High-Temperature Non-LTE and LTE Cavity Ringdown Spectroscopy using SMAUG experimental setup

Astrochemistry Discussions The Chemistry of (Exo)Planetary Atmospheres 02/12/2020 <u>Eszter Dudás</u>, Abdessamad Benidar, Samir Kassi, Michael Rey, Vinayak Narayan Kulkarni, Christine Charles, Robert Georges

A radiative transfer model from the atmosphere of Hot Jupiter: HD189733b

A ground-based near-infrared emission spectrum of the exoplanet HD 189733b. Nature, 2010. 463(7281).

SMAUG

Spectroscopy of Molecules Accelerated in Uniform Gas flows

SMAUG

Spectroscopy of Molecules Accelerated in Uniform Gas flows

Mission: record high temperature, high-resolution IR spectral data

- \clubsuit small hydrocarbons (CH₄, C₂H₂, C₂H₄, C₂H₆)
- in controlled conditions

Challenges: HT spectra

- $\boldsymbol{\diamondsuit}$ create the hot environment
- overcrowded for polyatomic molecules
- Iine-by-line analysis very difficult

Our approach: two complementary working regimes

- ♦ hypersonic jet CRDS \rightarrow non-LTE spectra
- ✤ post-shock CRDS → LTE spectra

Essence of SMAUG

Adiabatic expansion:

$$c_P T_0 = c_P T + \frac{1}{2} u^2$$

Hypersonic jet CRDS: non-LTE spectra

→ few molecular collisions

 \rightarrow low energy transfer V-T & V-R

- → decoupled internal degrees of freedom
- high vibrational levels thermally populated
- high-J rotational levels thermally de-populated

SMAUG Experimental setup

Hypersonic jet CRDS: non-LTE spectra

Hypersonic jet CRDS: non-LTE spectra

Found the position of the hot bands Identify low-J lines Missing the high-J rotational lines

Post-shock CRDS: LTE spectra

How to probe hot gases in SMAUG?

- the graphite rod is not accessible for CRDS

Adiabatic expansion:

$$c_P T_0 = c_P T + \frac{1}{2} u^2$$

Shockwave:

- thin region in a flow: few mean free paths thick
- supersonic \rightarrow subsonic flow
- TOTAL energy is conserved
- velocity \rightarrow zero
- temperature, pressure & density rapidly increase

Post-shock CRDS: LTE spectra

LTE: $T \rightarrow T_0$ $u \rightarrow 0$

Study the shockwave with CO

Determining the temperature with CO

1.7 km relative absorption length

Determining the temperature with CO

T = ~1400 K

Hot LTE spectra of CH₄

LTE vs non-LTE

Conclusions and perspectives

- SMAUG can operate according to two complementary working regimes: non-LTE and LTE conditions
- \succ SMAUG was first applied to the spectroscopy of CH₄
 - \rightarrow other small hydrocarbons
- Collaboration with GSMA for the validation of the TheoReTS database
- Limitations of the current experimental system:
- ≻ (T₀)_{max} ~ 1400K
- ➢ graphite heating element → limited variety of molecules can be studied

Acknowledgements

- > ANR (e-PYTHEAS project) is acknowledged for the PhD grant
- Colleagues at the Molecular Physics Department
- Technical staff of IPR

- Christine Charles, Dimitrios Tsifakis, Rod Boswell
 Space Plasma, Power and Propulsion Laboratory (SP3)
- Dr. Vinayak N. Kulkarni Indian Institute of Technology Guwahati