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Exploiting Local Temporal Characteristics via
Multinomial Decomposition Algorithm for

Real-time Activity Recognition
Manuel Abbas and Régine Le Bouquin Jeannès, Member, IEEE

Abstract—With the current expansion of Internet of Things
(IoT), tracking human physical activity through wearable devices
is becoming increasingly frequent. A human activity recognition
(HAR) module is needed to localize and classify the patterns
of acquired signals. Although this topic has been a talking
point in the past decades, the trade-off between efficiency,
reliability, and computational complexity is still an open research
challenge. In this work, we propose a novel recognition process,
based on online feature vector computation followed by a
multinomial decomposition algorithm (MDA). Specifically, the
temporal characteristics of performed activities are encoded
over local segments. Afterwards, a low-cost algorithm divides
the multinomial classification into different stages, where the
encoded patterns feed a neural network at each stage to classify
the corresponding segment. The proposed approach has been
evaluated on five public datasets and compared with a set of
state-of-the-art methods. Experimental results show that with
a few hundreds of floating point operations per second (flops),
our solution can achieve competitive performance in terms of
accuracy. The effects of the sliding window length, the sampling
frequency, the size of the training set, and overfitting have been
studied. A prototype was developed to display the behavior of
this solution in real world conditions.

Index Terms—Human activity recognition, wearable sensors,
local temporal characteristics, online computation, multinomial
decomposition, computational complexity.

I. INTRODUCTION

HUMAN activity recognition (HAR) is a wide field of
research, and is currently one of the most challenging

topics. The goal is to reveal and predict the successive
movements of a subject, using a 4-step process, namely (a)
data acquisition, (b) data segmentation, (c) feature extraction,
and (d) classification. The identification of human activities
serves a broad range of applications in different domains. For
instance, HAR-based techniques are an instrument for assisted
living approaches and smart homes [1]. Moreover, monitoring
certain activities of daily living (ADLs) is the cornerstone of
healthcare applications [2]. Besides, motion detection is also
used in security and surveillance systems [3], in order to assist
human operators and improve their work.

HAR has been a trending research area in the past decades,
and continues to be an active topic [4], [5]. It can be divided
into two branches, namely (i) wearable sensor-based systems
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[6] and (ii) ambient sensor-based systems, using cameras
for data acquisition [7]–[9]. The former are light-weight
devices consisting of miniaturized sensors like accelerometers,
gyroscopes, magnetometers, and barometers. Furthermore, soft
wearable sensors are frequently employed in the context of
gesture recognition [10]. They are a solution for gait analysis
[11], ensuring long-term monitoring, as well as movement
tracing and rehabilitation [12]. In terms of privacy, wearable
trackers do not reveal the subject’s identity, thus have an
advantage over the second category. Moreover, since they are
body-worn, they supply data anywhere continuously, unlike
ambient sensors which suffer from visibility issues and are
shortened to a certain environment. Besides, camera-based
HAR has its limitations like diversity in camera views,
variety in environmental conditions, and variety of human
subjects [13]. Ideally, the activity is identified regardless the
environment and/or the performing person. Hence, wearable
sensors are considered in our study.

Now, inertial measurement units (IMUs) and magnetic
angular rate and gravity (MARG) sensors are usually
employed for inertial human motion tracking [14]. One
important factor influencing the development of a recognition
process is the power consumption of the device. It is
worth noting that the current consumed by a gyroscope
is huge compared to other sensors [15]. Furthermore, the
reliability of a magnetometer in indoor environments could
be questionable, especially with the existence of artificial
fields provided by different sources like smartphones and
electrical materials. Another important factor is the sampling
frequency (Fs) of the sensors. While a lower sampling
frequency deteriorates the shape of the windowed signal,
a higher one increases the computational load of the
system and could not provide low latency for real-time
prediction. A third factor is the length L of the window
over which data are processed to predict the performed
activity. Generally, HAR systems should automatically localize
the targeted ADLs under unsupervised conditions to satisfy
the aforementioned applications. Therefore, while larger
windows may inaccurately delimit the targeted activity
by containing unrelated movements, smaller windows may
exclude informative segments for the recognition.

Considering all the aforementioned elements, we propose
a low-cost and highly accurate acceleration-based HAR
approach. Although the number of degrees of freedom
(DOF) is reduced after excluding the gyroscope and the
magnetometer from the acquisition unit, data acquired with
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micro-electromechanical system (MEMS) accelerometers can
be exploited adequately to classify the different patterns
representing the ADLs. For an accurate localization, the
algorithm makes a decision each second. Thanks to an efficient
online computation, the feature vectors are constructed at a
low cost. These vectors encode the time characteristics of
acceleration signals over local segments. Afterwards, they feed
a novel classification unit, called multinomial decomposition
algorithm (MDA), which divides the multinomial classification
into subdivisions, creating a tree structure architecture.
Specifically, the windowed data are labeled at each stage
using a Neural Network (NN) until they reach a leaf. We
will demonstrate the effectiveness of this low-cost approach,
which requires few floating point operations per second (flops).
In this paper, we address some challenges and overcome the
potential drawbacks of HAR, including the effect of Fs and
L on the accuracy and the computational complexity of the
system. The main contributions of this work are fourfold:

1) Proposal of an online feature vector computation, in
order to encode the temporal characteristics of ADLs
over local segments

2) Proposal of a novel low-cost classification process, based
on multinomial decomposition

3) Analysis of sampling frequency and sliding window
length effects on the accuracy

4) Development of a prototype which operates in real-time
under real world conditions.

