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We demonstrate in microwave measurements the broadband enhancement of transmission through an opaque barrier
due to mirror symmetry. This enhancement relies on constructive interference between mirror scattering paths resulting
from strong internal reflections at the left and right interfaces of a multichannel cavity. We observe a strong sensitivity
of the conductance to a shift of the barrier from the center of the cavity. Remarkably, the impact of mirror symmetry
can be further increased by tuning the degree of disorder within the cavity. We report an additional enhancement of
the conductance found by symmetrically placing randomly located scatterers. Our results illuminate the impact of
symmetry and disorder correlation on transmission through complex systems.

Understanding interference phenomena is essential to char-
acterize the transmission of waves through scattering systems.
In diffusive samples, the interference of scattering paths is a
priori random so that the average transmitted intensity and
the profile of the energy density can be predicted by the dif-
fusion equation. Deviation from the diffusion theory however
arise in periodic and disordered scattering systems as a result
of constructive or destructive interference between scattering
paths. By manipulating the incident wavefront, the transmis-
sion may be fully controlled as the distribution of transmis-
sion eigenvalues spans from zero (closed channels) to unity
(open channels) in diffusive samples1–12. The spatial corre-
lation and the strength of the disorder within the sample can
also be specifically engineered to give rise to fascinating in-
terference effects. A well-known example is the formation of
band gaps in photonic crystals13. In strongly disordered sam-
ples, the average transmission is coherently suppressed in the
regime of Anderson localization14,15. Transmission may also
be substantially enhanced by tuning the degree of correlation
of the disorder. Stealth hyperuniform media below a threshold
frequency are transparent to incoming radiations at densities
for which an uncorrelated disorder would be opaque16,17.

Robust interference phenomena can also be induced by a
mirror symmetry within a cavity or a disordered medium.
Whitney et al. demonstrated that the conductance through
an opaque barrier placed within a symmetric quantum dot
is greatly enhanced as a result of constructive interfer-
ence between symmetric classical paths18,19. This broad-
band effect is reminiscent of coherent backscattering for re-
flected waves14,20 and coherent forward scattering in localized
samples21 that are robust to a statistical averaging. A signif-
icant broadband enhancement has also been reported in dif-
fusive waveguides with open boundary conditions at the left
and right interfaces22. Transmission through a random but
symmetric diffusive slab with an opaque barrier in the mid-
dle can indeed be much larger than transmission through the
barrier alone, with a strong modification of the distribution of
transmission eigenvalues. Instead of being limited to a max-
imal value imposed by the barrier strength, this distribution
in symmetric disorders coincide with its expectation for ran-
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FIG. 1. Sketch of the cavity for which a barrier (an aluminum bar)
is placed in the middle to create a left-right mirror symmetry. The
top plate has been removed to see the interior of the cavity. Measure-
ments of the transmission matrix t(ν) between two arrays of N = 8
single-channel waveguides are carried out in the microwave range
using two electromechanical switches connected to two ports of a
Vector Network Analyzer. (a) Red and dashed blue lines illustrate
the superposition of two paths with a mirror symmetry that coher-
ently enhance the transmission. To explore the impact of left-right
symmetry, the barrier is shifted from the center of the cavity by ∆x.
(b) In the same device with a centered barrier, a random but symmet-
ric distribution of aluminium cylindrical scatterers is placed on both
sides of the barrier.

dom configurations in absence of the barrier. Open channels
with transmission eigenvalues close to unity are especially re-
covered. In addition, a deep subwavelength sensitivity of the
conductance to a shift of the barrier or to symmetry defects in
its surrounding disorder has been reported18,22–24. Neverthe-
less, theoretical studies have been confirmed only by numeri-
cal simulations and a clear experimental demonstration of the
impact of left-right symmetry is still missing.

