can be exported to the other patch,294

which increase the proportion of resident offspring contributed by selfing, hence the variance.295

Note, however, that the difference in PGFs between the two migration modes only affects296

high-order terms of selection and migration so has no effect on branching process approxi-297

mation results, which can all be expressed with the same form using appropriate effective298

parameters as defined in previous section (see Mathematica notebook).299

300

Previous section also showed that ∆W0,i always has the form of 1+s̃i, where s̃i is the effective301

advantage of an invading mutant in patch i, while Mij represents the effective migration rate302

between patches i and j. Thus, one can derive Pi for this generic case and then parameterize303

migration and selection to reflect the specific population genetic case. Since we cannot obtain304

the exact solution for extinction probabilities, we approximate to weak selection using the305

approach of Tomasini and Peischl (2018), which is based on the approximation for slightly306

supercritical multitype branching processes (Haccou et al., 2005). All model parameters307

are rescaled by s̃1 such that Mij := χij s̃1 and s̃2 := ζs̃1. By linearizing around s̃1 = 0308

and neglecting higher-order terms, we obtain a closed-form solution for the probability of309

establishment conditioning on the patch in which locally advantageous allele appeared. All310

analytical solutions are compared to simulated data using the method described in Appendix311

D. Simulations were conducted with the help of GNU Parallel (Tange, 2011).312

2.4 Diffusion process approximation313

An alternative way of incorporating stochastic transmission of alleles across generations is by314

approximating frequency change to diffusion. This approach has been originally developed315

for the two-patch model in an outcrossing population by Sakamoto and Innan (2019) in the316

case of wholly outcrossing population. Here, we re-capitulate their derivation and extend317

it to the case of partial selfing. The establishment probability satisfies the Kolmogorov318

backward equation (KBE):319

0 =
2∑
i=1

µi
∂P (x1, x2)

∂xi
+

2∑
i=1

σi
2

∂2P (x1, x2)

∂x2
i

(18)
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where µi and σi are drift and diffusion coefficients for patch i, and are given by:320

µi = s̃ixi(1− xi) + M̃ij(xj − xi), σi =
xi(1− xi)

2N1/(1 + F )
(19)

Note that s̃ corresponds to effective selective advantage of mutant, and M̃ij is the effective321

migration rate; These were derived in section 2.2. Diffusion coefficient is inflated by the322

factor of 1 +F as described previously. Unfortunately, we could not find neither the explicit323

nor approximate solution to this partial differential equation. Following treatment in Barton324

(1987), the problem is simplified by focusing on the first phase of fixation when mutant allele325

is rare. Thus, one can approximate coefficients as:326

σi =
xi

2N1/(1 + F )
+ o(x2

i ), µi = s̃ixi + M̃ij(xj − xi) + o(x2
i ) (20)

which leads to the simplified KBE:327

0 =
(
s̃1x1 + M̃12(x2 − x1)

)∂P (x1, x2)

∂x1

+
(
s̃2x2 + M̃21(x1 − x2)

)∂P (x1, x2)

∂x2

+

x1

4N1/(1 + F )

∂2P (x1, x2)

∂x2
1

+
x2

4N2/(1 + F )

∂2P (x1, x2)

∂x2
2

(21)

Because the invading allele is rare, the mutants in patch i go extinct independently of one328

another with probability e−li , which means that the establishment probability takes the form:329

P (x1, x2) = 1− e
−2

(
N1
1+F

x1l1+
N2
1+F

x2l2

)
(22)

Substituting eqn. 22 into 21 results in an algebraic equation which captures the establishment330

probability for an arbitrary number of initial mutants across two patches. We are interested331

in two special cases, when mutant either starts in favored (x1 = 1/(2N1) and x2 = 0) or332

disfavored patch (x1 = 0 and x2 = 1/(2N2)). With this parameterization, we obtain the333

system of two non-linear equations:334

0 = 2M̃21N2l2 + 2N1l1s̃1 −N1l1(2M̃12 + l1) (23)

0 = 2M̃12N1l1 + 2N2l2s̃2 −N2l2(2M̃12 + l2) (24)

By solving these for l1 and l2, taking the real root, and substituting into eqn. 22, one retrieves335

a closed-form solution for the establishment probability (see Mathematica notebook). With336

all of the simplifying assumptions above, the diffusion approximation works in the same337
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regime when Nes� 1, as is the case with branching approximation. As will be shown later338

in the text, the comparison of two solutions reveals that diffusion approximation performs339

identically when the allele starts in the favored patch and slightly better when it originates340

in the disfavored one. Because branching process approximation is easier to work with (e.g.,341

series expansion readily yields intuitive special cases), we use this solution throughout our342

analysis and note that the diffusion approach yields marginally better precision.343

3 Results344

3.1 Probability of establishment of a mutant345

3.1.1 General equations346

The probability of establishment of a new allele is non-zero if the branching process is super-347

critical, which means that the leading eigenvalue of the mean reproductive matrix must be348

larger than unity (Haccou et al., 2005). For the invasion of allele A under viability selection,349

it corresponds to:350

M12

((1−F )V1,Aa+FV1,AA)−V1,aa
(1−F )V1,Aa+FV1,AA

+
M21

((1−F )V2,Aa+FV2,AA)−V2,aa
(1−F )V2,Aa+FV2,AA

< 1 (25)

The denominator is the relative reproductive advantage of invading mutant against the351

resident allele. The invading population is a combination of mutant heterozygotes (when the352

two gene copies of an individual are not identical by descent, 1 − F fraction of time) and353

homozygotes (when the two gene copies are identical by descent, F fraction of time). So the354

whole term ((1−F )Vi,Aa +FVi,AA) gives the fitness of the invading mutant weighted by the355

contribution of invading genotypes. In an outcrossing population (F = 0), condition (25)356

reduces to M12/(1− V1,aa/V1,Aa) +M21/(1− V2,aa/V2,Aa) < 1, which is identical to Bulmer’s357

inequality. The same inequality with re-parameterized selection holds for fecundity and male358

sexual selection (see Appendix C). The full equations for the establishment probabilities are359

too long and not very informative and are thus reported in the appendix (see equations360

(A16) and (A17)). Without loss of generality, consider that allele A is advantageous in361

patch 1 but deleterious in patch 2 (s1 > 0 > s2); in the case of symmetrical migration362

(M12 = M21 = M/2) and migration prior to selection the general probability of establishment363
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of allele A in either patch 1 or 2 is given by:364

P1 = max

[
1

1 + F

2σ(σ + ∆)(h̃1s1 + h̃2s2 + σ −M)

2∆(σ + ∆) +M2 +M(σ −∆)
, 0

]
(26)

P2 = max

[
1

1 + F

2Mσ(h̃1s1 + h̃2s2 + σ −M)

2∆(σ + ∆) +M2 +M(σ −∆)
, 0

]
(27)

where ∆ = h̃1s1 − h̃2s2 and σ =
√

∆2 +M2 with h̃ as defined above for viability, female365

and male fecundity selection. These resemble – but are not equal – to equations (4) and (5)366

in (Tomasini and Peischl, 2018), who obtained an inexact result because of a typo in their367

application of Haccou et al.’s theorem. Initially the typo came from Aeschbacher and Bürger368

(2014) and was independently detected by Pontz and Bürger (2021) (see their Appendix A).369

Interestingly, the correct solutions are more complicated and less elegant than the ones of370

Tomasini and Peischl (2018).371

3.1.2 Limiting cases and comparison with previous results372

Despite the complexity of the general equations, useful insights can be obtained from simple373

limit conditions. In the limit of no migration (M12 = M21 = 0), we get back to the single-374

patch scenario where selection favors allele A in patch 1: P1 = 2 h̃1s1
1+F

. This is equivalent375

to Charlesworth (1992) and Caballero and Hill (1992) for viability selection. For male and376

female fecundity selection, the result is similar to the one intuited in Damgaard (2000), except377

that we also accounted for the reduction in P due to increased variance of offspring number.378

Conversely, in the limit of full migration we obtain P1 = P2 = h̃1s1+h̃2s2
1+F

, which is equivalent379

to Nagylaki (1980), with the appropriate rescaling for dominance and partial selfing. The380

probability of establishment is simply the average over the two patches. Interestingly, the fact381

that the effects of selfing on viability selection cancel out for codominant alleles (h1 = h2 =382

1/2) is no longer true with intermediate migration, even for seed migration that is not affected383

by selfing. In the limit of weak symmetrical migration, we obtain P1 = s1 − M
1+F

and P2 =384

Ms1
(1+F )(s1−s2)

and in the limit of strong migration (i.e. M >> si): P1 = s1+s2
2

+ (1+F ) s1(s1−s2)
4M

385

and P2 = s1+s2
2
− (1 +F ) s2(s1−s2)

