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The genetic impact of an Ebola outbreak
on a wild gorilla population
Claudia Fontsere1*†, Peter Frandsen2,3†, Jessica Hernandez-Rodriguez1,4, Jonas Niemann5,
Camilla Hjorth Scharff-Olsen5, Dominique Vallet6, Pascaline Le Gouar6, Nelly Ménard6, Arcadi Navarro1,7,8,9,
Hans R. Siegismund3, Christina Hvilsom2, M. Thomas P. Gilbert5,10, Martin Kuhlwilm1,11*†, David Hughes1,12,13† and
Tomas Marques-Bonet1,7,14,15*†

Abstract

Background: Numerous Ebola virus outbreaks have occurred in Equatorial Africa over the past decades. Besides
human fatalities, gorillas and chimpanzees have also succumbed to the fatal virus. The 2004 outbreak at the Odzala-
Kokoua National Park (Republic of Congo) alone caused a severe decline in the resident western lowland gorilla
(Gorilla gorilla gorilla) population, with a 95% mortality rate. Here, we explore the immediate genetic impact of the
Ebola outbreak in the western lowland gorilla population.

Results: Associations with survivorship were evaluated by utilizing DNA obtained from fecal samples from 16 gorilla
individuals declared missing after the outbreak (non-survivors) and 15 individuals observed before and after the
epidemic (survivors). We used a target enrichment approach to capture the sequences of 123 genes previously
associated with immunology and Ebola virus resistance and additionally analyzed the gut microbiome which could
influence the survival after an infection. Our results indicate no changes in the population genetic diversity before
and after the Ebola outbreak, and no significant differences in microbial community composition between survivors
and non-survivors. However, and despite the low power for an association analysis, we do detect six nominally
significant missense mutations in four genes that might be candidate variants associated with an increased chance
of survival.

Conclusion: This study offers the first insight to the genetics of a wild great ape population before and after an
Ebola outbreak using target capture experiments from fecal samples, and presents a list of candidate loci that may
have facilitated their survival.

Keywords: Ebola, gorilla, non-invasive samples, candidate genes

Background
The Ebola virus (EBOV), discovered in 1976, causes a
severe disease and often fatal hemorrhagic fever for
which numerous human outbreaks have been reported
throughout Africa [1]. The most virulent outbreak re-
ported to date was in West Africa in December 2013
and lasted until 2016 with more than 28,000 confirmed
or suspected human cases and more than 11,000 human
deaths [2]. Since then, other outbreaks of Ebola have
been observed. In June 2020, when the 2018 outbreak
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that occurred in Ituri, North Kivu and South Kivu prov-
inces of Democratic Republic of Congo was declared
over by the World Health Organization (WHO), 3470
cases had been reported with 2287 deaths (fatality rate
of 66%) [3].
EBOV belongs to the single-stranded RNA virus family

Filoviridae [4] with five distinct strains in the Ebola
genus: Zaire, Sudan, Bundibugyo, Taï Forest and Reston.
The first three are responsible for the majority of human
infections [5, 6]. The virus is highly infectious and can
enter the body through direct contact of broken skin or
mucous membranes with infected blood or body fluids,
causing symptoms including fever, vomiting, diarrhea,
internal and external bleeding. Ebola hemorrhagic fever
or Ebola virus disease (EVD) is an acute and severe dis-
ease with a fatality rate in humans around 50% [5–7].
Infectious diseases such as Ebola are considered to be

a threat to the survival of African great apes [8], together
with other threats such as habitat loss, climate change
and poaching [9]. In some cases, the human outbreaks
have been linked to contact with infected bushmeat
from gorillas or chimpanzees [10] and several surveys
have reported dramatic declines in populations of great
apes in parallel with human EVD outbreaks with labora-
tory confirmation of Ebola virus infection in some car-
casses [10–12]. Gorilla populations from the Republic of
Congo suffered severe die-offs during a human EVD
outbreak near the Lossi sanctuary in 2002–2003 [12]
and Odzala-Kokoua National Park in 2004 [13] with re-
ported mortality rates as high as 95%. In Lossi sanctuary
alone, it was estimated that the Ebola virus killed 5000
wild gorillas [12]. The severe population decline, as a re-
sult of illegal hunting, disease and habitat loss, has con-
tributed to the 2007 shift of the conservation status of
western gorillas from “endangered” to “critically endan-
gered” by the International Union for Conservation of
Nature (IUCN) [14]. Furthermore, the recent outbreak
of human EVD in North Kivu (Democratic Republic
Congo) [3] was in close proximity to the remnant popu-
lations of eastern gorilla species, hence a human to ape
transmission of the virus could potentially mark the end
of existence for this critically endangered species.
Threats such as infectious diseases are relevant for

