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Steady laminar flows through porous media spontaneously generate Lagrangian chaos at pore
scale, with qualitative implications for a range of transport, reactive and biological processes. The
characterization and understanding of mixing dynamics in these opaque environments is an outstand-
ing challenge. We address this issue by developing a novel technique based upon high-resolution
imaging of the scalar signature produced by push-pull flows through porous media samples. Ow-
ing to the rapid decorrelation of particle trajectories in chaotic flows, the scalar image measured
outside the porous material is representative of in-situ mixing dynamics. We present a theoretical
framework for estimation of the Lypapunov exponent based on extension of Lagrangian stretching
theories to correlated aggregation. This method provides a full characterization of chaotic mixing
dynamics in a large class of porous materials.

Recent experimental [1–3], numerical [4] and theoreti-
cal [5] results have shown that the topological complexity
inherent to three-dimensional (3D) porous media gener-
ates chaotic advection at the pore scale. This means
that, in steady laminar flows, fluid elements are elon-
gated at an exponential rate, qualitatively impacting [6]
the transport, mixing and reactivity of solutes, colloids
and particles. Although well documented in dynamical
systems [7], the consequences of chaotic mixing are yet to
be uncovered in porous substrates. In particular, chaotic
advection enhances chemical gradients at microscale over
a large range of Péclet numbers [2], a phenomenon that
may explain the limitations of conventional macrodisper-
sion models to predict reactive transport [8]. Disper-
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FIG. 1. Heterogeneous and anisotropic scalar signature of
the push-pull echo during a push-pull experiment through
random bead packings. The initially spheroidal dye blob at
t̃ = t′ū/d = 0 diffuses preferentially along directions of high
fluid deformation (indicated by arrows), leading to a highly
striated dye distributions at later times. See video in [9].

sion models are based on the description of the spatio-
temporal spread of transported solutes [10], but do not
capture the scalar heterogeneity inside the plume. These
mixing processes evolve with distinct dynamics which re-
main poorly understood in porous media [11]. Exper-
imental characterisation of mixing dynamics in porous
media was achieved in two-dimensional (2D) micromod-
els that facilitated the imaging of scalar gradients below
pore-scale [8]. However, 2D pore topologies prohibit the
development of chaotic trajectories in steady flows [5].
In turn, 3D imaging of solute transport was achieved
with X-ray and magnetic resonance techniques [12, 13],
although the resolution is generally unable to resolve
the whole spectrum of microscale scalar gradients [2, 6].
While offering better resolution, refractive index match-
ing techniques [1–3] are limited to optically transparent
materials. Thus, quantification of chaotic mixing dynam-
ics across the diversity of natural and industrial porous
matter remains an outstanding challenge.

Here we develop a novel methodology based on push-
pull experiments to provide quantitative measurements
of chaotic mixing in opaque porous media. Also termed
echo experiments [14], conventional push-pull experi-
ments consist of two phases. First, a pulse of solute dye
is injected into a porous sample via a steady Stokes flow
(push phase). Then, the flow is reversed (pull phase)
and the withdrawn solute mass is monitored at the injec-
tion point. This scalar echo provides an indirect quan-
tification of solute longitudinal dispersion [14], but does
not capture mixing processes [11]. To characterize the
entire mixing history, we use high-resolution imaging of
the withdrawn solute spatial signature in the plane trans-
verse to the mean flow direction (Fig. 1 and [9]). De-
spite the reversibility of Stokes flows, chaotic advection
coupled to molecular diffusion induces fast decorrelation
of solute paths, a general property of chaotic flows [15].
This decorrelation renders the asymptotic scalar echo sta-
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tistically equivalent to that of two consecutive push-only
flows and enables the indirect quantification of in-situ
mixing dynamics in porous media. In the limit of low
dye molecular diffusivity Dm, we show that the average
fluid stretching rate can be obtained from the temporal
decay of the spatial variance σ2

c (t) of the scalar echo.
These results are supported by numerical simulations [9]
of scalar mixing in the Sine Flow, a prototype of chaotic
advection in fluids [16, 17], and confirms the universality
of our findings.