In this article, we evidence experimentally the broadband
enhancement of transmission due to the mirror symmetry in
a multichannel cavity in which a barrier is placed. First, we
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investigate the sensitivity of the conductance to the mirror
symmetry for an empty cavity by progressively shifting
the barrier from the center. We clearly observe that the
conductance is maximum in the symmetric configuration.
The coherent interference of scattering paths is illustrated by
the temporal variations of the transmitted intensity. Second,
we add a symmetric disorder within the cavity and report a
maximal enhancement by a factor three of the conductance.

Our experimental setup is a multichannel cavity of length
L = 0.5 m, width W = 0.25 m and height h = 8 mm (see
Fig. 1(a)). The cavity is effectively two-dimensional as a
single vertically polarized mode can propagate. Spectra of
the complete transmission matrix (TM) t(ν) are measured be-
tween two arrays of N = 8 antennas. These antennas are sin-
gle waveguide channels fully coupled to the system between
11 and 17 GHz that are attached to the cavity at the left and
right interfaces (see Fig.1)25. The TM is built upon the field
transmission coefficients tba(ν) between each incoming an-
tenna a and outgoing antenna b. We stress that strong internal
reflections at the interfaces of the cavity result from metallic
boundary conditions at the spacing between the antennas. All
openings of the cavity are controlled with transmitting or re-
ceiving antennas and the TM is therefore complete.

We first explore the impact of left-right mirror symmetry on
the conductance with a single barrier which is a 4 mm height
metallic rectangular bar. The barrier is first placed symmetri-
cally to the left and right interfaces (∆x = 0) and then shifted
from the center by ∆x= 50 mm. The spectrum of the transmit-
tance, which is the sum of the total transmsission over all the
incident channels T (ν) = Σba|tba(ν)|

2 is seen to be larger in
the symmetric configuration. The dimensionless conductance
g = 〈T (ν)〉 found from an averaging over the frequency range
is given by g = 4.44 for ∆x = 0 and g = 3.52 for ∆x = 50 mm
(see Fig. 2(a)).

The transmittance may also be expressed in terms of
the N transmission eigenvalues τn(ν) of t†(ν)t(ν), T (ν) =
Σ

N
n=1τn(ν)

26. The distribution P(τ) is found to be bimodal,
as expected for multichannel cavities10,27,28, with two peaks
corresponding to closed channels (τ ∼ 0) and open channels
(τ → 1) (see Fig. 2(b)). This distribution highlights that such
a sample can be either opaque or almost transparent to incom-
ing radiations depending on the incident wavefront. Note that
the peak for open channels is here found at τ = 0.9 instead of
τ = 1 as a result of small dissipation within the sample7,29. As
illustrated with numerical simulations of random asymmetri-
cal media in Supplementary Material, small losses within the
sample indeed leads to a shift of the second characteristic peak
towards smaller transmission but does not suppress it30. As
the configuration becomes asymmetric (∆x 6= 0), the ampli-
tude of this peak is further reduced leading to smaller values
of g.

The conductance shown in Fig. 2(c) decreases rapidly with
increasing ∆x between ∆x = 0 and ∆x = 15 mm, and for
∆x > 15 mm, it reaches a plateau. This shift is of the order
of λ/1.5 = 10.7 mm at a frequency of f = 14 GHz. We then
increase the barrier’s reflectivity by using a metallic bar with
height of 7.8 mm. The barrier now almost fully fills the height
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FIG. 2. (a) Spectrum of the transmittance T (ν) for a 4 mm high
barrier placed symmetrically within the empty cavity (blue line) and
then shifted by ∆x = 50 mm (red line). (b) Corresponding distribu-
tions of transmission eigenvalues P(τ) for a mirror symmetry (blue
dots) and broken mirror symmetry (red dots). (c) Variations of the
conductance with the shift ∆x of the barrier. (d) Same as (c) but for a
barrier with stronger reflectivity of height equal to 7.8 mm.
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of the system. The reduction of g with ∆x is even more signifi-
cant as it almost reaches an order of magnitude, from g = 0.11
for ∆x = 0 to g = 0.002 for ∆x = 200 mm (see Fig. 2(d)).