conservation efforts, and efficient strategies are needed
to reduce the effects of EVD on wild great ape popula-
tions [15]. Understanding any genetic impact that EBOV
outbreaks might have on wild populations is vital, as
EVD contributes to the fragmentation of gorilla popula-
tions due to a heterogeneous spatial influence of the
outbreak [16]. Social dynamics in gorillas are rapidly af-
fected by Ebola through a decrease in social cohesion, al-
though recovery after the outbreak has been observed
[17, 18]. One study reported that solitary individuals
were less affected than individuals living in groups,

marking the relevance of social dynamics for transmis-
sion [13]. A previous study using 17 microsatellites
found no loss of genetic diversity after one EBOV out-
break in Lossi sanctuary and Odzala-Kokoua National
Park, which could be explained by post-epidemic immi-
gration, sufficiently large remnant effective population
size or a short period of time after the decline [18]. The
present study represents a continuation of this afore-
mentioned research since many aspects of EBOV infec-
tion in wild gorilla populations are not yet explored,
such as genotypes of surviving individuals that might
contribute to resistance or higher chance of survival to
EVD.
Furthermore, microbial organisms inhabiting the gut

also play a potentially crucial role in training and main-
taining the immune system [19–21]. While some com-
mensal microbes are associated with priming the
immune response or activating antiviral responses,
others facilitate the development of the infection or sup-
press the immune response [22]. For instance, a recent
study reported a link between the gastrointestinal micro-
biome of healthy humans and a predisposition to severe
COVID-19 [23], with an abundance of Klebsiella,
Streptococcus, and Ruminococcus being correlated with
elevated levels of proinflammatory cytokine. The associ-
ation between infectious diseases and the gut micro-
biome of nonhuman primates is less well understood.
While the gut microbiome of SIVgor-infected (gorilla
Simian Immunodeficiency virus) wild gorillas seems to
be more robust to dysbiosis than those of chimpanzees
and humans [24], it is unclear how shifts in the gorilla
gut microbiome can impact the severity of viral infec-
tions, and in particular the immune response to Ebola
virus infection.
Long-term monitoring of a western lowland gorilla

(Gorilla gorilla gorilla) population in Odzala-Kokoua
National Park (Republic of Congo) has been ongoing
since 2001 until 2017 encompassing the Ebola outbreak
of 2004 [16–18, 25] which resulted in a mortality rate of
95% [13]. Population monitoring involved the recording
of individual histories of hundreds of identified individ-
uals, the determination of sex, age and social status and
the collection of fecal samples in different time periods.
During the Ebola outbreak, which lasted six months in
the monitored population, about 340 individuals disap-
peared and entire groups were missing. Knowing the oc-
currence of Ebola epidemics in humans, the occurrences
of gorilla carcasses infected by Ebola [10], and the detec-
tion of Ebola virus antibodies in great ape fecal samples
in the areas of gorilla population decline [26], the scien-
tific community has attributed the abnormal rate of
gorilla disappearances to massive death caused by EVD.
Individuals without any sign of injury, handicap or sen-
escence that went missing after the Ebola period were
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considered as dead because of EVD, and individuals that
were seen before and after the outbreak were considered
as surviving the epidemic period.
Here, focusing on a well described western lowland

gorilla population [18, 27], we have obtained genetic
data from gorilla fecal samples pre- and post-outbreak
to explore potential associations to survivorship. Particu-
larly, we compare the genetic variation at the single nu-
cleotide level in 123 autosomal target-captured genes
with putative roles in virus immune response and the
gut microbiome composition in a reduced panel of sur-
vivors and non-survivors of this Zaire EBOV outbreak.
With that we show that targeted capture on non-
invasive fecal samples and next-generation sequencing
can be used to study the impact of this severe disease in
a natural population.

Results
A total of 31 non-invasive fecal samples from identified
western lowland gorillas were collected between 2001
and 2014 in Odzala-Kokoua National Park, Congo [18]
(Fig. 1A). Sixteen of these were from individuals de-
clared missing after the Zaire Ebola virus outbreak in
2004. These individuals did not show any sign of injury,
handicap or senescence that could lead to natural death.
Also, they were observed shortly before the epidemic
period and were thus unlikely to disperse. Therefore,
they were suspected to have died because of the infec-
tion, here termed ‘non-survivors’. These samples were
collected between 2001 and 2004. The remaining 15

samples were from gorillas identified before the epi-
demic and still observed after the epidemic, and are
identified henceforth as ‘survivors’ [17]. Although no im-
munological test could be performed on the dried fecal
samples, the survivors were known to live in the area
where the epidemic emerged and thus they were sus-
pected to have been in contact with the virus. These 15
samples were collected between 2005 and 2014 (Supple-
mentary Table S1). We used target capture enrichment
to sequence the genomic regions of 123 genes, which
had previous evidence of putative roles in immune re-
sponse to EBOV or other viruses (Supplementary Table
S2). In addition, 15 neutral regions previously studied in
other human and non-human primate studies were also
targeted [28, 29] (Supplementary Table S2). Target de-
sign and all analyses were performed using the human
reference genome due to the higher quality of annota-
tions compared to the gorilla reference genome. We se-
quenced an average of 73 million paired reads per
individual, 12% of which were unique (Supplementary
Table S3). On average, 0.38% of the data mapped to the
target space, representing an on-target effective coverage
of 53.89-fold (range: 2.52-fold to 230.70-fold; Fig. 1B,
Supplementary Table S3), with 72% of the target space
covered by at least 4 reads per individual. Samples G282,
G1392 and G638 performed poorly, with <50% of the
target space covered at a minimum depth of 4 reads
(Supplementary Fig. S1). Overall performance can be
assessed by calculating how well the capture resequen-
cing experiment went relative to expectations had we