4M
. Thus, unlike in a single population a locally advantageous386

allele that is codominant in both patches is more likely to escape extinction in selfers than387

in outcrossers. The relation between F and P2 is more complicated, and the allele can either388

be more likely, for high migration rates, or less likely, for low migration rates, to escape389

extinction. The effects of selfing under codominance only vanish either for no migration or390

full migration.391
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3.1.3 Comparison with simulations392

In general, our approximation for viability shows good correspondence with simulations393

across different selfing rates (Figure 1). This also holds true across different dominance co-394

efficients, and when selection or migration are asymmetrical (Figure 2). Correspondence is395

better in cases where the invading allele initially appears in the favored rather than in the396

disfavored patch. Diffusion approximation gives identical results when allele starts in the397

favored, and slightly better results when in the case of the disfavored patch. The improve-398

ment only occurs when the migration rate is low, and this pattern persists across dominances399

and modes of selection. A possible reason for the slightly worst accuracy of the branching400

process approach in the disadvantageous patch with low migration is that the rescaling of401

the model assumes that selection and migration parameters are of the order of s̃1. For low402

migration, we can have m21 << s̃1, so that migration could not be sufficient to introduce403

the allele in the favored patch before it goes extinct in the disfavored one.404

Figure 1: Comparison of analytical solution to simulated data across different selfing rates (corre-
sponding to different equilibrium F ). Dashed lines are diffusion approximation. Left panel: the
probability of establishment when the allele emerges in the favored patch; Right panel: the proba-
bility of establishment when the allele emerges in the disfavored patch. Parameters: h◦1 = h◦2 = 1/2,
s◦1 = −s◦2 = 0.01, M12 = M21 = M .
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Figure 2: Simulations of different selection regimes. Going from left to right, the examined scenarios
are as follows. Dashed lines denote diffusion approximation. First column: dominant case (h◦1 =
h◦2 = 3/4, s◦1 = −s◦2 = 0.01, M12 = M21 = M); Second column: recessive case (h◦1 = h◦2 = 1/4, s◦1 =
−s◦2 = 0.01, M12 = M21 = M); Third column: Asymmetric selection case (s◦1 = 0.01, s◦2 = −0.0125,
h◦1 = h◦2 = 1/2, M12 = M21 = M); Fourth column: asymmetric migration (s◦1 = −s◦2 = 0.01,
h◦1 = h◦2 = 1/2, M12 = M , and M21 = 1.25M).

P1 is a monotonically decreasing function in M , because strong migration causes the spread-405

ing of the locally advantageous allele to become swamped by the resident from the disfa-406

vored patch. P2 is non-monotonic function in M . Increasing migration initially increases the407

probability that an invading allele escapes from the disfavored patch before it goes extinct.408

However, at large migration rates, the spreading allele escapes the disfavored patch but is409

swamped due to a large influx of deleterious residents from the disfavored patch. For male410

fecundity selection, the analytical solutions for P1 and P2 are slightly worse against the sim-411

ulations (Figure A11) than those provided for viability selection. Note, however that as the412

selfing rate tends towards 1, the effective selection coefficient on male function vanishes so413

that the strong selection condition for branching process approximation is not met anymore.414

Slight discrepancies are also observed when selection or migration are asymmetrical (Figures415

A12, and A13).416

417

We also varied F continuously to obtain a fine-grained view of the analytic performance.418

Three insights emerge. First, there is a good agreement between simulated data and ana-419

lytical solution, although deviations increase as the migration rate increases. Second, the420

branching process poorly captures the dynamics of the invasion when mutants are partially421

recessive. For example, in the limit of complete recesivity (h = 0), the mutant does not422

have any reproductive advantage (i.e., equations 10a–10c reduce to unity). We clearly see423

this in Figure 3, where the analytical solution underestimates P when the allele is partially424

recessive (first column). However, this discrepancy disappears as F increases, as homozy-425
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gotes increasingly contribute to the invading process. Third, diffusion approximation yields426

a better fit when mutant starts in the favored patch, but this improvement generally works427

only when M is low.428

Figure 3: Simulations of different selection regimes. Going from left to right, the examined scenarios
are as follows. Dashed lines denote diffusion approximation. Each column denotes the establishment
probability for a set of dominance coefficients noted above the panel. Lines correspond to different
migration rates (see legend box below). Other parameters: s◦1 = −s◦2 = 0.01, M12 = M21 = M).
The axes are on logarithmic scale and error bars are excluded.

3.2 Decomposing the effects of selfing on the establishment prob-429

ability430

Selfing impedes the spread of an invading beneficial allele by reducing the effective population431

size and by increasing the effective dominance in the disfavored patch. On the other hand,432

selfing also facilitates the invasion process by increasing the effective dominance in the favored433

patch and reducing the gene flow when dispersal occurs through pollen. In this section, we434

ask: are the impeding effects generally more important than facilitating effects? When435

does the introduction of selfing increase P? To this end, we introduce an indicator βi(y)436

which denotes the effect that selfing has on Pi solely via parameter y. For example, P
{h̃1}
i437

corresponds to the establishment probability in patch i, if selfing only exerted its effect by438
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inflating favored dominance. More generally:439

βi(y) =

(
dP
{y}
i

dF

)∣∣∣∣∣
F=0

, y ∈ {h̃i, Ñ , M̃}, i ∈ {1, 2} (28)

Consider decomposing the effects of selfing on the establishment of an allele affecting viability.440

For example, the indicator β1(h̃◦1) tells us whether a shift to selfing increases P1, if selfing441

solely acted through an increase in the effective dominance in the favored patch. This allows442

us to examine the effect of each factor separately and assess when one outweighs the other.443

The indicator is obtained by taking equation A16 and sequentially setting: (1) F = 0 which444

eliminates selfing’s effect on Ñ , then (2) parameterizing s̃◦1 := s◦1h̃
◦
1 which introduces the445

effect of selfing on favored dominance, and finally, (3) setting s̃◦2 := s◦2h
◦
2 which excludes the446

effect of selfing on the effective dominance in the disfavored patch. The outlined method is447

also applicable to other selection and migration scenarios, and the general procedure is given448

in Appendix F.449

3.2.1 Emergence in the favored patch450

We focus on the establishment conditioning on allele emerging in the favored patch. Consider451

viability selection first (see Figure 4). Given our interest in knowing whether selfing increases452

or decreases the establishment probability, we only focus on the region of parameter space453

where allele can become established in fully outcrossing population (right of the solid line in454

Figure 4). When the invading allele is partially recessive in favored and partially dominant455

in the disfavored patch (white region), the criterion for escaping extinction is not satisfied,456

and a shift to selfing can only have a promoting effect on the establishment in this region of457

parameter space.458

459

Under seed dispersal, selfing only affects selection via effective dominance and the effective460

population size. One can recognize three regions of selfing effects (Figure 4). Firstly, when461

the invading mutant is partially recessive in the favored and partially dominant in the dis-462

favored patch, selfing increases P1 via the inflation of h̃◦1 (blue region). More formally, this463

will be the outcome when βk(h̃
◦
1) > −(βk(h̃

◦
2) + βk(Ñ)) (dark blue region). This is because464

the mutant is already dominant in the disfavored patch so selfing does not significantly465

increase the rate of purging, but it does increase the rate of spread owing to the mutant466

being partially recessive in the favored patch. Thus, the net effect is increased P1. Secondly,467

when the mutant is partially dominant in the favored and partially recessive in the disfa-468

vored patch, selfing decreases P1 via inflation of h̃◦2 (darker red region). This happens when469
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βk(h̃
◦
1) < −βk(h̃◦1) (dark red region). The effect is opposite to the first regime: selfing has470

a larger effect on the increase in purging from the disfavored patch (since the dominance in471

the disfavored patch is low) than on the increase in spreading in the favored patch (because472

dominance in the favored patch is already high). The net effect is a decrease in P1. The473

region of parameter space that lies between these two zones corresponds to cases when the474

facilitating effect of selfing (via dominance in the favored patch) roughly cancels out the475

impeding effect (via dominance in the disfavored patch) so that the net effect on P1 is deter-476

mined by the reduction in effective population size and the net effect of selfing is to decrease477

P1.478

479

Under pollen dispersal, we also found the same three regions but with different boundaries480

