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Abstract
Aim: Species distribution models (SDMs) have emerged as essential tools in the equip-
ment of many ecologists, useful to explore species distributions in space and time and 
answering an assortment of questions related to biogeography, climate change biol-
ogy and conservation biology. Historically, most SDM research concentrated on well-
known organisms, especially vertebrates. In recent years, these tools are becoming 
increasingly important for predicting the distribution of understudied invertebrate 
taxa. Here, we reviewed the literature published on main terrestrial arthropod preda-
tors (ants, ground beetles and spiders) to explore some of the challenges and oppor-
tunities of species distribution modelling in mega-diverse arthropod groups.
Location: Global.
Methods: Systematic mapping of the literature and bibliometric analysis.
Results: Most SDM studies of animals to date have focused either on broad samples 
of vertebrates or on arthropod species that are charismatic (e.g. butterflies) or eco-
nomically important (e.g. vectors of disease, crop pests and pollinators). We show 
that the use of SDMs to map the geography of terrestrial arthropod predators is a 
nascent phenomenon, with a near-exponential growth in the number of studies over 
the past ten years and still limited collaborative networks among researchers. There 
is a bias in studies towards charismatic species and geographical areas that hold lower 
levels of diversity but greater availability of data, such as Europe and North America.
Conclusions: Arthropods pose particular modelling challenges that add to the ones 
already present for vertebrates, but they should also offer opportunities for future 
SDM research as data and new methods are made available. To overcome data limi-
tations, we illustrate the potential of modern data sources and new modelling ap-
proaches. We discuss areas of research where SDMs may be combined with dispersal 
models and increasingly available phylogenetic and functional data to understand 
evolutionary changes in ranges and range-limiting traits over past and contemporary 
time-scales.
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1  | INTRODUC TION

A mainstream topic in ecology, biogeography and conservation bi-
ology is the extent to which climatic conditions affect species per-
formance (Colinet et al., 2015; Rezende & Bozinovic, 2019), which 
together with geographical and historical constraints ultimately 
modulates species niches and observed range boundaries (Bennett 
et  al.,  2021; Thomas,  2010). Obtaining a nuanced understanding 
of the factors conditioning species distributions has gained new 
urgency amid the current climate emergency (Ripple et  al.,  2020), 
insofar as changing climatic conditions are determining fast redis-
tributions of species along latitudinal, elevational and other spatial 
gradients (Chen et al., 2011; Lenoir et al., 2020). As global climate 
change redefines the geography of life, we are becoming specta-
tors of a large-scale experiment of complex ecological responses 
(Halsch et al., 2021; Román-Palacios & Wiens, 2020), where inter-
actions among previously isolated species can quickly occur (Krosby 
et  al.,  2015), invasions of novel areas by alien species are becom-
ing routine (Hellmann et  al.,  2008; Liu, Clarke, et  al.,  2020; Liu, 
Blackburn, et  al.,  2020), and unnoticed extinctions are potentially 
taking place on a daily basis (Barnosky et al., 2011; Cardoso, Barton, 
et al., 2020; Hughes et al., 2004). Therefore, mapping the diversity of 
life has never been so urgent (Santini, Antão, et al., 2021).

Over the years, ecologists and statisticians have developed an 
assortment of methods for modelling the niche and distribution of 
species in space and time, several of which fall under the umbrella 
of correlative species distribution models or ecological niche mod-
els (Box 1). For simplicity, we will hereafter refer to these as “spe-
cies distribution models” (SDMs), while redirecting the interested 
readers to semantic discussions (Peterson et al., 2012; Sillero, 2011; 
Warren, 2012). Researchers have used SDM techniques for mapping 
the distribution of organisms in a variety of systems, although the 
number of applications across habitats and the tree of life have not 
been equal. For example, while the use of SDMs has grown exponen-
tially in the terrestrial realm from the early 2000s onwards (Araújo 
et  al., 2019; Lobo et  al., 2010; Robinson et  al., 2011), applications 
in systems where three-dimensionality is an important feature—for 
example marine ecosystems (Melo-Merino et  al.,  2020; Robinson 
et al., 2017), tree canopies (Burns et al., 2020), soils (Schröder, 2008) 
and caves (Mammola & Leroy, 2018)—have lagged behind. Also, ap-
plications of SDMs in animals have concentrated mostly on verte-
brates (Titley et al., 2017), while studies on arthropod groups remain 
scarcer, although recently increasing (Figure 1).

This paucity of SDM studies is possibly related to a number of 
arthropod-specific modelling challenges. First, arthropods often are 
small organisms that move in small spatial scales, strongly influenced 
by microclimatic conditions and microhabitat structure (Pincebourde 
& Woods,  2020). These characteristics are hardly captured by the 

ubiquitous bioclimatic variables derived from remote sensing at rela-
tively large spatial scales (Lembrechts et al., 2020; Potter et al., 2013). 
Second, arthropods often have short life cycles with wide population 
abundance fluctuations from season to season and strong metapop-
ulation dynamics, making it difficult to determine what their real, 
constantly changing range is. Third, occurrence data sets for poorly 
known arthropod species are likely to be severely spatially and tem-
porally biased, affecting our appreciation of their real distribution 
patterns (Hughes et al., 2021). Thus, arthropods pose particular mod-
elling challenges that add to the ones already present for vertebrates, 
but they should also offer opportunities for future SDM research as 
data and new methods are made available (Maino et al., 2016).