The remainder of the paper is organized as follows. Section
II briefly reviews the related studies and describes the problem
formulation, by explaining the logic behind the feature
extraction and the classification strategy. The full process of
the HAR mechanism is introduced in detail in section III,
including the implementation of an efficient online feature
computation, as well as the novel classification model, namely
MDA. Then, we present an exhaustive performance evaluation
in section IV before describing the developed prototype in
section V and concluding the paper in section VI.

II. TOWARDS A ROBUST HAR SYSTEM

A. Related Work

Wearable sensor-based HAR has been a talking point in the
past decades, where many studies have dealt with this research
topic. This section reviews and discusses its different aspects.
Output classes: the output of a HAR module depends on the
application. For instance, some studies considered a relatively
low number of classes [18], [19], like level walking, going
upstairs/downstairs, and staying still. Others have targeted a
large number of ADLs (up to 16 classes) [20], [21], with
activities like brushing teeth and cutting food. Nonetheless,
human beings might perform a wide range of activities or
movements in their daily routine, which are not considered
by the respective models developed in these studies. Having
an additional class to filter out/exclude ADLs that are not of
interest is needed, but has received little to no attention in the
literature [18]–[21], [25], [29]. Even though state-of-the-art
methods have achieved impressive accuracy in clinical trials,
their performance will drop in free-living conditions.

Wearable sensors placement: several body placements have
been considered in the literature, such as the waist, the wrist,
the ankle, and so on. Moreover, multi-positional body sensing
was also considered [22]. The body trunk, particularly the
waist or the neck, is the best position while employing one
sensing device when it comes to reliability [18], [23], [37].
Additionally, the trunk acceleration patterns are meaningful for
post-processing units (like postural transitions for example),
unlike the wrist or the ankle which generate complex and
random movements.
Feature extraction and classification: the majority of HAR
modules are based on machine learning (ML) techniques [24].
Most of these methods rely on the extraction of handcrafted
features from acquired data, which feed a classifier to make
a decision. In the literature, time-domain and frequency-
domain features were proposed such as mean, median absolute
deviation, interquartile range, entropy [25]–[27], as well as the
Fast Fourier Transform (FFT) coefficients and spectral power
[28], [29] to name a few. These features feed a classifier to
predict the activity over a window. Some low-cost classifiers,
like decision trees (DT) and support vector machines (SVM)
with linear/quadratic kernel, may be preferred to memory-
based ones such as k-nearest neighbors (KNN), which
raise the computational complexity of the system. These
features, which are computed globally over windowed signals,
encode the statistical patterns of these signals but not their
temporal structures, which may lead to undesirable confusion
between different classes. On the other hand, deep learning
techniques were also implemented to develop HAR systems,
where feature extraction is done automatically from raw
signals to learn and make intelligent decisions. For instance,
convolutional neural networks (CNN) [30], [33] and recurrent
neural networks (RNN) [31] were proposed. The long short-
term memory (LSTM) network, which is a type of recurrent
networks, was also developed for this purpose [32]. LSTM
addresses the vanishing/exploding gradient problem that can
happen with RNNs. However, its reliability is affected by
the size of the training set. Therefore, a third architecture of
recurrent networks has been proposed, namely gated recurrent
unit (GRU) network, which (i) is faster than LSTM, and (ii)
can outperform it [34]. More recently, Chen et al. proposed
a feature fusion technique [35]. It consists of two separate
modules: (a) handcrafted features followed by fully connected
layers, and (b) automatic feature learning (deep learning). Both
outputs are then concatenated to predict the activity.
Sampling frequency Fs and window length L: these
parameters received little attention in previous studies. These
two quantities, which determine the number of points in time-
series (acceleration signals), affect the feature computation
(handcrafted features or those learned automatically), thus the
accuracy of HAR systems.
Computational complexity and embeddability: computational
complexity is a key-point to consider. According to the limited
power resources of a micro-controller, the feature computation
and the selected classifier should require a reasonable number
of flops. The computation of certain mathematical operations
like exponential needs a software library instead of a hardware
implementation like the addition or the multiplication. This

 . 



ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIM.2021.3108235, IEEE
Transactions on Instrumentation and Measurement

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. XX, NO. XX, XXXX 2021 3
 

M
o

ve
m

en
t

Inactive

Active

Orientation

Remaining

Cyclic
Walking

Jogging

Transient

Sitting down

Standing up

Non-postural

Intensity

Fig. 1. The steps of the proposed HAR approach, starting from data
acquisition to predict the activity (blue leaf) or exclude it (red leaf).

might increase the latency of the system. The trade-off
between efficiency and computational complexity remains an
open research challenge.

B. Problem Formulation

The proposed approach aims at analyzing (i) the postural
transitions, (ii) cyclic/recurrent movements, and (iii) inactivity
periods. Hence, our method considers basic ADLs, often
encountered in daily routine of people of diverse profiles,
namely (1) sitting down (walk-to-sit and stand-to-sit), (2)
standing up (sit-to-stand and sit-to-walk), (3) lying down
(sit-to-lie and stand-to-lie), (4) rising up (lie-to-sit and lie-
to-stand), (5) walking (same level, climbing up, climbing
down), (6) jogging, and (7) rest (standing, sitting, lying).
For real-time recognition, a sliding window cuts the signals
to make a decision, which may result in some windowed
data representing random movements occurring in free-living
conditions but not targeted by the system (section II-A), like
the beginning/end of a cyclic activity (i.e. walk-to-stand, stand-
to-walk, start/stop jogging). These movements constitute an
eighth class called (8) others to be filtered out.