(Figure 4). In addition, selfing also affects pollen dispersal by reducing the effective number of481

migrants, so in the intermediate zone the effect of selfing on P1 depends both on the reduction482

in effective population size and effective migration rate, which creates a fourth region – the483

region for which all parameter combinations where βk(h̃
◦
1) + βk(M̃) > −(βk(h̃

◦
2) + βk(Ñ))484

(light blue region). It corresponds to conditions where the reduction in effective migration485

rate overwhelms the impeding effects of selfing. Overall, selfing increases the establishment486

of new alleles under broader conditions under pollen than under seed dispersal. Note that487

selection coefficients are an order of magnitude lower in the right panel of Figure 4, and the488

region where selfing has a net-positive effect is comparable (if not larger) to the blue region489

in the left panel.490
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Figure 4: Four zones of selfing’s effects on the establishment probability when mutant originates in
the favored patch. White region denotes parameter space where the mutant cannot establish under
outcrossing. Selection act only on viability, and migration occurs only via pollen (left), or only
via seed (right). Blue and red regions correspond to parameter space where selfing facilitates and
impedes P1, respectively. Lines in the left panel are as follows. Solid black line: P1 = 0; Dashed
black line: βk(h̃

◦
1) = −(βk(h̃

◦
2) + βk(Ñ)); Dotted black line: βk(h̃

◦
1) = −βk(h̃◦2). Lines in the right

panel are as follows. Solid black line: P1 = 0; Dashed black line: βk(h̃
◦
1) = −βk(h̃◦2); Dashdotted

line: βk(h̃
◦
1) + β(M̃) = −(βk(h̃

◦
2) + βk(Ñ)); Dotted line: βk(h̃

◦
1) + β(M̃) = −βk(h̃◦2). Parameters

for the left panel: s◦1 = −s◦2 = 0.01, h◦1 = h◦2 = 1/2, M12 = M21 = 0.01. Parameters for the right
panel: s◦1 = −s◦2 = 0.001, h◦1 = h◦2 = 1/2, M12 = M21 = 0.005.
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Although qualitatively similar results holds for two other modes of selection (Figure 5), one491

notices that the region where the selfing exerts its effect solely via effective dominance is492

significantly expanded. This is because an increase in the selfing rate diminishes the male493

component’s relevance and increases the importance of the female component. The relative494

sizes of these regions vary based on parameter values, so more general quantitative statements495

are hard to make.496

Figure 5: Zones of selfing’s effect on P1 under female fecundity (upper row ), and on male fecundity
(lower row). Color code as in Figure 4. Migration via seed is depicted in the left column, and
via pollen in the right column. Black lines as in the previous figure. Depending on selection and

migration scenario, parameters are either: h
♀
1 = h

♀
2 = 1/2 or h♂1 = h♂1 = 1/2, s

♀
1 = −s♀2 = 0.01 or

s♂1 = −s♂2 = 0.01, and M12 = M21 = 0.01 or m12 = m21 = 0.01.

3.2.2 Emergence in the disfavored patch497

Similar conclusions are reached if one considers emergence of mutant in the disfavored patch498

(Figure A16). However, under pollen dispersal, selfing reduces the effective migration rate,499

which can have either positive or negative effect on P2 depending on the parameters of the500

model. This phenomenon arises due to P2 being a non-monotonic function of m (see Figure501

2). More specifically, if migration is much stronger than selection, then a mutant can escape502
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to favored patch where it can spread, but the influx of maladapted allele is also high, thus503

having a net impeding effect on invading allele. This means that introduction of selfing will504

reduce the effective migration rate, and thus increase P2. Put differently, increasing F has505

the same kind of effect on P2 as decreasing m. However, if the migration rate is already506

low enough, the introduction of selfing further depresses m and, thus, prevents invader from507

successfully escaping into the favored patch.508

3.3 Consequence of selfing on the establishment of protected poly-509

morphism510

Once the allele A escapes extinction, it can either fix across both patches or segregate511

at intermediate frequencies for a finite but large number of generations due to divergent512

selection. Because both patches are of finite size, one of the two alleles will ultimately fix513

but this quasi-stationary behavior corresponds to protected polymorphism in deterministic514

models. We wish to delineate the effects of selfing on these two outcomes. Given that an515

invading allele can appear in any of the two patches where the favored patch accounts for z516

fraction of the total population across both patches, the global probability of alleles A and517

a becoming established is:518

P (A) = zP
(A)
1 + (1− z)P

(A)
2 (29)

P (a) = zP
(a)
1 + (1− z)P

(a)
2 (30)

where P
(A)
i and P

(a)
i are probabilities that A and a become established, conditioning on519

initially appearing in patch i. For the sake of simplicity, we will further assume that patches520

are of equal size (z = 1/2), and migration is symmetrical. Probability that allele A is es-521

tablished is computed by parameterizing equations (26) and (27) where selection coefficients522

were determined from Jacobian associated with boundary ~x = [0, 0]T , while the establish-523

ment probability of a was calculated with elements of Jacobian associated with boundary524

~x = [1, 1]T . For example, if selective advantage of invading heterozygote Aa relative to ho-525

mozygote aa in patch i is sihi, then the advantage of invading Aa relative to homozygote526

AA is −si(1− hi)/(1 + si).527

3.3.1 Conditions for protected polymorphism and critical migration rates528

Polymorphism is protected if both P (A) > 0 and P (a) > 0, that is for the conditions under529

which the branching processes for the invasion of A and for the invasion of a are supercritical.530

This boils down to the extension of Bulmer’s inequality given by equation (25) directly531
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obtained from the Jacobian matrix, which must also be satisfied with genotypes AA and532

aa shifted (corresponding to the supercriticality for the invasion of allele a). From this, we533

can define critical migration rates above which polymorphism is lost and the allele with the534

highest marginal fitness invades as in Yeaman and Otto (2011). Without loss of generality535

we can assume that s1 > −s2 > 0. For seed dispersal and viability selection Mc is then given536

by:537

Mc =

1, if (1+(1−F )h1s1)(1+(1−F )h2s2)
(1+s1)(1+s2)

> 1

− (1−(1−F )h1)(1−(1−F )h2)s1s2
(1−(1−F )h1)s1+(1−(1−F )h2)s2+(1−F )(h1+h2−2(1−F )h1h2)s1s2

, otherwise
(31)

For F = 0, (31) reduces to equation (5) in Yeaman and Otto (2011) and for F = 1 to538

Mc = − s1s2
s1+s2

. The first condition corresponds to a form of dominance reversal where the539

allele is dominant when advantageous and recessive when deleterious. Under such a condi-540

tion, polymorphism can be maintained even under full migration.541

542

Depending on dominance, selfing thus has two opposite effects. On the one hand, by unmask-543

ing recessive alleles, selfing makes selection stronger relative to migration and so enlarges544

the conditions for the maintenance of protected polymorphism. On the other hand, selfing545

makes dominance reversal conditions less likely as selection mainly operates on homozygotes,546

and so restricts the conditions for protected polymorphism. Figure 6 shows the dominance547

conditions under which selfing increases or decreases the critical migration rate. We de-548

termined these conditions in two ways: either when Mc is higher under full selfing than549

under full outcrossing (i.e., Mc|F=0< Mc|F=1) or whether introduction of selfing in an oth-550

erwise outcrossing population increases Mc, that is ∂Mc

∂F

∣∣∣
F=0

> 0. For symmetrical selection551

(s2 = −s1), selfing increases migration rate if h2 > h1. Under the opposite condition, the552

critical migration is 1 and local adaptation is always maintained under outcrossing. As se-553

lection becomes more asymmetrical, selfing favors local adaptation for a broader range of554

dominance coefficients. Note that the effect of selfing on the migration rate is not monotonic555

for a narrow range of conditions (light blue region in Figure 6), where little selfing disfavors556

local adaption (∂Mc

∂F

∣∣∣
F=0

< 0) but high selfing increases it (Mc|F=0< Mc|F=1). Finally, it is557

worth noting that when selfing favors local adaptation, the effect is rather weak (blue curves558

on Figure 6). On the contrary, under dominance reversal conditions, above a given threshold,559

selfing dramatically reduces the migration rate from 1 to − s1s2
s1+s2

under full selfing. Similar560

results are obtained for fecundity selection but with selfing favoring local adaption under561

broader conditions for female fecundity and for narrower conditions for male fecundity (see562

Appendix).563
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Figure 6: Effect of selfing on the critical migration rate. The three first panels show dominance
conditions under which selfing increases (blue regions) or decreases (red regions) the critical mi-
gration rate, Mc. Selection is symmetrical in the first panel (s1 = −s2 = 0.01), and asymmetrical
in the second (s1 = 0.02 and s2 = −0.01) and third panels (s1 = 0.05 and s2 = −0.01). In the
light blue region, Mc is not monotonic with F : introduction of selfing in an outcrossing population
decreases Mc (∂Mc

