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Objective: record high temperature spectral data 
 * Small hydrocarbons (CH4, C2H2, C2H4, C2H6) 
 * in controlled conditions 

Challenges: HT spectra 
* overcrowded for polyatomic molecules 

 * line-by-line analysis very difficult

Our approach: 

* Decoupling internal degrees of freedom 

 * Trot << Tvib 
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Decoupling internal degrees of freedom of molecules 
- high vibrational levels thermally populated 

- high-J rotational levels thermally de-populated  
 

 
 simplified rotational structure  

Non-LTE spectroscopy 
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CFD simulations and flow field analysis 
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CFD simulations and flow field analysis 
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Preliminary study on carbon monoxide 
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CO non-LTE conditions: 
Trot = 12.6 (1) K 
Tvib = 1345 (56) K 

Preliminary study on carbon monoxide 
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Application  to non-LTE spectroscopy of methane 

5884 - 6073 cm-1 
6120 - 6140 cm-1 
6193 - 6219 cm-1 

6385 fitted lines 

23 



LTE vs non-LTE spectra 

Tvib = Trot = Ttrans = 81K 

Cold bands only 
Molecular population is 
mainly on GS 

Tvib = Trot = Ttrans =964K 
Overcrowded spectrum 
(super lines) 

Tvib >> Trot  Ttrans  
Intense hot bands 
GS depopulated 
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LTE vs non-LTE spectra CH4 

Evolution of the Int. abs. cross-sections 
of R0-s in diff. polyads 25 
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Temperature extraction - Trot 

Trot = 30 (3) K 
27 



Temperature extraction – TI
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Simulated 
𝑇𝑟𝑜𝑡 = 30 𝐾 
𝑇𝑣𝑖𝑏

𝐼 = 894 𝐾 
𝑇𝑣𝑖𝑏

𝐼𝐼 = 54 𝐾 
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CH4 non-LTE conditions: 

𝑇𝑟𝑜𝑡 = 30 (1) 𝐾  

𝑇𝑣𝑖𝑏
𝐼 = 894 47 𝐾 

𝑇𝑣𝑖𝑏
𝐼𝐼 = 54 (4) 𝐾 
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Performance of the SMAUG setup has been characterized 

 Line identification using TheoReTS 

 Insertion of new hot bands into TheoReTS 

Limitations of the current experimental system:  

 (T0)max  2000K 

 graphite heating element   limited variety of molecules can be 

studied         
 

Conclusions and perspectives 
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The PLATYPUS Project 

RF input  

Gas input  

20 mm 

4
 m

m
 

Plasma exit 

0.5 slm 8 slm 

Shock 
diamonds 

In collaboration with Christine Charles, 
Dimitrios Tsifakis, Rod Boswell,  
Space Plasma, Power and Propulsion 
Laboratory (SP3), Australian National 
University 

Supersonic plasma expansion (Nitrogen) 
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