Natural history is indeed entering its next-generation phase 
(Anderson et al., 2021; Jarić et al., 2020; Tosa et al., 2021), one char-
acterized by increasingly available data (not only distribution data 
but also species traits and phylogenies) that can be routinely inte-
grated in our modelling exercises. This is made possible by a par-
allel development of new methods, ranging from computationally 
fast multispecies modelling platforms (Pichler & Hartig,  2021) to 
flexible techniques able to account for traits (phenotypic plasticity) 
and genetic data in making predictions (Brewer et  al.,  2016; Bush 
et al., 2016; Garzón et al., 2019), along with tools to ease model in-
terpretability (Ryo et al., 2021). As entomology is entering a next-
generation phase too (Høye et al., 2021; Liu, Clarke, et al., 2020; Liu, 
Blackburn, et  al.,  2020), in all likelihood these advances will soon 
cascade to positively affect our understanding of the distribution of 
less studied arthropod groups.

Not only anticipating this progress but also considering the re-
cent upsurge of studies discussing an “insect apocalypse” and the 
related calls for understanding the drivers of arthropod extinc-
tion risk (Cardoso, Barton, et  al.,  2020; Cardoso & Leather,  2019; 
Wagner et  al.,  2021), we conducted a systematic mapping of the 
literature to understand and synthesize trends in the use of SDMs 
in arthropod research. We explored these topics through the lens 
of the literature on dominant terrestrial arthropod predators: ants 
(c. 30,000 described species; Parr et  al.,  2017), ground beetles (c. 
39,300 species; Lorenz, 2019) and spiders (c. 49,600 species; World 
Spider Catalog,  2021). We begin by conducting a systematic liter-
ature search focused on SDM use in our focal group. Then, to put 
our survey in perspective, we compare the volume of literature with 
that on other key terrestrial invertebrate and vertebrate groups. By 
means of bibliometric analyses, we explore the geography of SDM 
applications and networks of collaborations among researchers 
working on terrestrial arthropod predators. Subsequently, we re-
view the main areas of application of SDMs in terrestrial arthropod 
research, highlighting which ecological factors emerged as import-
ant in driving predicted distribution patterns. Building upon this 
quantitative evidence, we discuss challenges and opportunities of 

K E Y W O R D S

bibliometrics, climate change, ecological niche models, MaxEnt, mechanistic models, niche-
based models, predicted distribution, social network analysis, statistical modelling
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2598  |     MAMMOLA et al.

SDM research on terrestrial arthropod predators and delineate po-
tential future lines of enquiry and promising areas of research where 
SDMs may be combined with other modelling tools and data sources 
to obtain mechanistic descriptions of species distributions and their 
shifts within a global change perspective.

2  | LITER ATURE SURVE Y AND 
QUANTITATIVE ANALYSES

2.1 | Systematic literature search and metadata 
extraction

Between 20 and 24 November 2020, we searched on the Web of 
Science (Clarivate Analytics) for articles relying on SDMs to predict dis-
tributions of terrestrial arthropod predators (ants, ground beetles and 
spiders) and, for comparative purposes, other terrestrial vertebrate and 
invertebrate groups (Table 1). For each taxonomic group considered, 
we found and extracted papers using the following general query:

TS=(“family name(s)” OR “vernacular name(s)”) AND 
TS=(“Species distribution model*” OR “Ecological niche model*” 
OR “Bioclimatic envelope model*” OR “Niche model*” OR 
“Distribution model*” OR “Habitat suitability model*”)

where TS denotes a search for “Topic,” and the asterisk (*) is a reg-
ular expression used to match all words including that string of charac-
ters (e.g. “model*” matches “models,” “modelling,” and “modelled”). See 
Appendix S1 for the list of specific queries.

We exported all results into the online review application Rayyan 
(Ouzzani et al., 2016) for title, keywords and abstract screening, 
whereby we excluded by-catches of papers not actually dealing 
with SDMs or our model species (e.g. our search for the keyword 
“spiders” also captured papers dealing with spider monkeys, genus 
Ateles) (Table 1). Furthermore, for ants, ground beetles and spiders, 
we manually inspected papers to extract specific data (Appendix S2). 
We recorded the geographical extent of each study and all the spe-
cies modelled. We classified the type of predictors used, their reso-
lution, and the SDM algorithm(s) and modelling protocol employed. 
Specifically, we coded the modelling protocol under three main cat-
egories: single algorithm, when studies just applied one modelling 
technique; ensemble of models, when the authors applied a plethora 
of different models (e.g. generalized linear model, generalized additive 
model, random forest, MaxEnt) and ensemble predictions of individual 
models via an averaging formula or algorithm (Araújo et al., 2019); and 
no silver bullet (Qiao et al., 2015), when the authors applied a num-
ber of algorithms (e.g. generalized additive model, boosted regres-
sion tree, symbolic regression) and only selected one for projecting 
the distribution based on some measure of algorithm performance. 
Finally, we summarized the key results of each study (Appendix S2).

2.2 | Data analyses

We conducted analyses in R 3.6.3 (R Core Team, 2020) and visual-
ized data using the ggplot2 R package (Wickham, 2016) and QGIS 
(Open Source Geospatial Foundation Project, 2020). The complete 
data set and R code used for the analyses are available on GitLab 
(https://gitlab.com/Denis​Lafag​e/sdm_review).

BOX 1 A general definition of species distribution 
models (SDMs) and their domain of applicability

As a broad and general definition, species distribution 
modelling implies using some statistical algorithms to ex-
plore the relationship between species occurrences (typi-
cally georeferenced localities) and environmental variables. 
Once this relationship is determined, the model is used to 
characterize the ecological niche of a given species. This 
is usually achieved by projecting a probability surface or a 
habitat suitability map into a geographical space to repre-
sent its potential range of distribution (Guisan et al., 2017). 
These models can be constructed using a wide range of 
algorithms including linear and additive regressions (Elith 
& Leathwick,  2009), symbolic regressions (Cardoso, 
Branco, et al., 2020), tree-based machine learning (Zhang 
et al., 2019), maximum entropy models (Elith et al., 2011) 
and more. Given the large variety of life histories and data 
sources, the best modelling algorithm and approach nec-
essarily changes, with no universal best solutions (Qiao 
et al., 2015).