The goal behind the proposed model is to regroup the
targeted activities into different clusters at each level, creating
a tree structure classification process. This strategy aims at
increasing the discrimination power of the system, and thus
reduces the confusion between different output classes. Fig.
1 displays the proposed subdivision to label the movement.
Firstly, the ADLs, which constitute the output of the proposed
approach, are subject to a first-level classification into (i)
inactive (i.e. rest) and (ii) active. If active, the second-level
category is either (ii-a) change of trunk orientation (lying-
down/rising-up), (ii-b) sudden change of movements intensity
(rapid change in acceleration level), and (ii-c) the remaining
movements. The remaining ADLs can be separated into cyclic
(i.e. recurrent) and transient movements. ADLs reaching the
cyclic node are either walking or jogging. The weightlessness
state [36], occurring when the human body leaves the floor (for
a short time) while jogging, and the variability of acceleration
signals, are two useful quantities to discriminate between
these two ADLs at this stage. Lastly, ADLs reaching the
transient node are either sitting down, standing up, or some
random non-postural transition. The up-down movements are
symbolized by a sine wave in acceleration magnitude ||a||.

This phenomenon is scientifically interpreted in Appendix A.
Moreover, the acceleration component directed towards the
trunk fluctuates when the subject sits/stands. This is not the
case for other similar non-postural transitions. Fig. 2 illustrates
the acceleration patterns of sitting-down and standing-up.

III. MATERIALS AND METHODS

This section presents the full process of the proposed HAR
mechanism. It first begins by the description of local features
to be extracted from acceleration signals. Next, an online
feature vector computation approach is proposed to reduce
the complexity of the system. Finally, the novel multinomial
decomposition technique is detailed, which proves to be a low-
cost and highly accurate solution. Throughout the rest of the
paper, the acceleration magnitude ||a|| is defined as follows:

||a|| =
√
a2X + a2Y + a2Z (1)

where aX is the vertical component (when the subject is
standing), aY is the lateral component, and aZ is pointing
towards the human’s trunk.

A. Encoding Temporal Structures

To employ the time characteristics of an activity, the first
and second order moments of its corresponding time-series
are considered, namely the mean value (µ) and the standard
deviation (SD) σ:

µ =
1

n

n∑
i=1

Vi (2)

σ =

√√√√ 1

n

n∑
i=1

(Vi − µ)
2

(3)

where V is an acceleration time-series of length n, and Vi its
i-th element. Since the standard deviation is proportional to
the power of the signal, it quantifies the movements intensity.
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Fig. 2. The stand-to-sit and sit-to-stand (dark blue) are represented by two
opposite sine waves in acceleration magnitude ||a||. The aZ component,
directed towards the human trunk, fluctuates during these two transitions.
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These two variables, when computed globally over the window
as a whole (from end to end), determine the statistical patterns
of a signal. Now, to encode the temporal structures of the
windowed data, we computed these two features over local
segments. Specifically, aX and aZ are divided into equal non-
overlapping sub-segments of 1-second length to calculate their
mean values. Meanwhile, ||a|| is divided into 500-ms segments
to calculate its local mean values. Successive local mean
values reveal, in some way, the shape/pattern of the signal.
Hence, µ is computed over smaller fragments for acceleration
magnitude (500 ms for ||a|| vs 1 s for aX and aZ), since
it contains faster transitions, as shown in Fig. 2 (fast sine
wave transition in ||a|| vs slower deviation in aZ). As for the
intensity of movements, local SD values are calculated over 1-
second segments of ||a||, seeing that σ is sensitive to random
fluctuations over very small sub-segments (like 500 ms), which
might raise the confusion between the output classes.

Consequently, the succession of these mean values reveals
the trunk orientation, the up-down movements, and locates
the weightlessness states and the deviation in a signal.
The succession of SD values detects the sudden change in
movements intensity and estimates the variability of time-
series. As discussed in sub-section II-B, these parameters are
important to increase the discrimination power of the system.
The ambiguity between different activity classes is expected
to decrease considerably using the proposed local features.

B. Online Computation

The goal of this sub-section is to describe the online feature
extraction technique, i.e. the calculation of local mean and SD
values in parallel with data acquisition. Fig. 3 illustrates the
process of online feature computation for a given acceleration
component. The idea is to store data in m buffers ζ [i] of
length n, which represent the local segments over which the
features are calculated, and to update the elements of a vector
χ, which will be used to create the feature vectors when

Propagation   \zeta and \chi 
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Fig. 3. The process consists of m buffers ζ[i] of length n. The red arrows
indicate the propagation of acquired data-points. For each new read value ν,
the ζ[i]j values are shifted by one sample, ζ[1]1 is excluded, and the elements
χi are updated as indicated in the figure.

Algorithm 1 Online Feature Computation
1: Define: L, Fs, counter = 0
2: Initialize: Λ[i], Υ[i], λ, ρ are set to 0
3: while true do
4: Read acquired acceleration value Vi
5: ν ← Vi
6: Shift values Λ

[i]
j ; Λ

[m]
n ← ν

7: λi ← λi − Λ
[i]
1 + Λ

[i]
n

8: ν ← V 2
i

9: Shift values Υ
[i]
j ; Υ

[m]
n ← ν

10: ρi ← ρi −Υ
[i]
1 + Υ

[i]
n

11: counter ← counter + 1
12: if counter = Fs then
13: Calculate µi and σi according to Eqs. (4) and (5)
14: counter ← 0

making a decision. With each new acquisition, i.e. when the
accelerometer provides a new data-point, a new value ν is
introduced by shifting ζ [i]j as indicated in Fig. 3, and the values
χi are updated: χi ← χi − ζ [i]1 + ζ

