

Hot Jupiters in the belly of SMAUG

Supervisor: Prof. Robert Georges

DUDÁS Eszter

Exoplanet:

- planet beyond our solar system
- 100 billions
- up to date:

Exoplanet:

- planet beyond our solar system
- 100 billions
- up to date:

Gas Giant – "Hot Jupiters"

- Hot: orbiting close to their star thousands of degrees
- Jupiters: gas giant planets

Searching for shadows

- several light-year away from us
- Space telescope: Hubble, Spitzer and Keppler/K2
- "Take photo" of the solar eclipse
- orbiting time: from 18 hours!!! → frequently new data

A radiative transfer model from the atmosphere of Hot Jupiter: HD189733b

A radiative transfer model from the atmosphere of Hot Jupiter: HD189733b

How to build a radiative transfer model?

SMAUG Spectroscopy of Molecules Accelerated in Uniform Gas flows

SMAUG Spectroscopy of Molecules Accelerated in Uniform Gas flows

Objective: record high temperature spectral data

- * Small hydrocarbons
- * in controlled conditions

Challenges: hot temperature spectra

- * create the environment: +1800°C
- * overcrowded spectra for polyatomic molecules
- * line-by-line analysis very difficult

Our approach:

- * non-LTE: Decoupling internal degrees of freedom ($T_{rot} << T_{vib}$)
- * LTE: shockwave $(T_{rot} = T_{vib} = T_{trans})$

Every R+V combination has a unique energy → corresponding spectral line

Every R+V combination has a unique energy → corresponding spectral line

Every R+V combination has a unique energy → corresponding spectral line

Every R+V combination has a unique energy → corresponding spectral line

de Laval nozzle to create hypersonic expansion

de Laval nozzle to create hypersonic expansion

CO spectrum simulated in non-LTE conditions $T_{rot} = 15K$ and $T_{vib} = 2000K$

Non-LTE spectroscopy of methane

Wavenumber /cm⁻¹

Acknowledgements

- ANR (e-PYTHEAS project) is acknowledged for the PhD grant
- Colleagues at the Molecular Physics Department
- Technical staff of IPR

- Christine Charles, Dimitrios Tsifakis, Rod Boswell Space Plasma, Power and Propulsion Laboratory (SP3)
- Dr. Vinayak N. Kulkarni Indian Institute of Technology Guwahati