Whereas the first paper relying on species distribution 
modelling is now over three decades old [e.g. the first ap-
plications of the algorithm BIOCLIM can be traced back 
to 1986 (Booth, 2018)], there has been an acceleration in 
the use of these tools in just the last two decades (Araújo 
et  al.,  2019; Lobo et  al.,  2010; Figure  1). This trend was 
probably due to the increase in occurrence data (Wüest 
et  al.,  2020; Zhang,  2017) and easy-to-use, often auto-
mated statistical packages that perform species distribu-
tion modelling (reviewed in Angelov, 2019). These methods 
have become popular in the toolkit of many ecologists, 
being useful to answer a range of questions. Not only are 
SDMs routinely used to describe species distributions, 
they have also proved important to assist and comple-
ment taxonomic studies (Rödder et  al.,  2010) and to set 
conservation agendas (Guisan et  al.,  2013). Furthermore, 
given that these models are transferable in space and 
time (Yates et al., 2018), they find applications in studies 
on climate change (Dormann,  2007; Santini et  al.,  2021), 
historical biogeography (Peterson, 2009) and invasion bi-
ology (Liu, Clarke, et al., 2020; Liu, Blackburn, et al., 2020; 
Peterson, 2003), among other topics.
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We analysed bibliometric data regarding the articles on ants, 
ground beetles and spiders with the bibliometrix R package (Aria 
& Cuccurullo, 2017). In order to map the production of articles per 
country for each group, we assigned articles to a country based on 
the affiliations of all the authors at the time when each article was 
published. In order to identify the most influential papers for re-
searchers dealing with modelling of terrestrial arthropod predators 
distributions, we used a weighted co-citation network. Initially intro-
duced for bibliometric research, co-citation networks have proved 
useful to identify key literature items acting as bridges between dis-
ciplines (Trujillo and Long, 2018). A particular article is included in 
the network when it is cited by at least two papers from the data set 
under study (Batagelj & Cerinšek, 2013). The number of co-citations 
is the number of times two articles are cited together. Furthermore, 
we built a collaboration network to identify the existence of bridges 
among scientists working on ants, ground beetles and spiders.

2.3 | Caveats in the interpretation of the survey

Due to our search strategy in the Web of Science and selection of 
keywords (Appendix S1), we did not capture all possible studies on 
SDMs dealing with our focal groups. For example, we missed some 
studies on taxonomy that used SDMs to assist species delimitations, 

as these did not mention the methodology in their keywords, title 
or abstract. Similarly, SDMs have recently begun to be routinely 
used for assessing terrestrial arthropod risk of extinction (Branco 
et  al.,  2019; Fukushima et  al.,  2019; Milano et  al.,  2021; Seppälä 
et  al.,  2018a, 2018b, 2018c, 2018d), but most of these studies 
were missed for the same reason. Furthermore, for many groups, 
especially vertebrates, the authors may not mention the higher 
taxonomic ranks included in our query but exclusively the species, 
genus or family, which will not be captured. We also acknowledge 
that our search was not linguistically exhaustive as we only included 
articles in English (Konno et al., 2020). As a result, our estimation of 
the volume of the literature on the focal groups should be taken as 
an approximation of the real number of studies. While we operated 
under the assumption that the biases were homogeneously distrib-
uted across all taxonomic groups, allowing us to compare them and 
to draw general inferences, still the comparison of absolute numbers 
of studies across taxa should be taken with caution (e.g. in Figure 1).

3  | TA XONOMIC BIA S IN SDM RESE ARCH 
ON ARTHROPODS

While SDM studies based on comprehensive samples of vertebrate 
species are becoming routine (Liu, Clarke, et al., 2020; Liu, Blackburn, 

F I G U R E  1   Cumulative number 
of articles per year. (a) Comparison 
between arthropods and vertebrates; 
(b) comparison between main arthropod 
groups
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et al., 2020; Thuiller et al., 2019), our literature survey emphasizes 
how just a small fraction of terrestrial arthropod predators have 
been subjected to the attention of modellers. By comparing the 
volume of SDM literature on vertebrates versus invertebrates, we 
observed a similar exponential increase in the number of studies for 
both groups, with an inflection point after 2010 (Figure 1a). However, 
the total number of studies was greater for vertebrates (67%) than 
invertebrates, and this difference would be even greater if these 
numbers are relativized to the total number of known vertebrate and 
arthropod species. This is a typical pattern that is partly explained by 
the fact that there is more available information on vertebrates (e.g. 
distribution data; Troudet et al., 2017) and partly the result of a cog-
nitive bias in terms of researcher's subjective preferences for certain 
taxa over others (Clark & May, 2002)—what has been termed by en-
tomologists “institutional vertebratism” or “taxonomic chauvinism” 
(Leather,  2009a, 2009b). The few available studies on arthropods 
are drops in the ocean when considering the number of described 
and as yet undescribed species of insects (Stork, 2018) and spiders 
(Agnarsson et al., 2013).

Taxonomic bias towards certain groups exists also among arti-
cles dedicated to arthropods (Cardoso, 2012; Leandro et al., 2017). 
For example, butterflies are among the most studied in SDM studies 
(6.4%), which once again may be due to a greater availability of infor-
mation (Brereton et al., 2011; van Swaay et al., 2008; Thomas, 2005), 
and which in turn might be driven by aesthetic characteristics. Other 
well-studied groups are those relevant from an economic point of 

view, such as vectors of diseases (Diptera, 8.9%), crop pests (other 
beetles, 6.6%) and pollinators (Apoidea, 3.2%) (Figure 1b).

As for our focal groups, we found that although spiders and 
ground beetles outnumber ants in terms of described species, the 
number of species studied was considerably higher for ants. This 
may be linked to the topic of articles, with most papers focusing on 
one of the numerous invasive ant species—it is likely that a few glob-
ally relevant invasive ant species (e.g. Argentine ant, fire ant) allow 
myrmecologists to obtain research funding, thus attracting most re-
search attention (Holway et al., 2002; Silverman & Brightwell, 2008).