[i]
n . Now, let us detail the

aforementioned operations.
Mean values: we consider a sliding window of length L

and a sampling frequency equal to Fs. Moreover, buffers Λ
[i]
j

are considered to store acquired acceleration data-points Vi.
λi =

∑n
j=1 Λ

[i]
j is updated with each new acquisition. In this

case, we get:

ν ←→ Vi ; ζ
[i]
j ←→ Λ

[i]
j ; χi ←→ λi

For x-component and z-component, m = L and n = Fs,
whereas for ||a||, m = 2L and n = Fs

2 . Consequently, at each
decision, the mean value of the i-th segment is computed based
on λi and c = 1

n (Eq. (2)):

µi = c× λi (4)

SD values: in addition to Λ
[i]
j , new buffers Υ

[i]
j are considered

to store V 2
i values. Therefore, ρi =

∑n
j=1 Υ

[i]
j is updated with

each new acquisition. Hence, we get:

ν ←→ V 2
i ; ζ

[i]
j ←→ Υ

[i]
j ; χi ←→ ρi

Here, ||a|| is involved, with m = L and n = Fs. Consequently,
at each decision, the SD of the i-th segment (i-th second) is
calculated based on ρi, λi, and c (Eq. (3)):

σi =
√
c(ρi − cλ2i ) (5)

TABLE I
A SUMMARY OF THE MATHEMATICAL SYMBOLS (ONLINE COMPUTATION)

Symbol Description
Vi Raw acceleration value (acquired data)

Λ
[i]
j A buffer to store raw acceleration values Vi

λi =
∑n

j=1 Λ
[i]
j Sum of acceleration values (ith second)

Υ
[i]
j A buffer to store squared acceleration values V 2

i

ρi =
∑n

j=1 Υ
[i]
j Sum of squared acceleration values (ith second)

µi, σi Mean and SD value of the ith second respectively
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𝜇 of 𝑎𝑍  𝜎 of ‖𝑎‖ 

Fig. 4. The 5L extracted features using online computation.

TABLE I summarizes the mathematical symbols, and
Algorithm 1 provides the pseudo-code of this process.

C. Multinomial Decomposition Algorithm

With online extraction, 5L local features are calculated
automatically in parallel with data acquisition, then stored in
an array F . For instance, with a 5-second window (L = 5),
25 features are computed. Suppose that Fi is the ith element
of F , the extracted features are as follows (see Fig. 4):
• µ values of aX over each second in the L-second sliding

window (denoted by F1→L, i.e. first L elements of F )
• σ values of ||a|| over each second in the L-second sliding

window (denoted by FL+1→2L)
• µ values of ||a|| over each 500 ms in the L-second sliding

window (denoted by F2L+1→4L)
• µ values of aZ over each second in the L-second sliding

window (denoted by F4L+1→5L)
We now introduce the MDA, which exploits the
aforementioned features to predict ADLs.
ML Classifier: an artificial Neural Network (NN) is called
at each level of the tree-structure classification process to
make a prediction, until it reaches a leaf. This NN consists
of one hidden layer of 10 neurons, with a customized
transfer function h′(x) detailed in Appendix B. It is derived
from the hyperbolic tangent sigmoid h(x), after introducing
an expansion of exponential to reduce its computational
complexity. Fig. 5 illustrates both functions, with the

Fig. 5. Hyperbolic tangent sigmoid (blue) vs customized function (orange).

Signal 

Inactivity Transient Cyclic 

Rest 

Intensity Orientation None 

Lying down 

Rising up 

Transitions Recurrent 

Sitting down 

Others 

Standing up 
Others 

Walking 

Jogging 

S1 

S2 

S3 

Fig. 6. The proposed multinomial decomposition algorithm, consisting of
three stages S1 → S3, which predicts the performed ADL at a low-cost.

corresponding gap being displayed using double head arrows.
Although the exponential increases faster as x increases, both
curves have similar shapes and thus produce similar results
(in terms of classification). It was experimentally shown
(using parallel loops) that the logarithm operation is almost
25 times more complex than a multiplication. Finally, the
output layer consists of a linear function.
Classification by stages: MDA follows the logic of section
II-B, and is illustrated, in its optimized form, in Fig. 6. The
SD values of ||a|| (FL+1→2L) feed the predefined NN to
assign a first-level label to the windowed data (S1), namely
(I) Inactivity, (II) Cyclic, and (III) Transient. (I) is a leaf,
and its corresponding output is “rest”. Next, mean values
of aX and SD values of ||a|| (F1→2L) feed the NN to
assign a second-level label (S2), namely (a) Orientation, (b)
Intensity, and (c) None. The ADL reaching (a) is either “lying
down” or “rising up”, depending on the direction of the
transition, whereas that reaching (b) is filtered out. Finally,
the third-level stage (S3) depends on the previous attributes.
For ADLs belonging to (II-c), a third NN, whose inputs are
the mean and SD values of ||a|| (FL+1→4L) is applied, to see
whether the subject is “walking” or “jogging”. As for (III-c),
the inputs of the third NN are the SD values of ||a|| and the
mean values of aZ (F2L+1→5L), to see whether the subject
is “sitting down” or “standing up”, or if the activity is to be
excluded (non-postural transition).

