

Electronic Supplementary Information

Second-Sphere Hydrogen-Bonding Enhances Heterogenous Electrocatalytic CO₂ to CO Reduction by Iron Porphyrin in water

Chanjuan Zhang,^a Diana Dragoe,^a François Brisset,^a Bernard Boitrel,^b Benedikt Lassalle-Kaiser,^d Winfried Leibl,^c Zakaria Halime^{*a} and Ally Aukauloo^{*a,c}

^a Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.

^b Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Université de Rennes 1, Rennes cedex, France

^c Université Paris-Saclay, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198, Gifsur-Yvette, France.

^d Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, 91191 Gif-sur-Yvette, France.

*Corresponding author

E-mail: ally.aukauloo@universite-paris-saclay.fr, zakaria.halime@universite-paris-saclay.fr

Contents:

Figure S1	1
Figure S2.	1
Figure S3	2
Figure S4	2
Figure S5.	3
Figure S6	4
Figure S7.	5
Figure S8	5
Figure S9.	6
Figure S10	6
Figure S11	7
Table S1	7

Figure S1. Controlled potential electrolysis using **CNT-UrFe** on GCEs (diameter 3 mm) at -0.88 V vs. RHE in CO₂-saturated 0.1 M NaHCO₃ aqueous solution. a) *i vs.* t, b) FE of CO (purple column) and FE of H₂ (green column) after 30 minutes electrolysis.

Figure S2. Controlled potential electrolysis using **CNT-UrFe** on carbon paper in CO_2 -saturated 0.1 The evolved CO during the controlled potential electrolysis of **CNT-UrFe** on carbon paper in CO_2 -saturated 0.1 M NaHCO₃ aqueous solutions at various potentials (-0.48 V to -0.98 V vs. RHE).

Figure S3. The evolved CO during the controlled potential electrolysis of **CNT-UrFe** on carbon paper in CO_2 -saturated 0.1 M NaHCO₃ aqueous solutions at various potentials (-0.48 V to - 0.98 V *vs.* RHE).

Figure S4. Fe K-edge XANES spectra of CNT-UrFe/CP after electrolysis (red) and the reference compounds: Fe_2O_3 (black) and metallic Fe (cyan).

Figure S5. ATR-FTIR spectra of CNT-UrFe before (bleu), after (red) 2 hours electrolysis and UrFe film (purple).

Figure S6. a) CVs of **CNT-UrFe** at various scan rate of Fe^{III/II} wave b) current density *vs.* scan rate, c) CVs of **CNT-FeTPP** at various scan rate at Fe^{III/II} wave, d) current density *vs.* scan rate under Ar in acidic electrolyte (pH 1) obtained by adding HClO₄ to an 0.1 M KCl aqueous solution, $i_p = n^2 F^2 v S \Gamma / 4RT$.

Figure S7. eTOF and the average current densities displayed by **CNT-UrFe** *vs.* potential, calculated after 1 hour electrolysis at different applied potentials.

Figure S8. Bulk electrolysis using **CNT-UrFe** (blue) and the physically absorbed **UrFe** (black) on carbon paper in 0.1 M NaHCO₃ aqueous solutions at -0.78 V vs. RHE, a) j vs. t, b) FE of CO and H_2 vs. t.

Figure S9. Bulk electrolysis using **CNT-UrFe** in 0.1 M NaHCO₃ aqueous solution (blue) or 0.1 M NBu₄PF₆ (9DMF/1H₂O, red) electrolyte at -0.78 V vs. RHE, a) *j* vs. t, b) FE of CO and H₂ after 1 hour electrolysis.

Figure S10. E vs. t (a) and FE vs. t (b) during a controlled current electrolysis at -1.8 mA cm⁻² using a 1 cm² **CNT-UrFe** modified electrode in CO_2 -saturated 0.1 M NaHCO₃ aqueous solution for 1 hour.

Figure S11. E vs. t (a) and FE vs. t (b) during a controlled current electrolysis at -1.8 mA cm⁻² using a 2 cm² **CNT-UrFe** modified electrode in CO_2 -saturated 0.1 M NaHCO₃ aqueous solution for 2 hours. The red dash line corresponds to CO_2 rebulbing in the electrolyte after 1 hour.

Catalyst	E (V <i>vs.</i> RHE)	<i>j</i> (mA cm ⁻²)	FE CO (%)	FE H ₂ (%)	eTOF (s⁻¹)
CNT	-0.78 ª	-0.08	0	100.0	-
CNT-FeTPP	-0.78 ^a	-0.41	67.2	32.8	0.9
	-0.48 ^a	-0.10	43.2	56.8	0.6
	-0.58 ^a	-0.38	68.3	31.7	3.4
	-0.68 ^a	-0.57	99.0	1.0	7.8
CNT-UrFe	-0.78 ^a	-1.50	99.9	0.1	21.3
	-0.88 ^a	-2.30	85.4	14.6	27.3
	-0.98 ^a	-2.04	84.7	15.3	27.5
	-0.78 ^b	-0.08	39.2	60.8	-

Table S1. Product analysis by GC after 1 hour controlled potential electrolysis using **CNT-UrFe** for CO₂ reduction.

 $^{\rm a}$ CO_2-saturated 0.1 M NaHCO_3 aqueous solution

^b CO₂-saturated 0.1 M NBu₄PF₆ (DMF/H₂O, 9:1)