Inevitably, the few studies on ants, ground beetles and spiders 
have often been opportunistic, largely reflecting the specific inter-
ests of the few authors who have ventured to explore the poten-
tial of SDMs in terrestrial arthropod research. For example, this 
is evident when looking at a sample of papers on spiders—most 
studies focused on large-sized, taxonomically unique and/or char-
ismatic species (Decae et al., 2019; Hamilton et al., 2016; Jiménez-
Valverde et al., 2011; Wang et al., 2018), taxa of medical importance 
(Planas et  al.,  2014; Taucare-Ríos et  al.,  2018; Wang et  al.,  2018) 
or taxa inhabiting peculiar habitats that are the interest of cer-
tain authors, such as caves (Mammola et al., 2018, 2019; Pavlek & 
Mammola, 2021).

4  | GEOGR APHIC AL BIA S IN SDM 
RESE ARCH ON ARTHROPODS

The geography of studies, as inferred from author affiliations, re-
vealed how the production of SDM papers on ants, ground beetles 
and spiders is mostly concentrated in North and South America 
and Europe (Figure 2). These are geographical areas that hold lower 
levels of diversity but greater availability of data. There were, how-
ever, some conspicuous differences among groups. For ants, mod-
elled species are mostly in North and South America and Europe 
(Figures  S1 and S2); only 15 studies modelled species distribution 
worldwide. For spiders and ground beetles, most studies focused on 
European species (Figures S3–S6), and only three and one studies/y, 
respectively, had worldwide coverage. There were considerably 
more ant species, which have been studied with SDMs than spiders 
and ground beetles.

5  | INFLUENTIAL PAPERS, 
COLL ABOR ATIONS AND TOPIC S

The co-citation network allowed us to identify key articles co-cited 
by the studies included in our survey (Figure 3). As expected, most 
co-cited papers were methodological rather than arthropod-specific 
papers. The top-cited papers were Phillips et al. (2006) and Hijmans 
et al.  (2005), respectively, the reference for the algorithm MaxEnt 
and for the most widely used global climate database (WorldClim). 
Among the less co-cited but still influential papers, there were sev-
eral references to phylogenetic methods, suggesting that a number 

TA B L E  1   Number of articles returned by the queries on Web 
of Science (WOS) and number of articles kept after title, keywords 
and abstract screening

Group
No. of papers 
on WOS

No. of 
papers kept

Spiders (Araneae) 74 55

Ground beetles (Carabidae) 32 24

Ants (Formicidae) 108 51

Other arachnids 37 34

Mites and ticks (Acari) 159 110

Molluscs (Gastropoda) 164 121

Flies (Diptera) 454 320

Grasshoppers and crickets 
(Orthoptera)

59 34

Beetles other than Carabidae 
(Coleoptera)

313 183

Butterflies (Lepidoptera) 391 253

Dragonflies and damselflies 
(Odonata)

50 42

Bees (Apoidea) 116 81

Reptiles (Reptilia) 529 347

Amphibians (Amphibia) 652 412

Mammals (Mammalia) 854 617

Birds (Aves) 1,411 930
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of articles are potentially integrative research using multiple lines of 
evidence to deal with species delimitation (Ferretti et al., 2019; Ross 
et  al.,  2010) and historical biogeography (Magalhaes et  al.,  2014; 
Mammola et al., 2015; Planas et al., 2014; Solomon et al., 2008).

Network analysis also revealed highly structured collabora-
tion hubs around the three groups of interest (Figure 4). Observed 
collaboration hubs were strongly bound but limited in size, with 
only four cases of inter-group collaborations (ants–ground bee-
tles, ants–spiders and ground beetles–spiders). Two cases were 
the result of multi-taxa studies (Christman et  al.,  2016; Jiménez-
Valverde et al., 2009), and two were related to authors involved in 
articles dealing with two different groups: Williams S.E. (Staunton 
et  al.,  2014; Steiner et  al.,  2008) and Peterson A.T. (Peterson & 
Nakazawa,  2008; Planas et  al.,  2014; Roura-Pascual et al., 2009, 
2004, 2006).

Articles dealing with ants primarily focused on climate change 
(33.9% of studies) and invasion biology (30.4%). Many studies often 
dealt with both topics simultaneously (23.2%) as these topics often 
go hand in hand, with researchers seeking to predict the future 
spread of alien species in climate change scenarios.

The research spectrum of articles dealing with spiders was more 
diversified, with studies using SDMs to explore the environmental 
drivers of species distribution (28.6%), to predict distributions under 
future climate change (33.4%) and to assist species delimitation 
(26.8%), as well as other miscellaneous topics (19.6%). Contrary to 
ants, only 7.1% of studies on spiders dealt with invasion biology, 
probably on account of the reduced number of globally important 
known invasive spiders (Nentwig, 2015).

Finally, the focus of articles dealing with ground beetles was 
almost entirely climate change (52.6%) and the drivers of species 
distribution (36.8%), with only two papers dealing with biological 
invasions.

6  | HOW ARE WE MODELLING 
ARTHROPOD PREDATOR DISTRIBUTION?