IV. PERFORMANCE EVALUATION

To evaluate the performance of the proposed HAR approach,
we resorted to five public datasets. Our method is compared
with state-of-the-art techniques, particularly (a) a broad range
of widely used handcrafted features, and (b) shallow learning
(SL) and deep learning (DL) techniques to assess the efficiency
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TABLE II
THE CHARACTERISTICS OF FIVE PUBLIC DATASETS IN TERMS OF
EMPLOYED ACCELEROMETERS, SAMPLING FREQUENCY Fs , AND

PLACEMENT OF THE DEVICE

Dataset Accelerometer Fs Placement
FallAllD [37] LSM9DS1 238 Hz Neck, Waist
SisFall [38] ADXL345 200 Hz Waist

mHealth [39], [40] Shimmer2 50 Hz Chest
HAPT [41] Galaxy S2 50 Hz Waist

UMAFall [42] MPU-9250 20 Hz Chest, Waist

of MDA as well as that of the local temporal features. The
experiments are detailed in the next sub-sections.

A. Experimental Frame

Five public datasets (see TABLE II) were used in the
experiments. They employ different accelerometers with
different sampling rates Fs. We resorted to these datasets
to run extensive performance evaluations in order to study
different aspects of a HAR system. Note that, for the five
datasets, the components are adjusted in such a way that aX
represents the vertical component (oscillating around 1 g when
the subject is walking) and aZ is pointing towards the body.
The corresponding data were segmented as follows.
FallAllD: the seven targeted classes (from (1) to (7))
are selected from this dataset. Moreover, some movements
like falls, jumping, start/stop walking/jogging were selected
randomly to constitute the eighth class “Others”. These
movements could occur in free-living conditions, but are
to be filtered out by the algorithm. For transient ADLs,
acceleration signals were segmented using 7 windows: the one
centered on the transition moment, and six others shifted by
±125/±250/±500 ms. Afterwards, 5 out of 7 windows were
chosen randomly. As for cyclic ADLs, 5 random windows
were chosen to cut raw data. These operations resulted in
9100 samples consisting of eight classes: 1080 as “sitting
down”, 1080 as “standing up”, 720 as “lying down”, 720 as
“rising up”, 1130 as “walking”, 520 as “jogging”, 1095 as
“rest” (inactivity), and 2755 non-targeted activities (others).
The classifiers were first evaluated on this dataset using 10-fold
cross validation, then trained on this dataset and tested on the
remaining datasets. This choice was made since (i) FallAllD
covers a wide-range of scenarios for the same ADL (like
stand-to-sit and walk-to-sit for “sitting down” for example),
(ii) the employed accelerometer is configured with the highest
Fs (so data can be easily down-sampled), and (iii) this dataset
is relatively larger to train most of DL models.
The remaining datasets: these datasets were used for
validation. Here, only the seven targeted classes were
considered. 3 windows were selected for each ADL. For
transient activities, the centers of the 3 selected windows were
randomly set between the transition moment ±500 ms. For
cyclic activities, the windows were selected randomly over
the period of these movements.

Now, the proposed solution was first tested to quantify its
performance (section IV-B). Next, we tested the following
well-known handcrafted features from time and frequency
domains, which have been shown to be effective [25], [28],

[29], [40]:
time-domain: mean, SD, median absolute deviation,
maximum, minimum, energy, interquartile range, and entropy
for each of the three components; the first four autoregressive
coefficients of ||a||; correlation coefficients between each pair
of two components; signal magnitude area.
frequency-domain: largest frequency component, weighted
average, skewness, kurtosis, and energy for each component;
angle between each pair of two components.
Afterwards, the classification was done using:
• classical classification strategy with one NN using the

proposed feature vectors (section IV-C1).
• 9 shallow learning classifiers, namely multilayer

perceptron (MLP), support vector machine (SVM), k-
nearest neighbors (KNN), random forest (RF), gradient
boosting machine (GBM), decision tree (DT), naive
Bayes (NB), linear discriminant analysis (LDA), and
quadratic discriminant analysis (QDA).

• CNN using raw acceleration components.
• simple RNN, LSTM, and GRU using raw data.
• stacked autoencoder (SAE) of dense layers.
• feature fusion (FF) as in [35].

A comparative study (section IV-C) between the proposed
HAR solution and the aforementioned techniques is conducted
in terms of accuracy, computational load, overfitting, and
training on relatively small datasets. It is worth noting that the
tests were done using a set of different sampling frequencies
Fs and window lengths L to understand their effect on
the discrimination power of each classifier and ensemble of
features. Finally, the embeddability of MDA is discussed
(section IV-D). For reproducibility purposes, the architectures
of DL models and the hyper-parameters of SL classifiers are
provided in a pdf file attached to this manuscript.

B. MDA Performance Assessment

In this sub-section, data of FallAllD were used to validate
the proposed approach. As indicated before, the achieved
accuracy is reported using:
- a set of Fs ∈ [20, 40, 60, 100, 238] Hz
- a set of L ∈ [2, 3, 4, 5, 6] s
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Fig. 7. The heat map consisting of the achieved accuracy (%) for each (Fs,
L) pair after applying MDA.
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Fig. 8. The performance of MDA in terms of precision and recall for each
targeted ADL using 1-vs-all strategy.

Hence, data were down-sampled, segmented using different
window lengths, then cross-validated into 10 folds. The
accuracy (%) for each (Fs, L) pair is illustrated in the heat
map (see Fig. 7). It is clear that larger windows achieve
higher accuracies (the color becomes lighter), since longer
temporal structures are being encoded, thus more informative
local features are available in the feature vectors. Moreover,
the accuracy increases by enlarging Fs, but becomes somewhat
saturated for very high frequencies (≥ 100 Hz). MDA attains
high accuracies (around 97-98%) which are quite satisfactory
for a broad range of applications, proving its efficiency in
terms of reliability. To assess the influence of the output
class on the performance of MDA, precision and recall were
calculated as displayed in Fig. 8. These two metrics have
the lowest values (between 0.94 and 0.96) when it comes to
sitting down and standing up. Now, MDA is highly sensitive to
inactivity periods (highest recall) and is highly precise when
it comes to cyclic ADLs.