Push-pull experiments are carried out in granular
columns containing random and ordered (body-centered
cubic) packings of monodispersed beads of diameter d =
5 mm or gravels of mean grain diameter d = 5.4 mm.
A steady Stokes flow with mean longitudinal velocity
ū of a viscous glycerol-water mixture is created via a
constant pressure gradient between the column extremi-
ties (Fig. 2b). The experiment starts by continuously
injecting a fluorescent solute dye (molecular diffusiv-
ity Dm ≈ 10−11m2s−1 in the glycerol-water mixture)
through a small needle (r = 0.5 mm) at the top of the
packing (push phase), until a steady solute plume has
formed inside the porous media. We then stop the injec-
tion and smoothly reverse the flow by inverting the pres-
sure gradient (pull phase), while a camera records the
spatial distribution of dye concentration at the injection
plane, via a thin laser sheet sectioning the flow transver-
sally (see [9] for details on the setup). The continuous
injection of the dye (versus pulsed in classical push-pull
experiments) strongly reduces longitudinal scalar gradi-
ents driving longitudinal dispersion and allows focusing
on transverse chaotic mixing dynamics.

As Stokes flows are linear and time-reversible, fluid ele-
ments experience zero net deformation over the complete
push-pull cycle. Thus, the distribution of dye molecules
shown in Fig. 1 at time t′ after flow reversal have travelled
an average distance ` ∼ ūt′ from the injection point into
the porous sample before being withdrawn to the injec-
tion plane. In a simple translational flow, these molecules
would return to the injection within a small diffusive ra-
dius rD ∼

√
4Dmt′ of their initial position. The circu-

lar scalar footprint of the plume formed at the injection
point (Fig. 1, t̃ = 0) would thus be globally maintained
upon flow reversal. Conversely, in chaotic flows, fluid
deformation over the push-pull cycle significantly ampli-
fies the effective mixing of the withdrawn solute, as was
observed [18] for the push-pull flow over a stagnation
point. Sustained exponential stretching of fluid mate-
rial elements caused by chaotic advection renders disper-
sion strongly heterogeneous and anisotropic, as evidenced
by the highly striated scalar distribution imaged experi-
mentally in the pull phase (Fig. 1), which are generated
by directions of exponential amplification (retardation)
of diffusion along the unstable (stable) manifolds of the
chaotic flow. Owing to flow stationarity, these manifolds
are time-invariant and so the scalar echo converges to-

wards a steady spatial structure (see Video in [9]). Af-
ter a short transient phase, the spatial variance σ2

c of

this structure exhibits an exponential decay σ2
c ∼ e−γ2 t̃

(Fig 2a), where t̃ = t′ū/d is the dimensionless pull time
and d the mean grain diameter. At late times, the scalar
variance tends to a constant σ2

c ≈ 10−3 corresponding
to the background noise level of the camera. This expo-
nential decay is also consistently observed in numerical
simulations [9], where the noise level is much lower. The
decay exponent γ2 is independent of the Péclet number
(Pe = ūd/Dm) over the range 103 to 104, but strongly
varies with the porous medium properties, with signifi-
cantly higher values for gravels (γ2 = 0.30) than for ran-
dom bead packings (γ2 = 0.17) and ordered packings
(γ2 = 0.05).
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FIG. 2. a. Spatial variance of scalar echo σ2
c as a function of

time since reversal (expressed as pore advection time t′ū/d)
for various Péclet numbers and the three class of porous media
considered. The noise level of the camera produces a satura-
tion of scalar variance at a level 〈c2〉 ≈ 10−3. b. Snapshots of
scalar concentration in the pull phase (in logarithmic scale) at
25 t̃ū/d for (b.1) ordered bead pack, (b.2) random bead pack,
(b.3) gravel pack and (b.4) Sine Flow (at t′ = 10). Videos are
available in [9].