6.1 | Algorithms

A large majority of articles we reviewed used a single algorithm (for 
ants, ground beetles and spiders, 79.6%, 94.7% and 80.4%, respec-
tively) or ensemble (24.1%, 5.3% and 14.3%, respectively) for model-
ling species distributions, whereas no silver bullet use was sporadic 
and only in spider-related articles (7.1%). A total of 33 different al-
gorithms were used in the studies we reviewed. For all taxonomic 
groups, MaxEnt was the most used algorithm (Figure  5), as also 
emphasized by the co-citation network (Figure  3). This is a recur-
rent pattern in the latest SDM research, as found for the research 
in other animal groups (e.g. bats; Razgour et  al.,  2016). This trend 
is probably due to the fact that MaxEnt is a presence-background 
technique, allowing users to overcome some of the difficulties as-
sociated with obtaining reliable absence data in the light of imper-
fect detection. Moreover, MaxEnt has proved to be a robust species 
distribution modelling technique according to comparative stud-
ies (Elith et al., 2006, a highly co-cited reference in our data set as 
shown in Figure 3).

F I G U R E  2   Production of studies per country for the three groups. Papers were attributed to a country based on the affiliations of the 
authors using the bibliometrix package
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2602  |     MAMMOLA et al.

Despite the large number of algorithms tested, even per article 
(up to 14), it remains unclear whether one algorithm rather than an-
other is more suitable for modelling the distribution of terrestrial in-
vertebrates. To the best of our knowledge, no comparative studies 
on algorithm performance focused on invertebrates are available. 

More empirical comparisons of the performance algorithms in the 
context of terrestrial invertebrate research would be needed (Araújo 
et al., 2019; Qiao et al., 2015).

6.2 | Environmental variables

Bioclimatic variables were by far the most used predictors to model 
and explain species distributions (Table 2) for the three focal groups. 
This is partly due to the broad availability of free high-resolution cli-
matic variables [e.g. CHELSA (Karger et al., 2017), CliMond (Kriticos 
et  al.,  2012) and WorldClim 2 (Fick & Hijmans,  2017)], and partly 
reflects the true importance of climate as a limiting factor for species 
distribution (Muñoz & Bodensteiner,  2019), especially climatic ex-
tremes (Román-Palacios & Wiens, 2020). Climatic variables, in fact, 
were selected as important in virtually all analysed studies (Table 2). 
Note, however, that this may be systematic of a wider bias to choose 
data that are preprocessed, with little effort to select appropriate 
variables given the biology of the species (Fourcade et al., 2018; van 
de Pol et al., 2016).

Topography, soil and land use, and habitat variables are used 
less often, possibly due to greater limitations in their availability. 
Nevertheless, when used, these non-climatic factors were often se-
lected as important in modelling the distribution (>65% for ants and 
>80% for spiders and ground beetles; Table 2).

Importantly, most environmental rasters used today for devel-
oping SDM achieve a maximum resolution of 30 arc.sec (cell size c. 
1 km2 at the equator), which is excellent but might not be enough in 
the case of invertebrates that are known to respond to microclimatic 
characteristics over spatial scales of millimetres to metres (Potter 
et al., 2013; Suggitt et al., 2018). This is a key impediment that cur-
rently limits our ability to fully model the niche and distribution of 

F I G U R E  3   Weighted co-citation 
network for the top 30 cited papers in 
the entire data set (ants, ground beetles 
and spiders). The size of the vertex is 
proportional to the number of articles 
citing a given reference. The colours of the 
links and vertex reflect citation clusters. 
The colour of the text corresponds to the 
paper theme

F I G U R E  4   Collaboration network between authors. Colours 
represent clusters of collaboration and pictograms the group 
targeted. For readability, the network is restricted to those papers 
with at least one author having two articles in the data set. This 
represents 64 articles (out of 103) and 211 authors (out of 355)
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     |  2603MAMMOLA et al.

terrestrial arthropods. In the analysed literature, mean variable res-
olution was rather similar for ants and ground beetles [respectively, 
314.9 arc.sec (max = 1.4 arc.sec) and 414.7 arc.sec (max = 0.05 arc.
sec)]. The mean resolution was higher for spiders (171.7 arc.sec (max 
= 1.4 arc.sec)).

6.3 | Mechanistic models and alternative 
data sources

The integration of SDM use with species functional traits and eco-
physiological data was scarce. For ants, 10.2% of articles used traits 

and 6.2% ecophysiological data. For spiders, 2.4% of articles used 
functional traits and none ecophysiological data. For ground beetles, 
no articles used functional traits or ecophysiological data. In the few 
instances where similar variables were considered, these were not di-
rectly incorporated as predictors in the model but rather discussed in 
comparison with the modelled distribution. For the three groups, be-
tween 20% and 25% of papers used phylogenies, but without directly 
incorporating the phylogenetic information into the models (Table 2).

7  | SOLUTIONS TO ALLE VIATE DATA 
LIMITATIONS

The scarcity of data has been pointed out as one of the key limita-
tions to our understanding of the drivers of biodiversity change in 
invertebrates (Cardoso & Leather, 2019), as summarized in a num-
ber of so-called biodiversity shortfalls (Cardoso et al., 2011; Ficetola 
et al., 2019; Hortal et al., 2015; Lopes-Lima et al., 2021). SDMs may 
help us to combat some of these impediments by identifying unex-
plored regions of high environmental suitability for improving the 
geographical gaps in species distributions (i.e. tackling the Wallacean 
shortfall), by identifying the environmental drivers of these distri-
butions (Hutchinsonian shortfall) and even by suggesting suitable 
sites for further sampling (Linnean shortfall). However, the SDM 
construction in itself requires robust and high-quality distribution 
data, creating a loop that is difficult to break. We provide below a 
few promising avenues for future improvements.