Fig. 1 Sample description. A) Geographical map of the extant range of gorillas and the Odzala-Kokoua National Park (Republic of Congo) where
fecal samples were collected between 2001 and 2014, overlapping the Ebola outbreak in 2004. B) Average coverage reached in the target space
per sample in both studied groups. C) Percentage of human contamination in each fecal sample
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performed random shotgun sequencing. In that regard,
we observe an average enrichment of 125-fold (88–346-
fold) (Supplementary Table S3). Individuals with ex-
tremely low proportions of target space covered by at
least 4 reads (<30%) (G638 and G282) and high hetero-
zygosity and high levels of human contamination were
removed from further analysis (individuals G374 and
G1392, Fig. 1C and Supplementary Fig. S2, Table S3).
With the final dataset of 13 survivors and 14 non-

survivors, we validated that the genotype information
obtained was in concordance with previously published
gorilla whole-genomes, as determined by a principal
component analysis (PCA) (Supplementary Fig. S3).
Since the sampling of the gorilla population was done to
avoid related individuals by sampling from different
groups (a total of 45 groups and 31 solitary males were
present before the outbreak), we identified a single case
of close relatedness (1st degree) among them (non-sur-
vivor G374 and survivor G739; kinship coefficient = 0.4)
(Supplementary Fig. S4). In addition, we observed no
stratification correlating with survivor/non-survivor clas-
sification. Individuals appear to be dispersed randomly
across a dendrogram derived from shared genotype like-
lihood dosage states (Fig. 2A), and a univariate linear re-
gression of survivorship on the top 5 PCs identified no
significant structure associated to survivorship (P-value
>0.1; Supplementary Fig. S5). Hence, we determined no
genome-wide group structure differences between survi-
vors and non-survivors. The overall level of genetic di-
versity within the target space of the studied gorillas
was, on average, lower than that of western lowland go-
rillas obtained from whole-genome sequencing (Supple-
mentary Fig. S6) [30, 31], an expected outcome
following the target capture procedure. Moreover, there
are no statistically significant differences in heterozygos-
ity between survivors and non-survivors (Student’s t-
test, p-value = 0.34; Fig. 2B).
In order to determine genetic differences between the

groups, we calculated three summary statistics on a
dataset of 6852 high-quality variants: (1) the difference
in allele frequency (ΔFrequency), (2) the fixation index
(FST), and (3) the significance level (α) of each variant
for its association with the binary trait survivor/non-sur-
vivor (Fig. 3). We found 118 SNPs within the target
space that surpassed our α threshold in the association
test, and we also reported their ΔFrequency and FST
values. However, after controlling for type I error none
of these remained significant. Out of these, seven genes
have multiple nominally significant SNPs (CD1B,
IGKV4–1, HLA-A, ACTB, LYN, CD68 and MX1), while
10 neutral regions (~10 kb each) have at least 1 nomin-
ally significant variant (Supplementary Table S4). For
comparative validation, we repeated the association ana-
lysis using ANGSD [32], a software explicitly built to

work with low coverage data that relies on genotype
likelihoods. With this method, we were able to recover
the majority of the genes found above (30 out of 36).
However, ANGSD returned more hits and thus more
genes (Supplementary Figs. S7, S8 and Table S5), ren-
dering the above approach more conservative.
Next, we explored the potential functional impact of the

variants in the nominally significant candidate loci that
differentiate survivors from non-survivors. While we
found no significant associations with gene ontology cat-
egories, the analysis of predictions of functional conse-
quences pinpointed six missense mutations which differed
in frequency between the two groups (Supplementary
Table S6), one each in the ATM, IGKV4–1 and RNF167
genes (all lower in survivors) and three in the ACTB
(Actin Beta) gene (one unique to survivors, two lower in
survivors, Supplementary Table S4). All three missense
variants in ACTB are predicted as deleterious by both the
PolyPhen [33] and SIFT [34] algorithms. Furthermore, the
derived variant in survivors in the immunoglobuline-
encoding IGKV4–1 might be deleterious (C-score > 20
[35]), hence potentially functionally relevant. Since we
used the human genome for target design, mapping and
variant calling, we caution that differences in exon usage
or pseudogenization on the gorilla lineage might confound
these inferences of protein-coding changes. In order to
confirm the expression of these genes, and specifically the
exons of interest, we mapped transcriptome data from six
tissues in gorillas [36] to the same reference genome, and
quantified expression levels. We confirmed the expression