∂F |F=0< 0) but above a given selfing rate, Mc becomes higher than in an out-
crossing population and we always have Mc|F=0< Mc|F=1. In the dark blue region, selfing always
increases Mc (Mc|F=0< Mc|F=1). In the dark red region, Mc = 1 in outcrossing populations and
Mc < 1 in the light red region. The last panel illustrates how Mc varies with F in the four regions,
corresponding to the black dots of the second panel. For all curves s1 = 0.02 and s2 = −0.01. Dark
blue: h1 = 0.4 and h2 = 0.4; light blue: h1 = 0.55 and h2 = 0.4; light red: h1 = 0.65 and h2 = 0.4;
Dark red: h1 = 0.9 and h2 = 0.4. Note that Mc is in log-scale.
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The picture is different under pollen dispersal. Under full selfing, effective migration is zero564

so selection can act independently in each patch and polymorphism is always maintained. As565

a consequence, there is always a threshold selfing rate above which the critical migration rate566

is higher than in an outcrossing population. Here, we thus concentrate on the effect of the567

introduction of selfing in an outcrossing population, so the conditions for which ∂Mc

∂F

∣∣∣
F=0

> 0.568

Under symmetrical selection, the conditions are the same as for seed migration. However,569

for asymmetrical selection, selfing increases Mc for a much broader range of parameters.

Figure 7: Same legend and same parameters as in Figure 6 but with pollen dispersal instead of
seed dispersal.

570

3.3.2 Establishment and maintenance of protected polymorphism571

The above analysis showed how selfing affects the critical migration rate, hence the conditions572

for local adaptation. However, when local adaptation is possible, selfing also affects the573

probability of establishment and maintenance of polymorphism. This can be analyzed by574
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quantifying how selfing affects P (A) and P (a), which is given by:575

bk =

(
dP (k)

dF

)∣∣∣∣∣
F=0

> 0 where k = {A, a} (32)

Four outcomes are possible upon the introduction of selfing. First, P (A) increases, and P (a)
576

decreases, meaning that allele A is more likely to fix across both patches in selfers than577

in outcrossers. Second and conversely, P (A) decreases, but P (a) increases, implying that578

selfers are less likely to fix A compared to an outcrossing population. Third, both P (A)
579

and P (a) increase upon shift to selfing, meaning that selfing increases the probability that580

protected polymorphism is established. Fourth and final, both PA and Pa decrease, making581

the protected polymorphism less likely to become established in the selfing population. Some582

examples are given for different migration rates with symmetrical or asymmetrical selection583

(Figure 8).584

(a) Symmetrical selection (b) Asymmetrical selection

Figure 8: Effect of selfing on the establishment of protected polymorphism under symmetrical (a)
and asymmetrical selection (b). Five regions can be distinguished: blue: bA > 0 and ba > 0, red:
bA < 0 and ba < 0, dark purple bA > 0 and ba < 0, light purple bA < 0 and ba > 0, and white:
polymorphism cannot be maintained under outcrossing. The dotted lines correspond to the limiting
conditions for which selfing increases the critical migration rate (above the line) as in Figure 6. (a)
s1 = 0.01 and s2 = −0.01; m = 0.0001, 0.001, 0.01, 0.1 from top left to bottom right. (b) s1 = 0.05
and s2 = −0.01; m = as in (a).

One can intuitively understand these outcomes by noting that dominance reverses when the585

alternative allele invades. So, if invader A is dominant, then invader a will be recessive.586
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The dominant allele A is likely to escape extinction when invading but unlikely to result587

in protected polymorphism because allele a is recessive and thus likely to go extinct. This588

appears clearly in the limit of low migration, where probabilities of emergence tend toward589

single population predictions, with four quadrants corresponding to the four dominance590

conditions (Figure 8). Importantly, these four regions vary with the amount of migration,591

and they do not directly align with the conditions given by the critical migration rates. The592

reason is that the sign of P (A) and P (a) only depends on the effect of selfing through the593

effective dominance, whereas the absolute value also depends on the reduction in effective594

size. Here, we only consider the two-fold reduction in Ne caused by selfing, but the linked595

selection can further reduce the effective size of the local population under selfing (Roze,596

2016). This will not affect the critical migration rate but can strongly reduce probabilities of597

emergence hence the establishment of local adaptation. Following this rationale, Yeaman and598

Otto (2011) considered a critical migration rate above which the probability of emergence of599

both alleles is higher than 1/(4Ne). High local drift under selfing can thus strongly reduce600

the conditions for the establishment of local adaptation.601

4 Discussion602

We investigated the effect of selfing on the establishment of an allele in a population sub-603

divided into two patches, where only one locus determines the fitness of an organism. By604

representing the spread of an invading allele as a branching process, we obtained a closed-605

form analytical solution for the probability of establishment of the locally advantageous606

allele for an arbitrary population selfing rate. This extends the work of Tomasini and Peis-607

chl, 2018 to include diploidy, dominance, and partial selfing. We also corrected for a typo in608

the derivation of their equations but which surprisingly lead to less elegant results. Below,609

we discuss the implication for adaptation in partially selfing species.610

611

A well-known result is that selfing favors the establishment (and fixation) of recessive alleles612

but disfavors the establishment of dominant ones, with no effect under exact codominance613

(h = 1/2) (Caballero and Hill, 1992, Charlesworth, 1992). The pattern is more complex in614

a subdivided population with heterogeneous selection. First, the codominant allele has a615

higher probability of becoming established in the selfing population than in the outcrossing616

population if it emerges in the favored patch and generally smaller probability if it emerges617

in the disfavored patch. Therefore, the probability of establishment of a codominant allele is618

not independent of the mating system, as was the case for a single partly selfing population619

(Charlesworth (1992)). Second, assuming that migration and selection are symmetrical, self-620
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ing will increase the establishment probability when the invading mutant is recessive in the621

favored patch (resulting in a maximal increase in h̃1) and dominant in the disfavored patch622

(yielding a minimal increase in h̃2). If the two dominances are roughly equal, the opposed623

effects of selfing on effective dominances cancel each other out, and the net effect is set by the624

interplay between the positive effect of reduced effective migration and the negative effect of625

the reduction in Ne.626

627

Once the invading allele escapes extinction, it can either fix in both populations, thus one628

population is fixed for a maladaptive allele, or segregate at intermediate frequencies, thus629

contributing to protected polymorphism, and both populations can be considered as locally630

adapted. It is usually thought that selfers are better locally adapted because of the reduced631

gene flow between patches with different selection demands (Linhart and Grant (1996)).632

However, selfing affects in a complex way three key parameters determining local adaptation633

- selection, drift, and gene flow. By separately considering seed and pollen migration, we634

were able to distinguish the straightforward effect of reducing gene flow from the more subtle635

effects of altering genotypic frequencies and drift induced by selfing.636

637

Under seed dispersal only, selfing does not affect gene flow but still alters the propensity638

for local adaptation. The conditions under which selfing favors local adaptation strongly639

depend on the dominance of alleles in the two patches. Under outcrossing, the most fa-640

vorable condition for local adaptation is under dominance reversal, that is, when the allele641

is dominant when locally beneficial and recessive when locally deleterious. If so, protected642

polymorphism can be maintained even under full migration (Mc = 1), which corresponds to643

conditions for polymorphism in Levene (1953)’s model. Under this condition, selfing desta-644

bilizes polymorphism, which cannot be maintained under full dispersal: above a given selfing645

rate, the critical migration rate strongly decreases (Figure 6, and see also Glémin, 2021, for646

the Levene’s model with selfing). Conversely, under most other conditions, especially when647

selection is asymmetrical, selfing tends to increase the critical migration rate, hence favors648

local adaptation. What dominance patterns across heterogeneous habitat are the most fre-649

quent in natural populations is unknown. However, dominance reversal is maybe not as650

unlikely as it may seem because it can naturally arise in simple fitness landscape models651

(Connallon and Chenoweth, 2019). If we now consider pollen dispersal, selfing enhances652

local adaptation by reducing gene flow. Under dominance reversal conditions, this leads to653

non-monotonic behaviors where local adaptation can be the most easily maintained, either654

under outcrossing or under high selfing (Figure 7). Characterizing the pollination and seed655

dispersal modes and their quantitative impacts on gene flow appears thus crucial to make656
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proper predictions on the effect of selfing. Finally, if we also consider the effect of linked se-657

lection that reduces local effective size beyond the two-fold level in selfing populations (Roze,658