C. Comparison with State-of-the-Art Methods

1) One stage of 8-class classification: the proposed feature
vectors, i.e. local mean and SD values, are concatenated to
form one vector of length 5L, which constitutes the input
of a NN with one hidden layer of 10 neurons. This is the
case of traditional ML methods, where extracted features feed
one single classifier. In this case, the accuracy drops from
98.03% to 95%. This proves the added-value of the proposed
architecture of MDA. Encoding the temporal characteristics is
valuable, since the achieved accuracy of 95% is still relatively
high, but the way of interpreting them plays a huge role in
improving the performance.

2) Deep learning vs Shallow learning: the performance
of DL models, especially recurrent ones, depends on data
size. Therefore, the considered DL classifiers were trained
and tested on the same 9100 samples, i.e. training and test
sets (TrSet and TeSet) were the same. Table III illustrates
the accuracy of each model. It is obvious that the accuracy
of RNN is poor. The same goes for LSTM, even though
its performance is somewhat better. This was expected as

TABLE III
THE ACHIEVED RESULTS OF DL METHODS WHEN TRAINED AND TESTED

ON THE SAME DATA

Model CNN RNN LSTM GRU SAE
Results 96.89% 45.21% 83.31% 97.37% 97.82%

explained in section II-A. Simple RNN may suffer from
vanishing/exploding gradient problem, while LSTM needs
larger datasets to learn properly. However, GRU avoids
both problems. CNN and SAE were also able to train,
displaying quite high performance. Therefore, in a second
step, only CNN, GRU and SAE were kept and a 10-fold
cross validation (10-CV) was applied on FallAllD. In this
step, the aforementioned nine SL techniques were also tested
for comparison, considering the fifty handcrafted features
extracted from windowed data (section IV-A). Additionally,
the FF technique was also considered by combining GRU
with handcrafted features. All these classifiers were trained
then tested using all (Fs, L) pairs. Table IV illustrates
the highest accuracy achieved by each model (10-CV on
FallAllD), where values exceeding 98% are underlined. The
proposed MDA is among the best performers, by providing
competitive results. SAE is the worst DL model in terms
of performance. As expected, FF outperforms GRU since it
adds another dimension to the recognition process. As for SL
models, KNN and GBM are the best performers with excellent
accuracies.

Fig. 9 illustrates the variation in accuracy while fixing
Fs and increasing L (left graph), and while fixing L and
increasing Fs (right graph) for MDA, DL models and the two
best SL performers (GBM and KNN). It is clear that very tight
windows are not suitable for HAR. Now, for CNN, GBM,
and KNN, larger windows increase the accuracy. However,
for reccurent DL networks (GRU) and SAE, the ideal L is
somewhere in the middle, since relatively larger windows
make the accuracy decrease. Furthermore, in general, the
accuracy increases while increasing Fs, except for SAE, since
its accuracy is saturated around 89%. This is logical since
higher Fs provides more data-points in time-series. Hence, the

Fig. 9. The achieved accuracies (%) when (i) Fs is fixed and L is variable
(left graph) and (ii) L is fixed and Fs is variable (right graph).
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TABLE IV
THE ACHIEVED ACCURACY OF (I) 10-FOLD CROSS VALIDATION ON
FALLALLD AND (II) VALIDATION ON THE REMAINING DATASETS

TrSet FallAllD
TeSet 10-CV SisFall mHealth HAPT UMAFall
MDA 98.03% 97.75% 96.95% 94.12% 92%
CNN 96.72% 70.56% 97.26% 90.61% 84.64%
SAE 90.8% 71.75% 91.41% 82.78% 85.79%
GRU 95.96% 83.54% 95.21% 94.15% 90.07%
MLP 91.26% 40.28% 72.71% 34.18% 68.7%
SVM 94.44% 38.03% 70.43% 46.46% 63.74%
KNN 99% 53.5% 81.84% 46.7% 58.77%
RF 95.82% 54.77% 87.71% 44.89% 61.43%

GBM 99.27% 51.75% 77.39% 44.56% 61.08%
DT 91.01% 42.84% 66.74% 44.06% 38.56%
NB 75% 11.12% 65.97% 36.4% 11.08%

LDA 83.4% 34.63% 83.26% 69.02% 44.22%
QDA 89.51% 23.68% 11.08% 21.25% 11.43%

FF 96.84% 58.84% 91.19% 55.22% 76.11%

pattern of signals delivers better knowledge to the machine.
Note that, for SL models, the accuracy is somewhat the same
for Fs ≥ 40 Hz. It is worth mentioning that it has been
already shown [37] that deeper CNNs are required for higher
sampling frequencies, since the features extracted by the first
layer is more local and thus a deeper architecture is needed
to abstract them. This examination is important to choose the
best configuration for a HAR system.