7.1 | Distribution data

A quick search for any bird species in the Global Biodiversity 
Information Facility (www.gbif.org) reminds us that it is unlikely we 
will ever possess for arthropods the same amount and quality of data 

F I G U R E  5   Number of articles using a 
given algorithm for species distribution 
models by year and group. To improve 
readability, only algorithms used at 
least five times in the entire data set are 
shown. ANN, artificial neural network; 
CT, classification tree; FDA, flexible 
discriminant analysis; GAM, generalized 
additive model; GARP, genetic algorithm 
for rule-set production; GBM, generalized 
boosting model; GLM, generalized 
linear model; MARS, multiple adaptive 
regression spline; MaxEnt, maximum 
entropy

TA B L E  2   Percentage of studies predicting distribution in 
the past, present and future, using different types of predictor 
variables and where a given predictor variable type was selected in 
the best models (values in brackets)

Ants
Ground 
beetles Spiders

Projection

Past 10.7 22.2 21.4

Present 87.5 61.1 96.4

Future 28.6 22.2 19.6

Predictor variables

Climate 92.9 (100) 77.8 (100) 98.2 (100)

Soil 19.6 (65) 27.8 (100) 10.7 (80)

Geology 5.4 (0) 11.1 (0) 10.7 (33.3)

Topography 25.0 (73.6) 27.8 (100) 41.1 (80)

Habitat 28.6 (73.9) 38.9 (100) 21.4 (80)

Mechanistic explanations

Species traits 8.9 0.0 3.6

Ecophysiology 5.5 0.0 0.0

Genetic 21.4 22.2 26.8
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available for vertebrates. Arthropods are simply too ubiquitous in 
space and time (Stork, 2018), while natural scientists are simply too 
few (Tewksbury et  al.,  2014). However, some recent technical ad-
vances may help us to overcome the main impediments related to 
data limitation and getting close to the goal of modelling the distri-
bution of arthropods with more confidence.

Foremost, the emergence of ensembles of small models has 
proved promising to optimize the modelling of species for which few 
occurrences are available; this is achieved by combining a set of small 
bivariate models to create a consensus model that avoids overfitting 
(details in Breiner et al., 2015, 2018).

Second, modelling above the species level (Smith et al., 2019), for 
example by integrating data from related species when their niche 
overlap is large (Qiao et al., 2017), may be a useful shortcut to over-
come a lack of distribution data in many circumstances.

Furthermore, the information age is characterized by the emer-
gence of a myriad of types of digital data (summarized in Jarić 
et al., 2020) that may help to fill distribution data gaps, especially 
for easy-to-identify species. It was shown that photograph-sharing 
platforms and smartphone applications such as iNaturalist are 
valuable sources of species occurrences (Unger et al., 2020), even 
in the case of our focal groups (Jiménez-Valverde et  al.,  2019; 
Wang et al., 2018). Citizen science programmes are also a valuable 
source of distribution data, for example about swarms of ants (Hart 
et al., 2018) or common species of spiders (Hart et al., 2018). Recent 
modelling exercises based on similar alternative data sources have 
demonstrated their utility in obtaining realistic representations of 
niches and distributions for easy-to-identify taxa (Peña-Aguilera 
et al., 2019; Wang et al., 2018).

Finally, the recent advances in metabarcoding and environ-
mental DNA is of major interest to overcome the issue of species 
detectability (Muha et al., 2017) and lack of invertebrate taxono-
mists (Hebert & Gregory, 2005). Metabarcoding consists in iden-
tifying species using small DNA sequences that are highly variable 
between species and weakly variable within a given species. It is 
the basis of the environmental DNA approach, which consists in 
the identification of the species present in a given environment 
using the DNA left by individuals. Despite many technical chal-
lenges, environmental DNA and metabarcoding face becoming 
standard survey tools in ecology (Deiner et al., 2017; Liu, Clarke, 
et al., 2020; Liu, Blackburn, et al., 2020), including for ants, ground 
beetles and spiders (Kennedy et  al.,  2020; Piper et  al.,  2019; 
Toju & Baba, 2018). Their ability to provide reliable absence data 
and to produce a massive amount of presence data is predicted 
to improve the efficiency of SDMs in the near future (Muha 
et  al.,  2017). Recently, for example, the use of environmental 
DNA has proved useful to forecast the spread of invasive species 
(Zhang et  al.,  2020) or to monitor the success of reintroduction 
programmes (Riaz et al., 2020). Large-scale projects including me-
tabarcoding of terrestrial arthropod communities [e.g. LIFEPLAN 
(https://www.helsi​nki.fi/en/proje​cts/lifeplan) and the Insect 
Biome Atlas (https://www.insec​tbiom​eatlas.com)] are currently 
taking place and will provide an unprecedented data baseline for 

SDMs. This will likely trigger the parallel development of tools to 
handle the big data era (Hallgren et al., 2016).

7.2 | Micro-scale environmental predictors

Gigantic leaps forward are being made in the development of mi-
croclimatic databases (Kearney et al., 2014), as well as approaches 
for downscaling temperature data at high resolutions from thermal 
images (Senior et al., 2019) or airborne light detection and ranging 
data (George et al., 2015). It is predicted that in the following years, 
the use of remote sensing-derived data will become the standard 
for modelling and mapping the microclimate (Zellweger et al., 2019), 
especially in invertebrate research where the use of similar high-
resolution data has already proved useful to achieve realistic conser-
vation prioritization (Bombi et al., 2019).

Furthermore, our literature survey emphasizes that habitat, 
soil and other land use variables, although rarely used, are key fea-
tures affecting the distribution of invertebrates. As in the case of 
climatic variables, there is a general paucity of raster data at a mean-
ingful spatial resolution, although the availability of global-scale, 
high-resolution variables is growing (e.g. SoilTemp: Lembrechts 
et  al.,  2020; SoilGrid: Hengl et  al.,  2017). Once again, for specific 
studies, statistical downscaling and remote sensing may come to 
help; for example, the use of high-resolution habitat variables was 
essential to model the distribution of spiders in spatially complex 
alpine rocky lands (Mammola et al., 2019).

8  | OPPORTUNITIES FOR SDM RESE ARCH 
ON TERRESTRIAL INVERTEBR ATES

SDMs are often used as a simple, correlative way to estimate spe-
cies ranges based on the realized niche, having large uncertainties 
and often over- or underfitting the real distribution. In an influen-
tial paper published 15 years ago, it was foreseen that SDMs may 
offer “more than simple habitat models” (Guisan & Thuiller, 2005), 
by tackling biotic interactions, migration processes, dispersal limita-
tions and (meta)population dynamics.