Fig. 2 Genetic distance dendrogram and heterozygosity among
non-survivor and survivor gorilla groups. A) Clustering dendrogram
of pairwise genetic distance derived from genotype likelihoods (N =
5477). B) Mean heterozygosity (bp−1) in non-survivors and survivors;
not significantly different (Student t-test, p-value = 0.34)
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of these genes and found high transcript abundance (log2-
value of counts > = 9) for ACTB, RNF167 and ATM, while
IGKV4–1 was only detected at low levels in these tissues
(log2-value of counts = 5.84). We found ~10,000 RNA se-
quencing reads overlapping the three loci of interest
in ACTB, 437 in RNF167, and 96 in IGKV4–1, sup-
porting the expression of these specific loci in gorilla
tissues, while for ATM only 10 reads overlapped
(Supplementary Table S6).
Among the 118 significant SNPs, we found no direct

overlap with loci associated to 2385 traits in genome-
wide association studies (GWAS) for humans [37]. How-
ever, we found 49 associated loci within close proximity
(5000 bp) to GWAS loci (Supplementary Table S7),
among which the locus 19:1104078 near GPX4 stands
out for its association with five blood cell traits (counts
and percentages of leukocyte cell types). Furthermore, 6:
29916885 in the HLA is associated to hemoglobin levels.
Five loci in HLA-DRA are associated with different auto-
immune diseases like systemic lupus erythematosus or
multiple sclerosis (Supplementary Table S7). Further-
more, nine loci in this region (HLA-DRB5 and HLA-A)
are associated with schizophrenia or autism spectrum
disorder (Supplementary Table S7).
It has been reported that intestinal microbiota play

a critical role in immune response to infectious dis-
eases [19–21]. Thus, the microbiome might be rele-
vant for the survival of wild gorilla populations
experiencing an Ebola outbreak. Taking advantage of

the nature of the samples, we first analyzed the
microbiota present in each fecal extraction using a
16S rRNA library (Methods). We obtained a total of
96,928,400 reads with an average sequencing depth of
1,101,459 (SD ± 418,989) reads per gorilla fecal ex-
traction (Supplementary Table S8), and determined
the abundance of taxa (Supplementary Figs. S9 and
S10). Firmicutes (53.79%), Bacteroidetes (12.02%) and
Chloroflexi (11.11%) were the predominant phyla
(Supplementary Fig. S9 and Table S9), that include
the following most abundant orders: Clostridiales
(39.37%), Bacillales (11.24%), Bacteroidales (10.87%)
and Anaerolineales (11.11%) (Supplementary Fig. S10
and Table S10), concordant with previous findings
[38, 39]. We found no taxa significantly differing in
relative abundance between survivor and non-survivor
gorillas (Bonferroni-corrected p-values >0.05; Supple-
mentary Fig. S11 and Table S11), and sample groups
were not separated in a clustering analysis (Fig. S12).
Since these results on the gut microbiome diversity

did not support differences between both gorilla groups,
we decided to perform deep sequencing on the fecal li-
braries. We generated a total of 801,132,281 sequences
from DNA libraries (4,025,054-25,593,317 reads per
sample; Supplementary Table S8) and used MALT
(MEGAN Alignment Tool) [40] for an alternative
characterization of the microbial profile of the samples
(Supplementary Fig. S13). We find that the majority of
the identified taxa are associated with the gut

Fig. 3 Association analysis to detect SNPs and candidate genes related to survivorship to EBOV outbreak. A) Significance level (threshold set at α
= 0.05, −log10(P-value) = 1.30). B) Difference in allele frequency (threshold set at ±0.2). C) Fixation index (threshold set at FST = 0.15). Dashed lines
delineate the thresholds used

Fontsere et al. BMC Genomics          (2021) 22:735 Page 5 of 12



microbiome (Supplementary Table S12 and S13). By far
the most abundant taxon is the gut bacterium Escheri-
chia coli, which could be detected in all samples, and
makes up more than 50% of all assigned sequences in
nine of the samples. Also in high abundance are species
of the Bacteroidales order, such as Bacteroides cellulosi-
lyticus and Prevotella spp., as well as members of the
Clostridiales, Lactobacillales, and Bacillales orders, cor-
roborating previous reports on the composition of west-
ern lowland gorilla gut microbiomes [38, 41].
Furthermore, we detected pathogenic taxa in high abun-
dance in some of the samples, such as Clostridium botu-
linum, Acinetobacter baumannii, and Klebsiella
pneumoniae, which have been previously found in the
gorilla gut [42]. However, the microbial profiles of survi-
vors and non-survivors do not differ significantly from
each other in this analysis either (Bonferroni-corrected
p-values >0.05, two-sided t-test, Supplementary Table
S11), and the two groups do not form separate clusters
in a Principal Coordinate analysis or a Neighbor Joining
Tree (Supplementary Figs. S14 and S15).