2016), selfing reduces the possibility of local adaptation, which requires stronger selection659

as exemplified by Hodgins and Yeaman (2019) who simulated local adaptation in selfing660

populations with and without background selection. Overall, the complex and contradic-661

tory effects of selfing on local adaptation may explain why no general empirical pattern has662

emerged so far (Hereford, 2010, Leimu and Fischer, 2008).663

664

Despite the large uncertainties about the global effect of selfing on local adaptation, the665

analysis of the model yields some predictions about the genetic architecture of local adap-666

tation in selfing versus outcrossing species. In outcrossing species, the global adaptation667

from de novo mutations is predicted to be biased towards dominant mutations, the so-called668

Hadane’s sieve (Haldane, 1927, Ronfort and Glémin, 2013), and local adaptation to benefi-669

cial dominant/deleterious recessive mutations (Yeaman and Otto, 2011). On the contrary,670

no sieve related to dominance is expected under high selfing. As for other forms of selection,671

we also predict that local adaptation should be more prominent on female traits because672

selfing reinforces selection on female fecundity components at the cost of male fecundity673

components. A similar conclusion was reached by Olito et al. (2018) from a model including674

male/female antagonism and heterogeneous habitat with full dispersal. Finally, beyond the675

current work, simulations showed that local adaptation genes tend to aggregate into clusters676

in outcrossers (Yeaman and Whitlock, 2011) whereas the genetic architecture tends to be677

more diffuse in selfers (Hodgins and Yeaman, 2019, Le Thierry d’Ennequin et al., 1999).678

Thus, a natural extension of the model would be to consider local adaptation at two loci to679

dissect the additional effect of selfing on genetic linkage. However, using the same formalism680

would require following a multi-type branching process in a higher dimension (at least six),681

which remains highly challenging.682

5 Data availability683

Supplemental files are available at https://github.com/BogiTrick/local_adaptation_ 

single_locus and at figshare (https://doi.org/10.25386/genetics.16664650). These entries contain: 
Mathematica notebook required for reproduction of all reported theoretical results and figures; C+

+ source code of the custom simulator used for generation of simulated data for comparison with

analytics; Shell scripts for the bulk run of the simulator; and R scripts used to process the raw

simulated data for plotting in the above-mentioned notebook.
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Symbol Meaning

xi(t) Frequency of allele A in patch i at the start of the life cycle (generation t)

x
♀
i Frequency of allele A in patch i after female fecundity selection

x♂i Frequency of allele A in patch i after male fecundity selection

g♂i Frequency of allele A in patch i after pollen migration

Xi Frequency of genotype AA at the start of the life cycle

Yi Frequency of genotype Aa at the start of the life cycle

X ′i Frequency of genotype AA after mating

Y ′i Frequency of genotype Aa after mating

X ′′i Frequency of genotype AA after seed migration

Y ′′i Frequency of genotype Aa after seed migration

N∗i Population size in patch i

Ni The number of invading alleles in patch i

Ñ The effective population size

Mij The fraction of seed (or the probability of seed) in patch i originating from patch j

mij The fraction of pollen (or the probability of pollen) in patch i originating from patch j

∆W0,i The intergenerational A frequency change in patch i, when A rare (generic selection)

∆V0,i The intergenerational A frequency change in patch i, when A rare (only viability selection)

∆W
♀
0,i The intergenerational A frequency change in patch i, when A rare (only female fecundity selection)

∆W♂
0,i The intergenerational A frequency change in patch i, when A rare (only male fecundity selection)

Vi,k The progeny number left by genotype k (k ∈ {AA,Aa, aa}) that survives to maturity in patch i

W
♀
i,k Number of female gametophytes produced by genotype k (k ∈ {AA,Aa, aa}) in patch i

W♂
i,k Number of male gametophytes produced by genotype k (k ∈ {AA,Aa, aa}) in patch i

V i Mean population viability fitness in patch i

W
♀
i Mean population fecundity fitness in patch i

W
♂
i Mean population male sexual fitness in patch i

F Equilibrium population inbreeding coefficient. Set to S/(2− S)

S Fraction of the population that reproduces by selfing (i.e., the population selfing rate)

s
{k}
i The relative selective advantage of invading A, with selection via kth (k ∈ {V, F,M}) fitness component

h
{k}
i The dominance coefficient of allele A, when selection acts only via kth fitness component

M̃ij The effective fraction of seed (or the probability of seed) in patch i that originates from patch j

h̃
{k}
i The effective dominance coefficient of allele A, when selection acts only via kth fitness component

ω Correction for the effective dominance coefficient for male selection and pollen dispersal

s̃
{k}
i The effective selective advantage of invading allele A with selection via kth fitness component

Table 1: List of symbols used in the text. As a general rule, parameters with tilde signify an effective parameter. Upper-case
symbols are reserved for processes affecting the diploid phase of a life cycle, whereas the lower-case represents the process of the
haploid phase.
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Appendices775

A Deriving the PGF of the distribution of allele off-776

spring number777

A.1 Single population778

We first derive the full probability generating function (PGF) of the number of mutant alleles779

under partial selfing in a single population. When the A mutant is rare, it can be found either780

in a Aa individual with probability 1 − F and in a AA individual with probability F . The781

PGF can thus be written as (1−F )fAa(z)+FfAA(z) where fAa and fAA are the PGF for the782

parent allele being in each genotype, respectively. We can then decompose the total number783

of alleles, Gi, contributed by one individual of genotype i as the sum of alleles transmitted784

through outcrossed ovule, Ni,o, through exported pollen, Ni,p, and through selfed ovule, Ni,s.785

Because the mutant is rare, it can only be transmitted in heterozygote after outcrossing, so786

in a single copy. After selfing, two copies are always transmitted if the parent is AA and787

either two or one copies are transmitted if the parent is Aa. In this last case we note NAA
i,s788

and NAa
i,s are the number of homozygote and heterozygote seeds produced under selfing. The789

total number of offspring alleles transmitted at the next generation is thus:790

GAA = NAA,o +NAA,p + 2NAA,s (A1a)

GAa = NAa,o +NAa,p + 2NAA
Aa,s +NAa

Aa,s (A1b)

We assume that the number of exported pollen and the different numbers of seeds follow791

independent Poisson distributions. The different means depends on the fecundity of the792

parent, the viability of the seed produced and the proportion of each category:793

E[NAa,o] =
1

2
(1− S)W

♀
AaVAa

E[NAa,p] =
1

2
(1− S)W♂

AaVAa

E[NAA
Aa,s] =

1

2

S

2
W

♀
AaVAA

E[NAa
Aa,s] =

1

2

S

2
W

♀
AaVAa

E[NAA,o] =
1

2
(1− S)W

♀
AAVAa

E[NAA,p] =
1

2
(1− S)W♂

AAVAa

E[NAA,s] =
1

2
SW

♀
AAVAA

(A2)

The factor 1/2 corresponds to the fact that the focal A is chosen with probability 1/2. Put794

another way, on average each individual transmits two alleles so the contribution for a single795
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allele must be halved. Finally, we use the property that the PGF of 2X is f(z2) where f(z)796

is the PGF of X and that the PGF of the sum of independent variables is the product of the797

PGFs. Noting g(λ, z) = e−(1−z)λ, the PGF of a Poisson distribution with mean λ, we have:798

fφ(z) = (1− F )g(E[NAa,o], z)g(E[NAa,p], z)g(E[NAa
Aa,s], z)g(E[NAA

Aa,s], z
2)

+ Fg(E[NAA,o], z)g(E[NAA,p], z)g(E[NAA,s], z
2) (A3)

which yields equation (15) of the main text.799

From the properties of PGFs we can easily obtain the moments of the distribution for the800

different forms of selection (see Mathematica notebook):801

Eφ = f
′

φ(1)

= 1 + h̃s (A4a)

Vφ = f
′′

φ (1) + f
′

φ(1)− f ′φ(1)2

= (1 + F )(1 + h̃s) + o(s) (A4b)

So we retrieved the well known result that selfing increases variance in allele offspring number802

by 1 + F . Interestingly, the full distribution presents a peculiar non-monotonic behavior for803

high selfing, with an excess (resp. a deficit) in even (resp. odd) numbers. Note also that the804

full distributions are not exactly the same under the different modes of selection.805