The origin of the enhancement of g in a symmetrical con-
figuration can be understood from the schematic view of two
scattering paths for a symmetric barrier given in Fig. 1, as
shown in Ref.18. For an incident wave impinging on the bar-
rier with an angle θ , the transmitted field to an outgoing chan-
nel can be split into two mirror scattering paths. The first path
p1 is successively reflected by the barrier (coefficient rB(θ)),
reflected at the left interface in the spacing between two an-
tennas and finally transmitted through the barrier (coefficient
tB(θ ′)) before being absorbed at the right receiving channel
(see red path on Fig. 1(a)). Its contribution for a path length L1
is ψ1 = rB(θ)tB(θ ′)eikL1 (k is the wave number). The second
scattering path p2 of length L2 is first transmitted through the
barrier and then follows a path which is the mirror of p1 at the
right side of the cavity, ψ2 = rB(θ

′)tB(θ)eikL2 . For a mirror
symmetry giving L1 = L2, the intensity 〈I〉 = 〈|ψ1 +ψ2|

2〉 =
〈|rB(θ)tB(θ ′)+ rB(θ

′)tB(θ)|2〉 is significantly enhanced rel-
ative to its average 〈I〉 = 〈|rB(θ)tB(θ ′)|2〉+ 〈|rB(θ

′)tB(θ)|2〉
found when L1 and L2 are independent random variables.

To illustrate the impact of constructive interference,
we consider the time variation of transmitted field
T̃ (t) = Σba|t̃ba(t)|2 in Fig. (3). The field transmission
coefficients in the time domain t̃ba(t) are obtained from the
inverse Fourier transform of the elements tba(ν) for a Gaus-
sian pulse of central frequency f0 = 14.5 GHz and bandwidth
∆ f = 400 MHz. We compare T̃ (t) for ∆x = 0, ∆x = 20 mm
and ∆x = 70 mm. The magnitude of the first pulse found
at t0 = 2.1 ns weakly depends on ∆x as the ballistic wave
through the cavity is barely impacted by the position of the
barrier. However, the second pulse associated to the double
scattering illustrated in Fig. 1(a) is nicely enhanced by the
mirror-symmetry with a magnitude which even exceed the
one of the direct pulse for ∆x = 0. At late times, the pulses
associated to multiple scattering between the barrier and
the interfaces are mixed and therefore cannot be resolved
temporally but T̃ (t) for ∆x = 0 dominates the other curves
until t = 20 ns.

After testing the impact of the barrier alone, we show that
the conductance can be further enhanced by introducing a
diffusive medium with a symmetric arrangement. We place
a collection of Ns aluminum cylinders on both sides of the
7.8 mm high barrier (see Fig. 1(b)). The transmittance T (ν)
is shown in Fig. 4(a) for Ns = 0, Ns = 30 for two indepen-
dent random configurations on both sides of the barrier, and
Ns = 50 for a random arrangement with a mirror symme-
try. For a non-symmetric configuration, the system is slightly
more opaque than for a barrier alone as the disorder strength
has increased. However, a clear broadband enhancement is
observed for symmetrically placed metallic scatterers. g(Ns)
indeed increase with Ns, reaches a maximum value of g= 0.64
for Ns = 50 and then decreases with Ns as it is expected to
vanish in the strong disorder limit Ns → ∞ (see Fig.4(b)). In
contrast, in absence of mirror symmetry g(Ns) only decreases
with Ns as a result of the combined effect of disorder and the
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FIG. 3. . Variations of the transmission in the time domain for a
shift ∆x = 7 cm (blue line), ∆x = 2 cm (orange line) and ∆x = 0 cm
(yellow line). The amplitude of the second pulse at t = 4.15 ns is
clearly enhanced by a mirror symmetry.

barrier.
The experimental results are now compared to a diffusive

model proposed for disordered waveguides with open bound-
ary conditions at left and right surfaces24. We do not expect
that this model can accurately describe our experimental re-
sults for small Ns, as it does not account for the strong in-
ternal reflections at both interfaces. For large Ns, however,
the main process is the diffusion within the scattering disor-
der. The key parameters are the barrier strength ςB = g0/N,
with g0 the conductance in absence of disorder, the normal-
ized sample length s = L/ℓ, with ℓ the mean free path, and
sa =