Discussion
We investigated non-invasive fecal samples from a
long-term monitored population of western lowland
gorillas in the Republic of Congo, including individ-
uals that most likely succumbed to the Zaire Ebola
virus outbreak in 2004, as well as surviving individ-
uals [17, 18]. We used targeted capture of 123 auto-
somal genes with putative roles in immune response
to EBOV or other viruses (Supplementary Table S2)
from fecal samples. This yielded an enrichment of
more than 100-fold across samples, and a medium to
high coverage of the target space across most individ-
uals (Supplementary Fig. S1 and Table S3). Although
a large proportion of reads were duplicates, the over-
all performance was high and these results demon-
strate the great potential of capture experiments for
obtaining genotypes from fecal samples of wild great
ape populations [43, 44], for which high-coverage se-
quencing would be prohibitively expensive. We deter-
mined that the studied individuals were not closely
related, hence most likely representing a random sam-
pling of the wild gorilla population before and after
the outbreak. We also investigated the microbial com-
munity composition of survivors and non-survivors,
finding no significant differences in taxa abundance,
neither using 16S rRNA or deep sequencing data
(Supplementary Figs. S11, S13 and Table S11). Hence,
we find no evidence that the gut microbiome of indi-
viduals has an influence on the survival rate of wild
gorillas exposed to Ebola. However, these observations
are limited by (1) the sample size, and (2) the broad
range of collection dates (Supplementary Table 1).

The latter is particularly true (2a) relative to the tim-
ing of any exposure, but also in respect to the (2b)
dynamic nature of the gut microbiome [39].
Given the limited sample size, we developed an ap-

proach using differences in allele frequency, the fixation
index and the effect size to determine variants most
strongly associated to survivability in the studied popula-
tion, generally replicable using an association analysis
with ANGSD. While 44 of the 118 nominally significant
SNPs (Supplementary Table S4) do fall within 10 of the
15 neutral regions included in the study, some SNPs
might be functionally relevant for surviving the EBOV
outbreak. The non-synonymous variants in ACTB,
RNF167 and IGKV4–1 genes are obvious candidate loci,
and particularly the three deleterious missense muta-
tions in Actin Beta appear to be strong candidates for a
higher survival rate. The actin cytoskeleton is important
for virus assembly [45], and a disturbed assembly
process could have influenced the viral load in individ-
uals with changes in this protein. As expected for a gene
encoding a structural protein, ACTB is highly expressed
in gorilla tissues. Furthermore, the variant in IGKV4–1
might improve the immune response to viral infection
through antigen recognition [46]. The missense muta-
tion in ATM, which belongs to the PI3-kinase family,
could interfere with the cellular entry specifically of the
Ebola virus [47], although we could not confirm expres-
sion of this locus in vivo in the available tissues.
We find other potentially relevant non-coding vari-

ants, 49 of which are in close proximity to SNPs as-
sociated to GWAS traits in humans, suggesting
possible regulatory functions (Supplementary Table
S7). Among those, the association of GPX4 with
leukocyte cell type count might reflect differences in
leukocyte composition after viral infection. Differences
in hematocrit or hemoglobin levels might have con-
tributed to the survival of wild gorillas considering
that hemorrhage and internal bleeding are symptoms
of Ebola infection. Since eight loci are associated to
the HLA-DRB gene, a direct involvement in the adap-
tive immune system might cause the signature ob-
served at this locus, particularly given that human
survivors of EVD show a lower frequency of HLA-
DR-positive T cells [48].

Conclusion
By using fecal samples and targeted capture enrichment,
non-invasive assessment of numerous individuals from
wild populations is possible. Here, we demonstrate that
this approach can be used to analyze temporal genetic
changes in wild great ape populations in response to en-
vironmental factors. Additionally, we present candidate
loci that may have facilitated the survival of gorilla indi-
viduals or groups after an outbreak of the Zaire Ebola
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virus. Understanding putative adaptive responses to this
pathogen in wild populations can help to advance our
knowledge on the natural dynamics of this severe dis-
ease. Such a strategy might be useful in a broader con-
text, since these and other primates are susceptible to
other infectious diseases such as Covid-19 [49].