A.2 Two-patch model806

We need to derive the distribution of the number of mutant alleles issued from one patch807

and staying in the same patch, with PGF fi,i(z), and the distribution of those establish-808

ing in the other patch, with PGF fi,j(z). Assuming that the distribution of resident and809

migrant alleles are independent, the total number of alleles produced by patch i has PGF:810

fi(z) = fi,i(z)fi,j(z). The fi,j(z) can be obtained using the same equations as for a single811

population by paying attention to the order of events to correctly set indices: male fecundity812

selection, pollen migration, female fecundity selection, reproduction, seed migration and vi-813

ability selection. Under seed migration, fecundity selection occurs in patch i but viability814
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selection in patch j. The means given in equation (A2) become:815

E[NAa,o,ij] =
1

2
(1− S)W

♀
Aa,iMi,jVAa,j

E[NAa,p,ij] =
1

2
(1− S)W♂

Aa,iMi,jVAa,j

E[NAA
Aa,s,ij] =

1

2

S

2
W

♀
Aa,iMi,jVAA,j

E[NAa
Aa,s,ij] =

1

2

S

2
W

♀
Aa,iMi,jVAa,j

E[NAA,o,ij] =
1

2
(1− S)W

♀
AA,iMi,jVAa,j

E[NAA,p,ij] =
1

2
(1− S)W♂

AA,iMi,jVAa,j

E[NAA,s,ij] =
1

2
SW

♀
AA,iMi,jVAA,j

(A5)

with Mi,j = 1−Mi,i. Plugging (A5) into (A3) yields equation (16) in the main text. From816

the corresponding PGFs we then retrieve the same mean as obtained by the deterministic817

analysis (see below), and variances inflated by 1 + F (see Mathematica notebook):818

Eφ,ij = Mi,j(1 + h̃isi) for fecundity selection (A6a)

= Mi,j(1 + h̃jsj) for viability selection (A6b)

Vφ,ij = (1 + F )Eφ,ij + o(si, sj) (A6c)

Note that in subsequent analyses the order of migration and selection terms yields the same819

results. Under pollen migration, the PGF for resident and migrant contribution have different820

forms because an allele can contribute offspring to the other patch only through outcrossing821

and through the male pathway. For offspring contributing to the resident patch we have:822

E[NAa,o,ii] =
1

2
(1− S)W

♀
Aa,iVAa,i

E[NAa,p,ii] =
1

2
(1− S)W♂

Aa,i(1−mi,j)VAa,i

E[NAA
Aa,s,ii] =

1

2

S

2
W

♀
Aa,iVAA,i

E[NAa
Aa,s,ii] =

1

2

S

2
W

♀
Aa,iVAa,i

E[NAA,o,ii] =
1

2
(1− S)W

♀
AA,iVAa,i

E[NAA,p,ii] =
1

2
(1− S)W♂

AA,i(1−mi,i)VAa,i

E[NAA,s,ii] =
1

2
SW

♀
AA,iVAA,i

(A7)

whereas for offspring contributing to the other patch:823

E[NAa,o,ii] = 0

E[NAa,p,ii] =
1

2
(1− S)W♂

Aa,imi,jVAa,j

E[NAA
Aa,s,ii] = 0

E[NAa
Aa,s,ii] = 0

E[NAA,o,ii] = 0

E[NAA,p,ii] =
1

2
(1− S)W♂

AA,imi,iVAa,j

E[NAA,s,ii] = 0

(A8)
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Plugging (A7) and (A8) into (A3) yields equations (17a) and (17b) in the main text. The824

mean and variance for resident offspring are:825

Eφ,ii = (1− M̃i,j)(1 + h̃isi) for viability and female fecundity selection (A9a)

= (1− M̃i,j)(1 + ωh̃isi) for male fecundity selection (A9b)

Vφ,ii = Eφ,ij

(
1 +

F

1− M̃ij

)
+ o(si, sj) (A9c)

and for migrant offspring:826

Eφ,ij = M̃i,j(1 + h̃jsj) for viability fecundity selection (A10a)

= 0 for female fecundity selection (A10b)

= M̃i,j(1 + ωh̃isi) for male fecundity selection (A10c)

Vφ,ij = Eφ,ij + o(si, sj) (A10d)

where M̃i,j ≈ mi,j(1−S)/2 are effective migration rates as defined in the main text (equations827

12a to 12c) and ω is a correcting factor defined in equation (13). Compared to seed migration,828

the variance is not uniformly increased by 1 +F . As migrant offspring can only be produced829

through outcrossing, the distribution is simply Poisson and the variance equal to the mean.830

On the contrary, because the proportion of outcrossed offspring contributing to the resident831

patch is reduced due to pollen migration, the variance is inflated by more than 1 + F .832

However, the difference between the two modes of migration does not affect the following833

approximations for weak selection.834

B The establishment probability approximated to weak835

selection836

Following the procedure outlined in Haccou et al. (2005) (Section 5.6.2) and previously837

adapted for a similar problem by Tomasini and Peischl (2018), we seek to approximate P by838

working with slightly supercritical process. Let ρ be the leading eigenvalue and u = [u1, u2]T839

and v = [v1, v2]T normed left and right eigenvectors of of the mean reproductive matrix M.840
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Eigenvectors are normalized such that:841

ui > 0, vi > 0, i ∈ {1, 2}∑
i

uivi =
∑
i

ui = 1

We choose a parameter ε in the model, such that the process is slightly supercritical when ε842

is small. All other parameters in the model are rescaled by ε. More formally:843

ρ(ε)→ 1 as ε→ 0

Eigenvalues and eigenvectors of M are dependent on ε. Probability of establishment starting844

from a single copy of allele in patch i is given by:845

Pi = 2(ρ(ε)− 1)
vi(ε)

B(ε)
+ o(ε) (A11)

B(ε) =
∑
i

ui(ε)Var

(
φij
∑
j

vj(ε)

)
+ (ρ(ε)(ρ(ε)− 1))

∑
j

uj(ε)vj(ε)
2 (A12)

As ε→ 0, ρ approaches unity and the second term in B (equation (A12)) can be neglected.846

As per equation 5.85 in Haccou et al. (2005), we take that B(ε)→ B(0) and vi(ε)→ vi(0):847

Pk ≈ 2(ρ(ε)− 1)
vi(0)

B(0)
(A13)

B(0) ≈
∑
k

ui(0)Var

(
φij
∑
j

vj(0)

)
(A14)

Recall that s̃i is the advantage of an allele in patch i accounting for the effect of self-848

fertilization. Assuming weak selective advantage, s̃1 is taken as ε. All other parameters are849

expressed in terms of s̃1:850

M̃ij = s̃1χij, s̃2 = ζs̃1

The leading eigenvalue of M can be written as ρ = 1+ c̃s̃1 +o(s̃2
1). Dropping the higher-order851

terms in s̃1, we retrieve the expression for c̃:852

c̃ =
1

2

(√
(ζ + χ12 − 1) 2 + 2χ21 (−ζ + χ12 + 1) + χ2

21 + ζ − χ12 − χ21 + 1

)
By taking only the zeroth term of vi and B in Taylor expansion about s̃1 = 0, we obtain the853
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approximation of the probability of establishment conditioning on a single mutant appearing854

in patch i:855

Pk ≈ 2c̃
vk(0)

B(0)
s̃1 (A15)

Transforming back to original variables M̃ij and s̃i and letting856

=

√
2M̃12

(
M̃21 − s̃1 + s̃2

)
+
(
M̃21 + s̃1 − s̃2

)
2 + M̃2

12

we have:857

P1 =

(
−M̃12

(
−2M̃21 + 2s̃1 − 2s̃2 + ψ

)
+

(
M̃21 + s̃1 − s̃2

) (
M̃21 + s̃1 − s̃2 + ψ

)
+ M̃2

12

) (
−M̃12 + M̃21 + s̃1 − s̃2 + ψ

) (
−M̃12 − M̃21 + s̃1 + s̃2 + ψ

)
2(F + 1)

(
M̃2

12

(
2M̃21 + 3s̃1 − 3s̃2 + ψ

)
− M̃12

(
M̃21 (3s̃1 − 3s̃2 + ψ) + (s̃1 − s̃2) (3s̃1 − 3s̃2 + 2ψ)

)
+

(
M̃21 + s̃1 − s̃2

)
2
(
M̃21 + s̃1 − s̃2 + ψ

)
− M̃3

12

)
(A16)

P2 =
M̃12

(
−M̃12

(
−2M̃21 + 2s̃1 − 2s̃2 + ψ

)
+

(
M̃21 + s̃1 − s̃2

) (
M̃21 + s̃1 − s̃2 + ψ

)
+ M̃2

12

) (
−M̃12 − M̃21 + s̃1 + s̃2 + ψ

)
(F + 1)