To relate the exponent γ2 to the characteristics of
chaotic mixing, we adopt the Lagrangian Stretching (LS)
framework [19–21]. This theory considers the balance of
flow stretching and molecular diffusion transverse to the
elongated lamellar scalar structures formed during fluid
deformation in push-only flows (see Fig. 2 in [9]). For a
constant stretching rate λ, an isolated lamella of length l
elongates as ρ(t) = l(t)/l(0) = eλt while its width decay
as ρ−1 due to fluid incompressibility. Once the width
reaches the Batchelor scale sB =

√
Dm/λ [9], stretch-

ing and diffusion balance each other out and the lam-
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mela peak concentration cmax asymptotically decays as
ρ−1 [9]. The average squared concentration over an area
A then follows [9, 17]

c2 ∝ A−1lsBc
2
max ∼ ρ−1, (1)

where the overbar denotes two-dimensional spatial aver-
age. Owing to solute mass conservation, c is constant and
the evolution of σ2

c is driven by c2. As shown in [9], this
scaling accurately captures the scalar echo produced by
a single stagnation point [18]. This is because enhance-
ment of diffusion by fluid stretching only occurs during
the push phase. In the pull phase, scalar gradients are
unaltered as they remain perpendicular to the main com-
pression direction. In contrast, folding of material lines in
chaotic flows induces ergodicity and a systematic decor-
relation [9] of solute particle trajectories and stretch-
ing directions between the push and pull phases over a
timescale of order of λ−1 [15]. Thus, for t � λ−1, the
stretching histories of fluid elements during the push and
pull phases are independent and the scalar echo observed
at time t′ is equivalent to the mixing produced by a push-
only flow of duration t = 2t′, as verified from numerical
simulations of push-pull flows in the Sine Flow [9].

The evolution of the scalar variance of an isolated
lamella stretched at a constant rate (Eq. 1) is generaliz-
able to randomly varying stretching rates, as typically ex-
perienced by fluid elements at pore-scale [5]. Because of
the multiplicative nature of stretching, the log-elongation
of material elements log ρ is well approximated in ergodic
chaotic flows by a sum of iid random variables, that con-
verges towards the normal distribution with mean λ̄t and
variance σ2

λt [17]. Ensemble averaging (denoted by an-
gled brackets) of (1) over this distribution reads

σ2
c ∼

〈
c2
〉
∼
∫ ∞

0

dΛ exp

(
−t (Λ− λ̄)2

2σ2
λ

− Λt

)
, (2)

with Λ = log ρ/t. At large times, this integral can be
approximated with the Laplace method. The term dom-
inating the integral is exp

(
−t(Λ∗ − λ̄)2/(2σ2

λ)− Λ∗t
)
,

where the saddle point is Λ∗ ≡ max
(
λ̄− σ2

λ, 0
)

[19, 22].
We verified this approximation numerically. For smooth
and space-filling flows, λ̄ ≈ σ2

λ [17], hence Λ∗ = 0 and

σ2
c ∼ e−λ̄

2/(2σ2
λ)t ≈ e−(λ̄/2)t, e.g. the decay exponent is

determined by the fraction of lamellae that have expe-
rienced no stretching and is independent of the Péclet
number.

The validity of the LS theory for isolated lamellae
extends well beyond coalescence time, for flows in the
Batchelor regime [22], e.g. when the scalar fluctuations
lengthscales lc are smaller than the velocity lengthscales
lv. Such regime naturally develops in porous media at
high Péclet number, for which sB � lv [2]. This un-
expected persistence was mathematically associated [22]
to the existence of a continuous limit in the spectrum of
the scalar covariance equation, when Pe→∞. We found

that it can also be explained by the dominance of corre-
lated aggregation of lamellae in the Batchelor regime. In
this regime, coalescing lamellae form bundles that remain
smaller than the velocity fluctuation lengthscale (lc ≤ lv).
Thus, fluid stretching is approximately uniform within a
bundle. In turn, the number N of lamellae in the bun-
dle is dictated by local fluid compression and therefore
proportional to the local fluid elongation ρ in incompress-
ible flows. Thus, weakly stretched and compressed fluid
elements are also weakly aggregated (N ∼ ρ [9]), a cor-
related aggregation scenario verified numerically in the
Sine Flow [9]. As the fraction of weakly stretched lamel-
lae (ρ ≈ 1) asymptotically dominates the integral (2),
and since this fraction is also weakly aggregated (N ≈ 1),
the domain of validity of Eqs. (3)–(2) extends beyond co-
alescence time.