Methods
Samples, DNA extraction, library preparation
Non-invasive fecal samples from western lowland go-
rillas were collected between 2001 and 2014 near the
Lokoué clearing in Odzala-Kokoua National Park, Re-
public of Congo [18], following the standard practices in
the field. The population and group structure of this
western lowland gorilla population has been described
previously [27]. Among collected fecal samples, we se-
lected 31 samples from previously identified individuals
each from unique social groups (Supplementary Table
S1). Sixteen of those individuals were declared missing
after the epidemic in 2004 [13]. Given the high mortality
rate (95%) of Ebola virus in gorillas, they were presumed
dead during the time span of the epidemic and were
identified here as non-survivors. Fifteen individuals were
observed before and after the epidemic, and were de-
scribed here as survivors (Fig. 1A and Supplementary
Table S1) [17]. Fresh samples were collected by field in-
vestigators wearing masks and gloves, and were dried
with silica beads and then stored at room temperature
until arrival in a laboratory where they were stored at
4 °C until extraction. Sampling dates are recorded in
Supplementary Table S1.
DNA was extracted from 10mg of dried sample using

the 2CTAB/PCI protocol [50] using negative controls that
were checked for DNA contamination before subsequent
experiment. Three different extractions were carried out,
except for samples G778, G374, G344, G498 and G372,
where only two extractions were performed (Supplemen-
tary Table S1). A DNA library [51–53] and a 16S rRNA li-
brary [54–56] were prepared for each extract. Isolated
DNA samples were quantified with Qubit with a mean es-
timated concentration of 13.3 ng/μl (range: 0.90–74.7).
Whenever possible, a total of 250 ng of DNA was used to
construct DNA libraries, but never more than a total vol-
ume of 33 μl was taken from any single sample. DNA was
sheared with a Covaris S2 instrument and 88 fecal DNA
(fDNA) libraries were prepared following a custom dual-
indexing protocol with 25 cycles of amplification [51, 52].
Subsequent to DNA library preparation, 88 16S rRNA li-
braries were prepared using 1 μl of total DNA. The V3
and V4 regions of 16S rRNA were target amplified using
modified 341F and 806Rb primers [54–56], incorporated
into the dual-indexing protocol [52]. The forward primer
(IS1_P5_16S_341f: ACACTCTTTCCCTACACGACGC
TCTTCCGATCTNNNNCCTACGGGNGGCWGCAG),

and reverse primer (IS2_P7_16S_806rB: GTGACTGGAG
TTCAGACGTGTGCTCTTCCGATCTGGACTACNVG
GGTWTCTAAT) include the complementary sequences
necessary for the final indexing step [52]. Protocols are
provided in [53].

Target Design, Capture and Sequencing
RNA baits covering the target space were designed and
synthesized by Agilent with a minimum of 3x bait cover-
age. The target space included specific autosomal genes
(123 genes) and 15 neutral regions (~10 kb each) (Sup-
plementary Table S2). For target enrichment, the fDNA
libraries were pooled into one equimolar batch and sub-
jected to two consecutive rounds of DNA capture with
the RNA baits in 8 hybridizations. Captured fDNA li-
braries were sequenced on the Illumina system in four
HiSeq 2500 2x125 lanes and one HiSeq 2500 rapid run
at 2x250 bp. The 16S libraries were sequenced on one
HiSeq 2500 rapid run 2x250 bp lane. In addition, we
generated paired-end sequences from the fDNA libraries
on four HiSeq 4000 lanes (2x150bp) to study the whole
microbiome composition (Table S8).

Mapping and Variant Discovery
Prior to mapping, paired-end reads belonging to the same
library but sequenced in different lanes were merged into
a single FASTQ file. PCR duplicates were directly re-
moved from FASTQ files using FASTuniq (v1.1) [57].
Overlapping reads were merged (minimum overlap of 10
bp, minimum length of final read to 50 bp) using PEAR
(v0.9.6) [58]. Reads were mapped using BWA mem
(v0.7.12) [59] to the human reference genome Hg19
(GRCh37 from the UCSC database). Assembled reads
were mapped considering single-end specifications and
unassembled reads considering paired-end specifications.
Any remaining PCR duplicates were removed using
PicardTools MarkDuplicates (v1.95) (http://broadinstitute.
github.io/picard/). Non-primary alignments and reads
with quality below 30 were filtered from the dataset with
samtools (v1.5) [60]. Finally, single-end and paired-end
reads were merged into a single BAM file using Picard-
Tools MergeSamFiles (http://broadinstitute.github.io/
picard/). The percentage of aligned reads for each DNA
extraction and sample was calculated by dividing the
number of uniquely and high-quality mapped reads (with-
out duplicates) by the total number of sequenced reads.
The percentage of on-target aligned reads was calculated
for each sample by dividing the number of on-target fil-
tered reads by the number of sequenced reads. The aver-
age target effective coverage was calculated dividing the
number of aligned bases by the total length of the targeted
genomic space. Finally, the enrichment factor (ER) of the
capture performance was calculated using the ratio be-
tween the on-target reads by the total mapped reads over
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the targeted size by genomic size (ER = (On-Target
Reads/Mapped Reads)/(Target Size/Genome Size)). The
coverage for each target region was retrieved using SAM-
tools bedcov [60].
For variant calling, all BAM files belonging to the same

sample were merged into a single BAM file using Picard-
Tools MergeSamFiles (v1.95) (http://broadinstitute.
github.io/picard/). Variant discovery was performed
using GATK ‘Unified Genotyper’ [61] for each sample
independently with the following parameters -out_mode
EMIT_ALL_SITES -stand_call_conf 5.0 -stand_emit_
conf 5.0 -A BaseCounts -A GCContent -A RMSMap-
pingQuality -A BaseQualityRankSumTest. Afterwards,
we merged each sample gvcf to a single one using
GATK `CombineVariants’ [61] with the following pa-
rameters -genotypeMergeOptions UNIQUIFY –exclude-
NonVariant. We also included in the gvcf the genotype
information of available whole genome data of six
Gorilla beringei beringei, eight Gorilla beringei graueri,
one Gorilla gorilla dielhi, and twenty-three Gorilla
gorilla gorilla samples [30, 31]. The VCF was filtered
with VCFtools [62] to keep only biallelic positions with
DP >3 and quality >30 and without indels.
Genotype likelihoods were directly obtained from