The challenges faced by conservation biologists today call 
for the development of more of these process-based models (or 
mechanistic models), providing causal explanations for the ob-
served patterns (Briscoe et al., 2019). These can be defined as any 
model that mechanistically links model predictions and species fit-
ness, measured either directly or indirectly using functional traits 
or environmental and biological interactions (e.g. competing or 
mutualistic species) (Kearney, 2006). This idea was reinforced by 
a seminal paper by Kearney and Porter (2009) calling for explicitly 
not only integrating physiological data in mechanistic niche mod-
elling but also life history traits (including dispersal abilities and 
fitness).

Currently, there are proportionally more such studies for plants 
and marine invertebrates than animals (Chardon et al., 2020; Webb 
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et al., 2020), because large spatial data sets needed for integrating 
physiological trait variation are available (Chown & Gaston, 2016). 
While all these applications are still rare when it comes to terrestrial 
arthropods (see Maino et al., 2016), recently there have been stud-
ies that have addressed biotic interaction (Mammola & Isaia, 2017), 
dispersal limitations (Monsimet et  al.,  2020) and metapopulation 
dynamics (Giezendanner et  al.,  2020), thereby showing promising 
directions for future research. Studies including probability of sur-
vival to different stresses such as cold (Cuddington et al., 2018) or 
desiccation (Barton et al., 2019) were also performed for particularly 
well-known groups, including lepidopterans and insects considered 
as pests. However, whereas mechanistic models are increasingly 
available, they have high data demands and thus cannot be routinely 
used for invertebrates (Viterbi et al., 2020), especially in terrestrial 
arthropods where, as previously discussed, the scarcity of data on 
natural history and the large number of species are a clear challenge. 
Some ideas towards a more mechanistic understanding of arthropod 
distributions are discussed in the following.

8.1 | Integration of species attributes and traits 
in SDMs

Species traits influence the outcome of SDMs in two ways. First, 
they themselves influence the distribution of species. Either in the 
present, past or future, the ability of species to adapt to certain con-
ditions, their history, their relation with other species or their ability 
to disperse, all influence species distribution and its change in time 
(Diamond, 2018). Second, their traits may influence how complete 
or biased the known distribution data are and hence how adequate 
the modelled distributions for the different purposes are. Taking into 
account trait data before, during and after the modelling is therefore 
crucial for correct interpretation and to be aware of possible limita-
tions (but see Beissinger & Riddell, 2021, for cautionary arguments).

The recent upsurge in open source trait databases and proj-
ects [ants (Parr et al., 2017), ground beetles (Homburg et al., 2014) 
and spiders (Lowe et al., 2020; Pekár et al., 2021; Pekár, Černecká, 
et  al.,  2021)] offers an unprecedented data baseline to integrate 
trait variability in modelling exercises and develop mechanistic de-
scriptions of species distributions and their changes through time. 
Accordingly, the integration of correlative distribution analyses 
and functional approaches has recently been advocated (Mammola 
et al., 2019; Thuiller et al., 2009; Wittmann et al., 2016), as it would 
make it possible to bridge the differences in biogeography and func-
tional ecology—“functional biogeography" (Violle et al., 2014).

There are various ways to link correlative SDMs and traits 
(Kearney & Porter,  2009). The most obvious one is a simple com-
parison between model outputs and trait variability, including the 
formulation of hypotheses about why these may concur or not. 
Examples in invertebrates are the positive relationship between pre-
dicted habitat suitability and body size found in spiders (Mammola 
et  al.,  2019), phenotype–environment associations observed in 

butterflies (Zaman et al., 2019) or the use of thermal physiology tests 
to define thermal safe zones in ants (Coulin et al., 2019).

With the aim of obtaining more meaningful and realistic pre-
diction of biodiversity change, recently new modelling approaches 
that directly incorporate phenotypic plasticity and other functional 
traits into correlative modelling are being scrutinized (e.g. AdaptR; 
Bush et al., 2016; ΔTraitSDM; Garzón et al., 2019). In our view, one 
of the most flexible way to integrate traits in SDM is via the so-called 
spatial Bayesian species distribution model (Brewer et al., 2016), as 
a Bayesian framework offers the possibility to constraint modelling 
conditions using priors (e.g. thermal limits derived from ecophysi-
ological data or other traits). Whereas the performance of the ap-
proach has been tested in a handful of invertebrate species thus far 
(e.g. Feng et al., 2020; Zhou et al., under review), similar tools will be-
come increasingly useful as the availability of traits and computation 
power increase, leading to more realistic and evolutionary-driven 
predictions of biodiversity change.

8.2 | Linking genetic data and distributions

SDMs have been criticized, among other things, for not taking 
into account heterogeneity in the genetic structure of populations 
within the species range (Hampe & Petit, 2005; Smith et al., 2019). 
Indeed, SDMs generally assume uniformity of responses to climate, 
ignoring local adaptations and intraspecific variations (Franken 
et al., 2018; Hereford, 2009; Wang et al., 2021; Zhang et al., 2021). 
Several recent studies have demonstrated that genetically in-
formed SDMs improve climate change predictions because they 
incorporate possible local adaptations (Ikeda et al., 2017; Marcer 
et al., 2016). Instead of building SDMs based on species occurrence 
defined using standard taxonomy, one can model the distribution 
of each genetic unit of the population. The identification of these 
units can be achieved using traditional molecular markers such 
as amplified fragment-length polymorphisms, microsatellites and 
even single nucleotide polymorphisms (see below). For example, 
Marcer et  al.  (2016) built SDMs for each haplotype Arabidopsis 
thaliana (Brassicaceae) and found that even though most haplo-
type distribution ranges will shrink with global climate change, two 
of them will expand. Some authors also advocate the use of genetic 
data because it allows the production of real absence data (absence 
of a given genetic cluster), making it possible to fit logistic regres-
sions and the incorporation of endogenous spatial autocorrelation 
(Gotelli & Colwell, 2011). The recent advances in high-throughput 
sequencing techniques allow ecologists to collect single nucleotide 
polymorphism data (Peterson et al., 2012) for cluster identifica-
tion at reasonable costs. Single nucleotide polymorphism provides 
fine-scale resolution of population genetic structure, which can 
then be incorporated into SDMs. To our knowledge, this has rarely 
been done on animal populations (but see Hu et al., 2021; Razgour 
et  al.,  2018) and has never been done on terrestrial arthropod 
species.
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8.3 | Accounting for dispersal