3) Overfitting: the overfitting phenomenon occurs
frequently in ML. If the learning corresponds too closely to a
particular dataset, it may fail to fit additional data or predict
future observations accurately. Thus, the choice of extracted
features and the classifier is delicate. Since 10-fold cross
validation may not reveal overfitting, seeing that training and
testing are done on data from the same sensing unit, same
subjects, and under the same conditions (same clinical trial),
we suggest another experiment. The aforementioned models
were trained on FallAllD, then tested on the remaining
datasets to assess their performance. Table IV illustrates
the accuracy for each model on each dataset, where values
exceeding 90% are in bold. In general, SL methods were
exposed to overfitting when tested on completely unseen
data. This is obvious since the handcrafted features (listed in
section IV-A) were extracted globally from windowed data
instead of exploiting temporal locality of signals. Hence, they
reflect the statistical patterns of a signal without taking into
consideration its temporal structure. Moreover, large feature
vectors may mislead the machine. When it comes to DL,
recurrent networks are more robust. This is also expected
since they learn and remember over time sequences, contrarily
to CNN for example, which exploits the spatial correlation of
data. Finally, MDA avoids overfitting since it encodes local
temporal characteristics, and thus provides much better results
than most of the other approaches. It is worth mentioning
that results on mHealth are relatively higher. The detection
of recurrent movements and inactivity periods is easier than
that of transitions. Besides, MDA and GRU achieved the
lowest results on UMAFall since Fs is somewhat low (20
Hz). In conclusion, high accuracies may not always reflect
the behavior of the system in real world conditions.

4) Computational Cost: ultimately, we measured the
computational time of the proposed algorithm (MDA), DL
models, and the top two SL performers. We ran a Python
3.6 implementation of the algorithms on an Intel(R) Xeon(R)
Gold 5118 2.3-GHz processor with 64 GB RAM. Table V
illustrates the elapsed time during the training phase and
feature extraction + prediction phase on 9100 samples. KNN
is the fastest when it comes to training, since it only places
the labeled vectors in some metric space. However, classifiers
are trained offline. Hence, this phase is not related to the
latency of the system. On the other hand, it is clear that MDA
provides the fastest response when it comes to predicting the
ADL.This response is negligible compared to most of the other
techniques. With the efficient online computation technique
and the tree-structure classification process, the computational
cost decreases drastically compared to the other techniques.
Meanwhile, the computational load of the handcrafted feature
extraction and that of recurrent network are huge. Even though
GRU seems suitable for HAR and may achieve satisfactory
results (see previous sections), its complexity and high latency
are major drawbacks. It is worth mentioning that the resident
set size (RSS), the virtual memory size (VMS), and the
number of page faults (pFault) vary between [89.91, 89.96]
MB, [99.95, 100.04] MB, and [29206, 29234] respectively,
when MDA makes a prediction, depending on the number
of accessed stages (S1, S2, and S3). With NN models being
loaded, the memory usage before launching MDA is defined
by RSS = 85.93 MB, VMS = 91.95 MB, and pFault = 26638.

D. Embeddability

The elapsed time to extract features and make a prediction
is useful to evaluate the relative computational cost of the
approaches. However, it does not reveal the ability of being
embedded in wearable devices, seeing the limited power
resources of a micro-controller. Consequently, Appendix
C shows in detail the number of operations required at
each stage of MDA. Since α = β = γ = 1
flop (micro-controllers featuring FPU single precision), the
computational complexity is equal to Ξ = 12d + 11k +
30 flops, where d and k are the length of feature vector
and the number of output classes respectively. Suppose
that L = 5, the complexity of each stage (leaf) is:

{‘S1’: 123, ‘S2’: 183, ‘II-c’: 232, ‘III-c’: 243}
−→ 123 flops (rest) ≤ Ξ ≤ 549 flops (transitions)

With only few hundreds of flops, MDA is able to provide a

TABLE V
THE TIME NEEDED (IN S) FOR TRAINING, FEATURE EXTRACTION, AND

PREDICTION.

Method Training Feature Extraction + Prediction
MDA 15.12 s 0.173 s
CNN 34.16 s 2.54 s
SAE 10.46 s 0.55 s
GBM 107.13 s 23.018 s
KNN 0.55 s 24.235 s
GRU 4909.2 s 26.12 s

LSTM 4991.3 s 29.17 s
FF 4965.4 s 26.22 s

 . 
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prediction. Note that these three types of operations are done
in one cycle using a hardware implementation (which is almost
negligible), without any need for a software library (the case
of exponential and logarithm for example).

V. PROTOTYPE

A prototype was developed to illustrate the behavior of
the proposed HAR system in real world conditions. The
corresponding device was developed by RF-Track society in
Cesson-Sévigné, France. LIS3DH from STMicroelectronics
is the MEMS 3D accelerometer. It has dynamically user
selectable full scales of ±2g/±4g/±8g/±16g and it is capable
of measuring accelerations with output data rates ranging
from 1 Hz to 5.3 kHz. It provides a 16-bit output interface.
Additionally, it provides a data rate configuration of {1, 10,
25, 50, 100, 200, 400} Hz and {1.60, 1.344, 5.376} kHz. Raw
data are pre-processed by the ultra-low-power micro-controller
STM32L431 from STMicroelectronics (with FPU) and saved
on a micro SD card for further analysis. Each component of
the 3D accelerometer output is multiplied by 4

16384 to convert
it to g units.

