### UNIMERSITÉ DE **S**UEL RENNES 1

# Laboratory characterisation of exoplanetary atmospheres through infrared spectroscopy







exo-PlanetarY high-Temperature Hydrocarbons by Emission and Absorption

HYSIQU

### CONTENTS

- I. Objectives
- II. Introduction
- III. Experimental approach
- IV. Results and conclusions
- V. Further challenges



# I. Objectives

# e-PYTHEAS project



#### **Astronomical observation**





Exoplanet (Hot Jupiter)

• 1000K – 3000K

 $CH_4, C_2H_2, C_2H_4, C_2H_6$ 

#### **Theoretical model**

#### **Experimental spectral data**



# II. Introduction







# Molecule CO



#### **Translation**



### Rotation

Distribution of the population





### Vibration



# Non Local Thermodynamic Equilibrium



# III. Experimental approach





#### Hypersonic jet cavity ring down spectroscopy





Small dimensional de Laval nozzle

High Entalpy Source



### IV. Results & conclusions

#### Cavity Ring Down Spectroscopy





GS depopulated (low cold band intensity) High vibrational levels thermally populated (Intense hot bands)

Cold bands only (molecular population is mainly on GS)



# IV. Further challenges

Unwanted shear layer absorption



Design of a planar nozzle (collaboration with Indian Institute of Technology Guwahati)

New system for heating up the gases

New plasma source (collaboration with Division of Space Plasma Power and Propulsion ANU Australia)

### Thank you for your kind attention!