BAM files with ANGSD [32] including four Gorilla ber-
ingei beringei, four Gorilla beringei graueri, one Gorilla
gorilla dielhi, and four Gorilla gorilla gorilla, with the
following parameters and only in the target space:
-uniqueOnly 1 -remove_bads 1 -only_proper_pairs 1
-trim 0 -C 50 -baq 1 -minInd 21 -skipTriallelic 1 -GL 2
-minMapQ 30 -doGlf 2 -doMajorMinor 1 -doMaf 2
-minMaf 0.05 -SNP_pval 1e-6.

Quality control
We evaluated the amount of human contamination in
each fecal library using the HuConTest script [63], as
described previously [44]. The majority of samples have
less than 2% of human contamination, but samples
G348 and G1392 have estimates of human contamin-
ation of 6.7 and 25.1%, respectively (Supplementary
Table S3). These two samples also show extreme values
of heterozygosity (deviating >1 s.d. from mean heterozy-
gosity; Fig. S2). For the identification of individuals and
markers with elevated missing data rates we used the
proportion of the target space covered by at least 4
reads. Individuals with less than 30% of covered target
space (4 reads) were not used for further analysis (G638
and G282).
A principal component analysis (PCA) was performed

to validate that the genotype information obtained for
the case study gorillas was in concordance with previ-
ously published data. We used PCAngsd [64] with the
genotype likelihoods obtained with ANGSD (N = 6484),
including 13 previously published whole-genomes

representative of each know gorilla subspecies [30, 31].
We also obtained a PCA using the GATK genotype calls
after keeping only variants with minor allele frequency
of 0.02 with plink --pca option (N = 6051) [65].

Genetic distance, relatedness and heterozygosity
We used the genotype likelihood information for the
studied individuals to obtain the genetic distance by run-
ning ngsDist in ANGSD [66] with the following parame-
ters: --n_sites 5477 --probs TRUE --pairwise_del. Then,
we constructed an Euclidean distance matrix based on
the genotypes and performed a hierarchical clustering
using the R package ape [67]. We also run PCAngsd
[64] considering only the study gorillas to discard any
possible intra-group structure.
The theta coefficients of kinship (probability of a pair

of randomly sampled homologous alleles are identical by
descent) were calculated using the NgsrelateV2 [68, 69]
on the genotype likelihood obtained with ANGSD [32].
Note that all possible genotype likelihoods, even outside
the target space (N = 226,094), were used since the
coverage of the kinship and neutral markers was
insufficient.
To assess global levels of heterozygosity, the unfolded

SFS (Site Frequency Spectrum) was calculated for each
sample separately, including thirteen gorilla whole-
genomes representative of all gorilla subspecies [30, 31],
using ANGSD [32] and realSFS [70] only in the target
space with the following quality filter parameters:
-uniqueOnly 1 -remove_bads 1 -only_proper_pairs 1
-trim 0 -C 50 -baq 1 -minMapQ 20 -minQ 20 -setMax-
Depth 200 -doCounts 1 -GL 1 -doSaf 1. We used the
human genome (Hg19) to determine the ancestral state.

Association analysis
The genotype calls obtained with GATK were further fil-
tered with Plink [65] to exclude variants considering
their missing rate (−−geno 0.05), minor allele frequency
(−−maf 0.01) and Hardy-Weinberg equilibrium (−−hwe
0.00001). The final dataset consists of 27 samples (13
survivors and 14 non-survivors) and 6852 high-quality
variants. Nominal significance was set at an alpha of
0.05 and a Bonferroni corrected alpha threshold of
7.3x10–6 (0.05/6852) was defined to account for family-
wise error. Associations were tested for by a chi-square
allelic test with one degree of freedom and p-values were
estimated by permutation in plink (plink –assoc –
mperm 10,000) [65].. The p-values were plotted in a
Manhattan plot in R (v3.4.1).
The allele frequency for each group (survivors and