(
M̃2

12

(
2M̃21 + 3s̃1 − 3s̃2 + ψ

)
− M̃12

(
M̃21 (3s̃1 − 3s̃2 + ψ) + (s̃1 − s̃2) (3s̃1 − 3s̃2 + 2ψ)

)
+

(
M̃21 + s̃1 − s̃2

)
2
(
M̃21 + s̃1 − s̃2 + ψ

)
− M̃3

12

)
(A17)

858

When migration is symmetrical (M̃12 = M̃21 = M̃), ψ reduces to
√

4M̃2 + (s̃1 − s̃2), pre-859

viously defined as the scaled measure of the heterogeneity in selection and migration. Set-860

ting F = 0, the equations (A16) and (A17) behave similarly to those derived previously861

(Tomasini and Peischl (2018)). Comparing the analytical solution against simulations, one862

can see that the solution reported here fits simulations slightly better than the Tomasini-863

Peischl result (Figure A9). The discrepancy is probably caused by the latter’s use of B term864

from Aeschbacher and Bürger (2014) (see their equation S22), which neglects to square ele-865

ments of the eigenvectors after factoring them out of the variance. We, on the other hand,866

computed B directly from Haccou et al. (2005), which does not suffer from this error. Cu-867

riously, the Tomasini-Peischl approximation is much more elegant as the denominator can868

be interpreted as the measure of the heterogeneity of migration and selection. Relative to869

the result reported in Sakamoto and Innan (2019), our solution had identical performance in870

the favored patch, and worse performance in the disfavored patch (pink dashed lines). This871

discrepancy occurs only when the migration rate is low.872
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Figure A9: Comparison of analytical solution to simulated data and previous results. Comparison
to approximation Tomasini and Peischl (2018) (left), and comparison to the single-patch heuristic
under fecundity selection Damgaard (2000) (right). All equations parameterized with h◦1 = h◦2 =

h
♀
1 = −h♀2 = 1/2, s◦1 = −s◦2 = s

♀
1 = −s♀2 = 0.01, M12 = M21 = M .

C The criterion for escaping extinction873

C.1 Seed dispersal874

If the selective disadvantage in the disfavored patch is too large or migration is too strong,875

the spreading locally advantageous allele can be swamped by its deleterious counterpart.876

The range of parameters that are necessary but not sufficient for a successful invasion are877

obtained by linearizing the system about ~x = [0, 0]T and investigating the conditions required878

for this equilibrium to be locally unstable. If migration occurs prior to selection – which is879

the case when seed disperses and selection acts on viability, then Jacobian J is:880

J =

(1−M12)∆W0,1 M12∆W0,1

M21∆W0,2 (1−M21)∆W0,2

 (A18)

∆W0,i = (FWi,AA + (1− F )Wi,Aa)/Wi,aa (A19)

Symbol W is a place-holder for any of the three selection modes (V , W♀, or W♂). If881

selection occurs prior to migration – which happens when seed disperses and selection acts882

on sexual components– then Jacobian is:883

J =

(1−M12)∆W0,1 M12∆W0,2

M21∆W0,1 (1−M21)∆W0,2

 (A20)
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However, the eigenvalues of these two matrices are identical, so we here use (A18). The884

equilibrium is locally unstable whenever the leading eigenvalue of J is greater than unity:885

ρ =
1

2

(
(1−M12)∆W0,1 + (1−M21)∆W0,2+√

4(M12 +M21 − 1)∆W0,1∆W0,2 +
(

(M21 − 1)∆W0,1 + (M21 − 1)∆W0,2

)2
)

(A21)

Term ∆W0,i can be thought of as the rate of spread of A allele in ith patch. Then ∆W0,1 > 1886

(because A is advantageous in the first patch), and 0 < ∆W0,2 < 1 (because A is deleterious887

in the second patch). It is important to note that these inequalities hold regardless of the888

mode of selection. More formally:889

∆V0,1 > 1, 1 > ∆V0,2 > 0 (A22)

∆W
♀
0,1 > 1, 1 > W

♀
0,2 > 0 (A23)

∆W♂
0,1 > 1, 1 > W♂

0,2 > 0 (A24)

Substituting (A19) in (A21), and rearranging (see Mathematica notebook for details), we890

find that ρ > 1 when:891

M12

((1−F )W1,Aa+FW1,AA)−W1,aa

(1−F )W1,Aa+FW1,AA

+
M21

((1−F )W2,Aa+FW2,AA)−W2,aa

(1−F )W2,Aa+FW2,AA

< 1 (A25)

Terms in denominators of inequality A25 represent the relative fitness of the invading allele892

A. Letting F = 0 and parameterizing such thatWi,AA = 1−s◦1,Wi,Aa = 1, andWi,aa = 1−t◦1,893

we retrieve Bulmer’s inequality M12/t
◦
1 + M21/t

◦
2. Parameterizing according to our fitness894

scheme (Wi,AA = 1 + s◦i , Wi,Aa = 1 + s◦i h̃
◦
i , and Wi,aa = 1) yields:895 (

1 + s◦1h̃
◦
1

)
M12

s◦1h̃
◦
1

+

(
1 + s◦2h̃

◦
2

)
M21

s◦2h̃
◦
2

(A26)

Conversely to the previous case, 0 < ∆W1,1 < 1 (as invading allele a is deleterious in the896

first patch) and ∆W1,2 > 1 (given that a is beneficial in the second patch). Once the allele A897

has escaped extinction, it can either fix in both patches or be maintained for finite number898

of generations by divergent selection. Thus, the criterion for protected polymorphism is that899

both allele A and a can escape extinction. By linearizing the system of replicator equations900
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about ~x = [1, 1]T we obtain Jacobian:901

J =

(1−M12)∆W1,1 M12∆W1,1

M21∆W1,2 (1−M21)∆W1,2

 (A27)

∆W1,i = (FWi,aa + (1− F )Wi,Aa)/Wi,AA (A28)

Therefore, allele a is allowed to invade whenever:902

M12

((1−F )W1,Aa+FW1,aa)−W1,AA

(1−F )W1,Aa+FW1,aa

+
M21

((1−F )W2,Aa+FW2,aa)−W2,AA

(1−F )W2,Aa+FW2,aa

< 1 (A29)

which reduces to M12/s
◦
1 +M21/s

◦
2 with fitness notation of Bulmer.903

C.2 Pollen dispersal904

The analysis is more complicated for the three selection scenarios when pollen disperses905

because one has to re-parameterize migration rate in addition to dominance coefficients. We906

use Jacobian of the form:907

J =

(1− M̃12)∆W0,1 M̃12∆W0,1

M̃21∆W0,2 (1− M̃21)∆W0,2

 (A30)

The leading eigenvalue of (A30) is:908

ρ =
1

2

(
(1− M̃12)∆W0,1 + (1− M̃21)∆W0,2+√

4(M̃12 + M̃21 − 1)∆W0,1∆W0,2 +
(

(M̃21 − 1)∆W0,1 + (M̃21 − 1)∆W0,2

)2
)
, (A31)

where ∆W and M̃ are parameterized as outlined in Section 2.2. Given that 1/2 ≥ M̃ij ≥ 0909

for all i and j, and910

∆V0,1 > 1, 1 > ∆V0,2 > 0 (A32)

∆W
♀
0,1 > 1, 1 > W

♀
0,2 > 0, (A33)

the same inequalities hold as in the case of seed dispersal. However, under male fecundity911
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selection migration rates have to be:912

mij <
W♂
j,aa

(
W♂
i,aa − (1− F )W♂

i,Aa − FW♂
i,AA

)
W♂
i,aa

(
(1− F )W♂

j,Aa + FW♂
j,AA

)
−W♂

j,aa

(
(1− F )W♂

i,Aa + FW♂
i,AA

) , (A34)

for both m12 and m21, or:913

mij >
W♂
j,aa

(
W♂
i,aa − (1− F )W♂

i,Aa − FW♂
i,AA

)
W♂
i,aa

(
(1− F )W♂

j,Aa + FW♂
j,AA

)
−W♂

j,aa

(
(1− F )W♂

i,Aa + FW♂
i,AA

) , (A35)

for both m12 and m21. The conditions (A34) and (A35) are identical to saying that ωi > 0914

for all i, or ωi < 0 for all i. A possible intuitive explanation for these conditions is as follows.915

If migration from favored to disfavored patch is too high, the mutant alleles are transferred916

to a disfavored patch where they are purged, thus causing the mutant to go extinct. If,917

on the other hand, migration from disfavored to favored patch is high, then the spreading918

mutant is swamped by the influx of deleterious residents from the opposite patch.919

