High-temperature hypersonic Laval nozzle for non-LTE cavity ringdown spectroscopy **@**

Cite as: J. Chem. Phys. **152**, 134201 (2020); https://doi.org/10.1063/5.0003886 Submitted: 05 February 2020 . Accepted: 09 March 2020 . Published Online: 01 April 2020

Eszter Dudás, Nicolas Suas-David, Shuvayan Brahmachary 💿, Vinayak Kulkarni, Abdessamad Benidar, Samir Kassi, Christine Charles 💿, and Robert Georges 💿

COLLECTIONS

This paper was selected as Featured

DUDÁS Eszter - 25/06/2020 nISMS

Astronomical observations

EXOPLANET (HOT JUPITER)

1000 - 3000K CH₄, C₂H₂, C₂H₄, C₂H₆

> Theoretical molecular model

Experimental data

Atmospheric modelling

e-PYTHEAS project

SMAUG Spectroscopy of Molecules Accelerated in Uniform Gas flows

SMAUG

Spectroscopy of Molecules Accelerated in Uniform Gas flows

Objective: record high temperature spectral data

- * Small hydrocarbons (CH₄, C₂H₂, C₂H₄, C₂H₆)
- * in controlled conditions

SMAUG

Spectroscopy of Molecules Accelerated in Uniform Gas flows

Objective: record high temperature spectral data

- * Small hydrocarbons (CH₄, C₂H₂, C₂H₄, C₂H₆)
- * in controlled conditions

Challenges: HT spectra

- * overcrowded for polyatomic molecules
- * line-by-line analysis very difficult

SMAUG

Spectroscopy of Molecules Accelerated in Uniform Gas flows

Objective: record high temperature spectral data

- * Small hydrocarbons (CH₄, C₂H₂, C₂H₄, C₂H₆)
- * in controlled conditions

Challenges: HT spectra

- * overcrowded for polyatomic molecules
- * line-by-line analysis very difficult

Our approach:

- * Decoupling internal degrees of freedom
- * $T_{rot} \ll T_{vib}$

Non-LTE spectroscopy

Decoupling internal degrees of freedom of molecules

- high vibrational levels thermally populated
- high-J rotational levels thermally de-populated

simplified rotational structure

- → few molecular collisions
- \rightarrow low energy transfer V-T & V-R
- \rightarrow decoupled internal degrees of freedom

- → few molecular collisions
- \rightarrow low energy transfer V-T & V-R
- → decoupled internal degrees of freedom

Adiabatic expansion: $c_P T_0 = c_P T + \frac{1}{2} u^2$

- → few molecular collisions
- \rightarrow low energy transfer V-T & V-R
- → decoupled internal degrees of freedom

Adiabatic expansion:
$$c_P T_0 = c_P T + \frac{1}{2} u^2$$

$$Mach = \frac{speed \ of \ gas}{speed \ of \ sound} = \frac{u}{\sqrt{\gamma rT}} \propto \sqrt{\frac{E_{kinetic}}{E_{thermal}}}$$

Accelerate the gas \rightarrow Laval nozzle

- \rightarrow low energy transfer V-T & V-R
- \rightarrow decoupled internal degrees of freedom

Adiabatic expansion: $c_P T_0 = c_P T + \frac{1}{2} u^2$

Accelerate the gas \rightarrow Laval nozzle

Temperature /K

Temperature /K

Pressure /Torr

2

3

4

5

6

d

100 b 500K 80 1000K 0.4 1500K 60 2000K 0.3 40 0.2 20 0.1 0 0 2 3 4 5 6 7 15 10 1 Radial distance from axis /mm

Temperature /K

Temperature /K

Pressure /Torr

5 0 5

10 15

Preliminary study on carbon monoxide

Preliminary study on carbon monoxide

Preliminary study on carbon monoxide

CO non-LTE conditions: T_{rot} = 12.6 (1) K T_{vib} = 1345 (56) K

Application to non-LTE spectroscopy of methane

6120 - 6140 cm⁻¹

6193 - 6219 cm⁻¹

LTE vs non-LTE spectra

LTE vs non-LTE spectra CH₄

Evolution of the Int. abs. cross-sections of RO-s in diff. polyads

LTE vs non-LTE spectra CH₄

Evolution of the Int. abs. cross-sections of RO-s in diff. polyads

Temperature extraction - T_{rot}

 $T_{rot} = 30 (3) K$

$$\bar{\sigma}_{ij}(T_{rot}, T_{vib}^{I}, T_{vib}^{II}) = \bar{\sigma}_{ij}(T_0) \frac{Q_0(T_0)}{Q_{rot}(T_{rot}) \times Q_{vib}(T_{vib}^{II}) \times Q_{vib}(T_{vib}^{II})} \times exp\left[\frac{E_i}{kT_0} - \frac{1}{k} \left(\frac{E_i^{pol}}{T_{vib}^{I}} + \frac{E_i^{vib}}{T_{vib}^{II}} + \frac{E_i^{rot}}{T_{vib}}\right)\right]$$

$$\bar{\sigma}_{ij}(T_{rot}, T_{vib}^{I}, T_{vib}^{II}) = \overline{\sigma}_{ij}(T_0) \frac{Q_0(T_0)}{Q_{rot}(T_{rot}) \times Q_{vib}(T_{vib}^{I}) \times Q_{vib}(T_{vib}^{II})} \times exp\left[\underbrace{E_i}_{kT_0} - \frac{1}{k} \underbrace{E_i^{vib}}_{T_{vib}} + \underbrace{E_i^{vib}}_{T_{vib}} + \underbrace{E_i^{rot}}_{T_{vib}} \right]$$

TheoReTS database

Temperature extraction – T^I_{vib} & T^{II}_{vib}

Conclusions and perspectives

Performance of the SMAUG setup has been characterized

- Line identification using TheoReTS
- Insertion of new hot bands into TheoReTS

Limitations of the current experimental system:

➤ (T₀)_{max} ~ 2000K

 \succ graphite heating element \rightarrow limited variety of molecules can be

studied

The PLATYPUS Project

In collaboration with Christine Charles, Dimitrios Tsifakis, Rod Boswell,

Space Plasma, Power and Propulsion Laboratory (SP3), Australian National University

Acknowledgments

- > ANR (e-PYTHEAS project) is acknowledged for the PhD grant
- Colleagues at the Molecular Physics Department
- Technical staff of IPR

- Christine Charles, Dimitrios Tsifakis, Rod Boswell
 Space Plasma, Power and Propulsion Laboratory (SP3)
- Dr. Vinayak N. Kulkarni Indian Institute of Technology Guwahati
- Professor Robert Gamache
 University of Massachusetts Lowell