non-survivors) was obtained using the -freq2 option in
VCFtools [62]. Then, we calculated the allele frequency
difference per SNP by subtracting the allele frequency in
non-survivors from the allele frequency in survivors
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(ΔFrequency). We chose a threshold of ±0.2, and plotted
the allele frequencies using R. We also reported the al-
lele frequency differences per SNP considering all sam-
ples (pre-Ebola outbreak: survivors and non-survivors)
and the survivors (post-Ebola outbreak), which results in
more modest allele frequency differences. The fixation
index (FST) between both groups was calculated using
VCFtools –weir-fst-pop option (Weir and Cockerham)
[62] with a threshold at 0.15, and results were plotted in
R. We retrieved markers with α ≤ 0.05 in the association
test and a p-value <0.05 in the permutation test. The
ANGSD software [32] was used to perform a replication
of the association analysis using the following parame-
ters -minQ 20 -minMapQ 30 -doAsso 1 -GL 1 -out
assocGQ_filter -doMajorMinor 1 -doMaf 1 -SNP_pval
1e-6 -minInd 22 -minMaf 0.02. The output of the asso-
ciation analysis are LRT values (Likelihood Ratio Test),
which are chi square distributed with one degree of free-
dom. Since we set a threshold of significance at 95%
confidence, the minimum score to be significant is LRT
= 3.84. In both association analyses, we linked the nom-
inally significant SNPs with their genes (Supplementary
Table S4 and S5). Genes with multiple nominally signifi-
cant SNPs were considered to be potentially more rele-
vant. Subsequently, we compared the overlap of
discovered genes between the datasets (Unified Genoty-
per and ANGSD) in a Venn diagram (Supplementary
Fig. S8) using the R package VennDiagram [71].

Prediction of functional consequences of the significant
markers
We used VEP (v91) [72] for the functional annotation of the
associated SNPs. We retrieved the predicted consequence of
each significant marker found in the potentially related genes
to Ebola immune response, as well as PolyPhen-2 [33], Sift
[73] and C-scores [35]. Associated loci were intersected with
hits in the GWAS catalogue [37] within 5000 bp. We also
performed an overrepresentation test using Panther [74] to
test whether any of the potentially related genes are overrep-
resented in biological or functional categories compared to
the rest of targeted genes with no apparent association with
Ebola. In addition, we mapped previously published RNA se-
quencing data from six tissues (brain, cerebellum, heart, kid-
ney, liver, testis) in two gorilla individuals [36] to the
annotated genes in the human reference genome
(using the Ensembl Release 75 gene models) using
Tophat2 [75], and estimated the gene expression with
htseq-count [76]. Gene expression is reported log2-
normalized, and we counted the number of reads
overlapping the candidate missense mutations to con-
firm their transcriptional activity in gorillas. Values
presented are the cumulative sums of RNA sequen-
cing reads across individuals and tissues.

Microbiome sequencing
16S RNA sequencing reads were processed using QIIME
(v1) (Quantitative Insights Into Microbial Ecology) [77] to
analyze the 16S rRNA. First, paired-end raw reads were
merged using fastq-join from ea-utils package [78]. Then,
with usearch software [79], merged FASTQ reads were fil-
tered (−fastq_trunclen 253 and –fastq_maxee 0.5). Using
QIIME environment, the metadata mapping file was con-
structed and validated (validate_mapping_file.py) and
QIIME labels were added (add_qiime_labels.py). We ap-
plied open-reference OTUs (Operational Taxonomic
Units) picking (pick_open_reference_otus.py). Summary
statistics were computed using biom summarize-table.
The resulting dataset was rarefied to an even depth of
10,000 sequences per extract (6 extracts were excluded in
diversity analysis: G191_5782, G344_5827, G314_5824,
G489_5834, G489_5835, G344_5828). Finally, we ran di-
versity analysis with a sequence depth of 10,000 (core_di-
versity_analysis.py). Taxa abundance quantification and
significance or relative taxa abundance (T-test and p-
values adjusted for multiple testing with Bonferroni-
correction) were computed in R.
Deep sequencing of the DNA library (pre-capture) was

performed as stated above. To remove sequencing
adapters and merge the read pairs, we used Adapter-
Removal v2.2.4 with default settings [80]. We then
aligned the merged sequences to the gorilla reference
genome Kamilah_GGO_v0 using bwa mem [59] to re-
move host DNA. Subsequently we filtered out potential
human contaminant DNA by aligning the unmapped se-
quences to the human reference genome hg19, resulting
in 724,738,878 filtered sequences. MALT v0.4.1
(MEGAN Alignment Tool) [40] was used to characterize
the microbial profile, using all archaeal, viral, and bacter-
ial reference sequences downloaded from NCBI on
06.05.2019. These were indexed using malt-build to
build a custom database. Malt-run was then used with
minimum percent identity (−−minPercentIdentity) set to
95, the minimum support (−−minSupport) parameter
set to 10, and the top percent value (−−topPercent) set
as 1, other parameters were set to default. The resulting
rma6 files were visualized with MEGAN6 [81] and clus-
tered in a Principal Coordinate analysis (PCoA) and
Neighbor Joining Tree analysis according to microbial
composition on the species level (Supplementary Figs.
S14 and S15).
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