Using a correlative approach makes the inclusion of complex pro-
cesses such as dispersal more difficult. While the inclusion of dis-
persal into SDMs has been advocated for more than 15  years 
(Seaborn et  al.,  2020) and can substantially improve model fit 
(Dormann, 2007), dispersal processes are still rarely taken into ac-
count. According to recent quantitative literature surveys, in the last 
two decades the proportion of SDM papers that included dispersal 
data in estimates of range shifts hovered around 20% (Holloway & 
Miller, 2017; Seaborn et al., 2020). The available studies on arthro-
pods either considered dispersal by including a buffer of reachable 
areas around presences based on species-specific dispersal abilities 
[e.g. long-distance dispersal via ballooning for spiders (Mammola & 
Isaia, 2017)], or relied on more sophisticated approaches based on 
kernel distribution [e.g. model of butterfly accounting for both de-
mography and dispersal via a kernel distribution (Singer et al., 2018)]. 
In general, these are rough estimations, given that dispersal is a com-
plex phenomenon that is not trivial to integrate into SDMs (Thuiller 
et  al.,  2013). Indeed, dispersal is characterized by three phases 
(Clobert et al., 2009), that is departure, transfer and settlement, that 
the model should theoretically account for. Moreover, several fac-
tors can influence each of these phases (e.g. inbreeding, temperature 
development, body condition or starvation; on spiders, see Bonte, 
Lukáč, et al., 2008; Bonte, Travis, et al., 2008; Bonte et al., 2009), 
often acting synergistically.

Different approaches, with varying complexity levels, have 
been developed to integrate dispersal into SDMs—see Miller & 
Holloway,  2015 for an overview of methods. The use of mech-
anistic models, which is highly data demanding, is rarely feasible 
for mega-diverse arthropod groups. Moreover, while models that 
include dispersal often outperform simpler models, an increase 
in the model complexity usually increases the uncertainty of the 
prediction (Zurell et  al.,  2016). With the possible exception of 
butterflies, a group that stands at the forefront of research on 
dispersal-explicit SDM (Habel et al., 2018; Singer et al., 2018), in-
tegration of dispersal is therefore largely ignored in modelling ex-
ercises for arthropod groups. Conversely, the majority of studies 
we reviewed modelled terrestrial arthropod distributions assum-
ing either unlimited dispersal or no-dispersal scenarios. Whereas 
similar scenarios may be realistic in specific circumstances (e.g. 
a no-dispersal scenario may be a good assumption for soil and 
cave-dwelling species; Mammola & Leroy,  2018), more often 
these extreme assumptions will result in modelling artefacts, 
such as under- or overestimating range shift and niche parame-
ters (Holloway & Miller, 2017). Bateman et al. (2013) emphasized 
that, even when data are scarce, working with dispersal scenar-
ios between these two extremes often improves the realism of 
projections. For arthropods, when detailed data on dispersal are 
missing, one can approximate dispersal based on available liter-
ature or functional traits loosely related to dispersal (e.g. body 
size), in order to set more realistic thresholds in the maximum 

range a species may shift. Even such simple attempts may signifi-
cantly improve temporal predictions by constraining the range of 
potentially suitable habitat that can be reached.

9  | CONCLUSIONS

Efforts to map the diversity of invertebrate life have been mostly 
concentrated in the last ten years, emphasizing how more and more 
entomologists and other scientists are beginning to incorporate 
SDMs into their research. In the light of our ignorance about the 
diversity, distribution and life history of most arthropods, these 
versatile tools are proving useful to fill some major knowledge gaps 
regarding their diversity patterns. The importance of similar endeav-
ours becomes apparent when considering the accumulating evi-
dence about the silent extinctions of invertebrates (Cardoso, Barton, 
et al., 2020; Eisenhauer et al., 2019; Wagner et al., 2021), the limited 
conservation efforts that are directed towards them (Cardoso, 2012; 
Mammides, 2019; Mammola et al., 2020; Milano et al., 2021) and the 
calls for solutions to these problems (Harvey et al., 2020; Samways 
et al., 2020).

Apart from the conservation implications of using SDMs to 
map arthropod diversity, we have shown how terrestrial arthro-
pods may provide opportunities for advancing SDM research. 
Given that terrestrial arthropod distributions are strongly influ-
enced by microclimatic conditions and microhabitat structure, they 
represent ideal candidates for testing novel modelling approaches. 
So far, this potential is still largely unexploited, and thus, we have 
discussed some recent avenues of research where the integration 
of different data sources may lead to mechanistic descriptions of 
key processes associated with species distributions. We are cer-
tain that our suggestions are a drop in the ocean when compared 
to what is currently available in terms of modelling possibilities—
methodological advances in SDM-related theory are so quick that 
often it is difficult to keep pace. As brand new solutions to describe 
patterns and processes associated with species distribution are be-
coming available, we hope that this review will succeed in high-
lighting the potential of arthropods in SDM research and, in the 
future, that we will more often see them involved as protagonists 
in these developments.
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