Recalling that the stretching histories between the
push and the pull flows are independent at late time
(t ≈ 2t′), the asymptotic scalar echo variance then fol-
lows

σ2
c ∼ e−γ2t

′
, with γ2 ≈ λ̃ = λ̄d/ū. (3)

λ̃ is the infinite-time Lyapunov exponent of the porous
flow made dimensionless by the pore advection time
ta = d/ū. Eq. 3 exhibits excellent agreement (Fig. 2a)
with the Sine Flow simulations for Pe = 103 and 104,
where the Lyapunov exponent λ̄ ≈ 0.55 was computed
independently [9]. The measure of scalar dissipation in
push-only flows [2] through index-matched random bead
packs at Pe ≈ 104 yields λ̃ = 0.18 [9], in excellent agree-
ment with the push-pull estimate λ̃ ≈ 0.17 from this
study. This value is also close to the stretching and fold-
ing model proposed [2] for granular porous media, that
predicts λ̃ ≈ 0.21 in random bead packs. Note that [3]
found larger Lyapunov exponents based on experimen-
tal velocity fields (λ̃ ≈ 0.5), but this estimate integrates
both longitudinal and transverse stretching.

The weak dependence of γ2 on Péclet number, observed
both experimentally and numerically (Fig. 2a), confirms
that mixing occurs in the Batchelor regime where ag-
gregation is solely determined by the local stretching of
fluid elements. Indeed, the initial tracer injection radius
r was chosen such that lc ∼ r � lv ∼ d and the Péclet
was chosen to be large enough for sB to be much smaller
than lv. In turn, the periodic boundary conditions of
the Sine Flow ensures lc ≤ lv ∼ 1. In contrast, once the
mixed scalar forms patches of uniform concentration over
larger scales lc � lv, the aggregation of these patches be-
comes independent of the local stretching statistics and
occurs at random [23] at a rate given by large scale dis-
persive motions. In such limit, the decay of σ2

c has been
found [22] to be strongly dependent on Péclet number.

Differences in the Lyapunov exponent between gravel
and bead packings may be explained by the role of gran-
ular contacts in controlling the stretching and folding of
material lines [2]. Given their irregular shapes, gravel
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FIG. 3. Probability density function p(c̃) of scalar concentra-
tion rescaled by standard deviation c̃ ≡ c/σc, for increasing
pull time t̃ = t′ū/d (colors). Points are ensemble averages over
several experiments. Straight line indicates the exponential
distribution e−c̃. Inset : Exponent γn for 〈cn〉 ∼ e−γnt. Black
line stands for the pure self-similar case with γn = nγ2/2.

packs likely possess a larger number density of contacts
than random bead packs, favoring chaotic mixing. Con-
versely, the small Lyapunov exponent associated with
flow through ordered packings may be attributed to the
existence of flow barriers imposed by the packing symme-
tries, which may retard chaotic advection [4]. In gravel
and random bead packs, the asymptotic exponential de-
cay of the scalar variance is associated with a transi-
tion to a statistically stationary scalar probability den-
sity function (pdf) with a corresponding exponential dis-
tribution p(c̃) = e−c̃, with the rescaled scalar concentra-
tion c̃ ≡ c/σc (Fig. 3). This asymptotic stationary scalar
pdf is a common feature of many chaotic flows, such as
turbulent flows and random velocity fields [6], and is as-
sociated with the emergence of a dominant non-trivial
strange eigenmode [24] of the advection-diffusion opera-
tor. Self-similarity is also suggested by linearity of the
scalar moments 〈cn〉 decay exponents, i.e. γn ∝ n, as
shown in the inset of Fig. 3. Conversely, the experiments
with ordered packings do not exhibit such behavior, prob-
ably because the slower mixing rate γ2 delays emergence
of the dominant eigenmode.

In conclusion, the spatio-temporal imaging of push-
pull flows allows the quantification of solute mixing in
opaque porous matter, which is currently inaccessible by
other techniques. This opens new opportunities to un-
cover these dynamics in the variety of porous materials
that span geologic, biological and engineering applica-
tions, where Stokes flows are expected to be chaotic [2].
We established general properties of these flows, includ-
ing the decorrelation of solute trajectories, the control of
scalar dissipation by the correlated aggregation in the
Batchelor regime, and the self-similarity of the scalar
pdf associated to the dominance of a strange eigenmode.

When performed at high Péclet numbers, the method al-
lows estimating the Lyapunov exponent, which is the key
paramater for chaotic mixing models [21]. These findings
are generic to chaotic flows and are thus relevant to a
broad range of fluid applications.
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