As previously mentioned, a decision is taken every second
by the micro-controller. Once connected to an electronic
device like mobile phone or tablet, and thanks to a developed
mobile application, the user can display the performed ADLs
instantaneously. The device sends immediately the label of the
predicted activity to the electronic device. Now, if a decision
is made each second, a total of 86400 predictions are done
under 24 hours. With 98% accuracy (which is quite high), 1728
windows are misclassified if we want to consider the ADL of
each sliding window. However, the goal of a HAR system
in real world conditions is the accurate localization of ADLs
(postural transitions and cyclic movements) for an ideal post-
processing, and not blind recognition. Therefore, to ensure a
robust output, the application applies a voting technique on
the last three outputs after each prediction. The result of this
operation is displayed on the screen. For example, if {(5), (6),
(5), (5), (1), (1)} is the list of decisions:

{(5), (6), (5)} → display (5) : Walking

{(6), (5), (5)} → display (5) : Walking

{(5), (5), (1)} → display (5) : Walking

{(5), (1), (1)} → display (1) : Sitting down

Note that, if the input of this voting technique is three
different labels, or if the windowed data is filtered out, the
screen shows a dash (—). A subject has worn the device
for 1 minute and 3 seconds. A tool has been developed in
MATLAB in order to show the acquired signals using Time
Scope, to apply the proposed algorithm, and to illustrate
the label of the activity as previously described. A video
displaying this process is attached to this manuscript. With a
4-second sliding window and Fs=50 Hz, 59 predictions were
made by the proposed algorithm. 48 windowed data were
correctly classified, 8 were misclassified, and the remaining
3 windows were wrongly filtered out (classified as ”Others”).
Nevertheless, the effect of the 8 misclassifications is not visible
in the visualization process, since the interface displays the

correct ADL instantaneously, which shows the efficiency and
the added-value of the proposed voting technique. The result of
each prediction (at each second) is meaningless in real world
conditions. What matters most is the summary of successive
ADLs over a certain period of time and their localization based
on acquired data.

VI. CONCLUSION

This paper addressed the challenges of a HAR system.
By encoding local temporal characteristics of acquired
acceleration signals, ADLs are accurately localized and
recognized. The system presents low computational cost
thanks to an efficient online feature extraction technique
and a novel classification architecture. Extensive performance
evaluations on five public datasets have proved the
effectiveness of the proposed solution named MDA, which
outperforms start-of-the-art handcrafted features and ML
techniques in terms of accuracy, computational load, and
capacity of avoiding overfitting. Furthermore, the sampling
frequency and the window length were discussed to understand
their effect on the accuracy of the system. The feasibility of
MDA in real world conditions has been also investigated,
by developing a prototype which accurately predicts the
performed activity in real-time.

In a future work, barometric signals will be investigated as a
post-processing tool. These data give another dimension to the
HAR system, namely the altitude of the human body, which
is an important feature for several applications.

APPENDIX A
UP-DOWN ACCELERATION PATTERN

Let us assume that MEMS accelerometers are equivalent to
an ideal case of single spring and single mass system without
any force opposing the motion of the components. When we
stand up, the spring is released from the equilibrium point
with an upward velocity −V0. Hence, two forces are acting
upon the system, namely (a) the restoration force of the spring
Fs = kX , and (b) the weight due to gravity W = m0g.
Note that X = x + s thus Fs = kx + ks: ks the restoration
force of the spring opposing the pulling of gravity and kx
the restoration force of the spring trying to get back to the
equilibrium point. By applying Newton’s second law:∑

F = −kx+m0g − ks = m0a (6)

Now, by setting the equilibrium as the reference point, i.e.
−ks+m0g = 0, Eq. (6) could be rewritten:

ẍ+

(√
k

m0

)2

x = 0 (7)

Assuming that
√

k
m0

= w0, the general solution is:

x(t) = C1 cos (w0t) + C2 sin (w0t) (8)

The mass was released from the equilibrium point:

x(t) = x0 sin (w0t) , x0 < 0 (9)

 . 
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By replacing x(t) in (7) by its value in (9), we get:

a(t) ∼ a0 sin (w0t) , a0 > 0 (10)

Note that for “sitting down”, we get the same acceleration
with an opposite sinusoidal function.

APPENDIX B
CUSTOMIZED TRANSFER FUNCTION

The Taylor series for exponential exp(u) (where u > 0) is:

exp(u) =
+∞∑
i=0

ui

i!
= 1 + u+ ... (11)

The hyperbolic tangent sigmoid transfer function h(x) is:

h(x) =
2

1 + exp(−2x)
− 1 (12)

By replacing exp(u) by 1 +u (order 1) in h(x) we obtain the
customized transfer function h′(x):

x > 0 : h(x) =
2

1 + 1
exp(2x)

− 1 =
2

1 + 1
1+2x

− 1 =
x

1 + x

x < 0 : h(x) =
2

1 + exp(−2x)
−1 =

2

1 + 1− 2x
−1 =

x

1− x

−→ h′(x) =
x

1 + |x|
∀x ∈ R (13)

APPENDIX C
MDA COMPUTATIONAL COMPLEXITY

The addition/subtraction α, multiplication/division β, and
multiply-and-accumulate γ are considered. The “sign”
operation is free at the micro-controller level.
The NN begins by scaling the feature vector F of length d
using the min-max normalization:

F̂ =
F −min(F)

max(F)−min(F)
∼ a×F + b (14)

This step requires ξ1 = dα+ dβ operations.
Afterwards, F̂ constitutes the input of the hidden layer (fully-
connected) of 10 neurons. Hence, it is the subject to the
following transformation:

F̂ ′ = M× F̂ᵀ +Bh (15)

where M and Bh are of size 10× d and 10× 1 respectively.
This step results in ξ2 = 10dγ + 10α operations.
Subsequently, the customized transfer function h′(x) is applied
on F̂ ′, resulting in F̃ as output while involving ξ2 = 10α+10β
operations.
Finally, F̃ feeds the output layer to finalize the k-class
classification process:

Out = H× F̃ +Bo (16)

where H and Bo are of size k × 10 and k × 1 respectively.
Here, ξ4 = 10kγ + kα operations are required. Consequently,
each stage of MDA requires Ξ =

∑
i ξi operations:

Ξ = α(d+ 20 + k) + β(10 + d) + 10γ(d+ k)
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