D Simulation method920

Selection and migration are assumed to alter genotype frequencies deterministically. Genetic921

drift is implemented by randomly drawing genotypes from multinomial distribution right922

after reproduction. We relax the assumption that the population has to reach equilibrium in923

the inbreeding coefficient F . Each simulation run terminates in a successful or failed invasion924

and is composed of the following four steps:925

1. Inject a single heterozygote containing allele A in a population that is fixed for a allele.926

When interested in Pi, the mutant is injected in ith patch.927

2. Update genotype frequencies by applying equations (2a)–(4b); This emulates selection928

on sexual components, pollen dispersal, and reproduction (including selfing).929

3. Sample the genotypes from multinomial distribution to determine the genotype fre-930

quencies after the reproduction step: MN([Xi, Yi, Zi], N
∗
i ), where N∗i is the size of ith931

patch.932

4. Update genotype frequencies due to seed dispersal by implementing (5a) and (5b).933

5. Compute the number of each genotype after viability selection as X∗i := X ′′iVi,AA,934

Y ∗i := Y ′′′iVi,Aa, and Z∗i := 1−X∗ − Y ∗.935
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6. Is the number of invading mutant alleles larger than 1000? If not, convert genotype936

numbers to genotype frequencies by dividing drawn genotype numbers with the total937

patch size and begin the new generation by going to step 2. If yes, count it as a938

successful invasion and terminate the simulation run.939

If the mutant allele does not invade in 10,000 generations, we count the simulation run as940

a failed invasion. The establishment probability is obtained by running 10,000 simulations941

and computing the fraction of runs that ended in the successful invasion. All error bars942

in the figures correspond to the standard deviation of this metric. The chosen number for943

invasion threshold is well over 1/s1, given that we use s1 = 0.01. Both patches contain 10,000944

individuals, and populations are always in |Ns|� 1 regime.945

E Simulations under various selection and migration946

modes947

Our approximation gives a good fit for simulated data under female and male fecundity,948

although the fit is not excellent as in the case of viability selection (Figures A10–A13). In949

the case of male fecundity selection under complete selfing (S = 1), the male component950

does not contribute to the fitness, and the allele is expected to behave neutrally. One can see951

that this occurs because the probability that the invading allele reaches the threshold that952

we use to determine whether the invasion is successful is inversely proportional to the size953

of the threshold, 1/Nthres, (grey dashed line in figures below). The figures below compare954

the analytics to simulated data, with upper row denoting the case when allele originates in955

the favored patch, and bottom row depicts the same dynamic but when allele appears in956

the disfavored patch. From left to right, columns show codominant, partially dominant, and957

partially recessive case, respectively.958

46



Figure A10: Comparison of analytical solution to simulations when selection acts on the female

fecundity and only seed disperses. Left column: codominant case (h
♀
1 = h

♀
2 = 1/2); Middle

column: dominant case (h
♀
1 = h

♀
2 = 3/4); Right column: recessive case (h

♀
1 = h

♀
2 = 1/4). Upper

and lower panels depict the establishment probability conditioning on allele emerging in favored

and disfavored patch, respecitvely. Parameters: s
♀
1 = −s♀2 = 0.01, M12 = M21 = M .
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Figure A11: Comparison of analytical solution to simulations when selection acts on male fecundity

and only seed disperses. Left column: codominant case (h♂1 = h♂2 = 1/2); Middle column:

dominant case (h♂1 = h♂2 = 3/4); Right column: recessive case (h♂1 = h♂2 = 1/4). Upper and
lower panels depict the establishment probability conditioning on allele emerging in favored and

disfavored patch, respectively. Parameters: s♂1 = −s♂2 = 0.01, M12 = M21 = M .
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Figure A12: Comparison of analytical solution to simulations when selection acts on the female
fecundity, only seed disperses, and selection or migration are asymmetrical. Left column: asym-

metric selection (s
♀
1 = 0.01, s

♀
2 = −0.02, h

♀
1 = h

♀
2 = 1/2); Right column: asymmetric migration

(s
♀
1 = −s♀2 = 0.01, h

♀
1 = h

♀
1 = 1/2, M12 = M , and M21 = 1.25M).
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Figure A13: Comparison of analytical solution to simulations when selection acts on the male
fecundity, only seed migrates, and selection or migration are asymmetrical. Left column: asym-

metric selection (s♂1 = 0.01, s♂2 = −0.02, h♂1 = h♂2 = 1/2); Right column: asymmetric migration

(s♂1 = −s♂2 = 0.01, h♂1 = h♂1 = 1/2, M12 = M , and M21 = 1.25M).
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Figure A14: Comparison of analytical solution to simulations when only pollen disperses. Allele
starts in the favored patch. Top row: viability selection; Middle row: female fecundity selection;
Bottom row: Male fecundity selection. Dominances reported in panels. Other parameters: corre-
sponding seelection coefficients are always s1 = −s2 = 0.01, and m12 = m21 = m.
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Figure A15: Same as above, but allele starts in the disfavored patch.

F Procedure for computing β indicators959

Suppose one wants to derive β indicator when selection operates on jth fitness component960

(where j ∈ {V, F,M}) in kth patch (where k ∈ {1, 2}). Selfing affects the establishment961

probability through three factors: the effective population size (βk(Ñ)), effective favored962

and disfavored dominance (βk(h̃1) and βk(h̃2)), and the effective migration rate (βk(M̃)).963

Starting from equations (A16) and (A17), expressions for β are obtained using the following964

steps in a sequential manner:965

• βk(Ñ): Parameterize migration according to eqns. 12a–12c, and then set F = 0 to966

exclude the effect via M̃ . Let s̃
{j}
i = s

{j}
i h̃

{j}
i for i ∈ {1, 2}. Next, set F = 0 to exclude967

the effect on dominances. Take a derivative in F and evaluate at F = 0.968

• βk(h̃1): Parameterize migration according to eqns. 12a–12c, and then set F = 0 to969

exclude the effect via M̃ . Set F = 0 to exclude the effect via Ñ . Let s̃
{j}
2 = s

{j}
2 h̃

{j}
2970

and then set F = 0 to exclude the effect via h̃2. Let s̃
{j}
1 = s

{j}
1 h̃

{j}
1 . Take a derivative971

in F and evaluate at F = 0.972
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Figure A16: Zones of selfing’s effect on the probability of establishment across viability (left panel),
female fecundity (middle panel), and male fecundity (right panel), conditioning on allele appearing
in the disfavored patch. Only seed migrates. Parameters are identical to those used in Figure 4.
Upper row: scenarios with seed migration; Bottom row: scenarios with pollen migration.

• βk(h̃2): Parameterize migration according to eqns. 12a–12c, and then set F = 0 to973

exclude the effect via M̃ . Set F = 0 to exclude the effect via Ñ . Let s̃
{j}
1 = s

{j}
1 h̃

{j}
1974

and then set F = 0 to exclude the effect via h̃1. Let s̃
{j}
2 = s

{j}
2 h̃

{j}
2 . Take a derivative975

in F and evaluate at F = 0.976

• βk(M̃): Set F = 0 to exclude the effect via Ñ . Let s̃
{j}
i = s

{j}
i h̃

{j}
i for i ∈ {1, 2}. Then977

set F = 0 to exclude the effect via h̃1, and h̃2. Next, parameterize migration according978

to eqns. 12a–12c. Take a derivative in F and evaluate at F = 0.979

Parameters h̃◦i , h̃
♀
i , and h̃♂i are given by equations (9a)–(9c). Whenever a βi(x) is greater980

than zero, a shift to selfing increases the probability that an allele becomes established,981

conditioning on starting in patch i. Evaluating the derivative in point other than F = 0 will982

change the results quantitatively, but not qualitatively.983
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tation985

Where fecundity selection is examined, the establishment probability equations were param-986

eterized with s
♀
i , and h

♀
i , while selection on male fitness component was done by parame-987

terizing with s♂i , and h♂i . Other than that, parameters were quantitatively identical to the988

viability selection case. Migration rates were also kept constant across different scenarios,989

and only the migration type has changed.990

Figure A17: The consequences of a shift to selfing on establishment of local adaptation under
female fecundity selection and seed dispersal. Color-coding and parameters as in the main text and
parameters as in the main text.
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Figure A18: The consequences of a shift to selfing on establishment of local adaptation under
male fecundity selection and seed dispersal. Color-coding and parameters as in the main text and
parameters as in the main text.

Figure A19: The consequences of a shift to selfing on establishment of local adaptation under
viability selection and pollen dispersal.
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