√

ℓa/(2ℓ), with ℓa the ballistic absorption length. A scal-
ing model including losses gives the following expression for
the theoretical conductance gtheo(s,sa,ςB):

1
gtheo(s,sa,ςB)

=
α(s,sa,ςB)

gB(s,sa)
+

1
gE(s,ςB)

. (1)

Here, gB(s,sa) = 2Ns−1
a e−s/sa corresponds to the absorb-

ing diffusive conductance in the absence of the barrier and
α(s,sa,ςB) = 1+ (2s2

aςB)
−1. gE(s,ςB) reflects the enhance-

ment of the conductance due to mirror symmetry, gE(s,ςB) =
[1+ sςc/(1− ςc)]NςB/(1− ςB), where ςc ≃ 0.4 is a param-
eter that has been found from a fit of g with s in numerical
simulations.

In empty chaotic cavities the conductance is equal
to N/2. We therefore estimate that the conductance
associated to the barrier in absence of internal reflec-
tions is g0 ∼ 2g(Ns = 0) = 0.4 giving ςB = 0.05. We
then use that 1) ℓ scales linearly with Ns, s = κNs, and
2) the optimal conductance is found for Ns = Nopt so
that κ = sopt/Nopt with, in the absence of absorption,

sopt =
√

(ς−1
B −1)(ς−1

c −1)− (ς−1
c − 1). Our experimental

results shown in Fig. 4(b) present a maximum of g for
approximatively 50 scatterers but strong fluctuations on the
data are observed around this optimal value. Moreover,
Nopt should be its value in the absence of absorption and is
therefore larger than Ns = 50. We estimate here that Nopt = 80
is reasonable value that provides a good agreement with the
data. The last parameter sa = 3.6 is finally obtained from the
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FIG. 4. (a) Spectra of the transmittance T (ν) for a 7.8mm-high
barrier, in absence of scatterers (blue line), with Ns = 50 aluminum
cylinders placed randomly but with left-right symmetry (orange line)
and 30 cylinders placed fully randomly. (b) Variation of the conduc-
tance g(Ns) with respect to the number of randomly located scatterers
Ns in a symmetric (blue line) or fully random (orange line) arrange-
ment.

best fit of the tail of g(Ns) as Ns > 100. The theoretical curve
is in a good agreement with measurements in Fig. 4(b) for
Ns > 30. We stress that the enhancement of the conductance
is even stronger in our system relative to open random
waveguides as the transmission for a barrier alone is reduced
by a factor ∼ 1/2 due to strong internal reflections at the
metallic boundaries of the cavity.

In conclusion, we have provided a clear experimental
observation of the impact of interference effects due to
mirror symmetry on the transmission through disordered
multichannel cavities. For a barrier placed within a cavity
with strong internal reflections at its interfaces, constructive
interference yields a broadband enhancement of the fraction
of open transmission eigenchannels and consequently of
the conductance. A further increase of the conductance has
been obtained by symmetrically placing scatterers around the
barrier, with experimental results in good agreement with a
theoretical model including losses. The sensitivity of these
systems may also open up new perspectives to detect defects
within complex structures.

I. SUPPLEMENTARY MATERIAL

See supplemental material for numerical simulations of the
distribution of transmission eigenvalues in random samples
with absorption.
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In this Supplementary Material, we explore the im-
pact of losses on the distribution of transmission eigen-
values P (τ) in simulations of waves propagating through
lossy random media. Our experimental results presented
in Fig. 2b of the main text indeed show that the peak
corresponding to open channels is shifted from τm = 1
expected theoretically in absence of absorption [1–3] to
τm = 0.9 and we attribute this effect to the impact of
inevitable losses. We consider a two-dimensional waveg-
uide of widthW and length L = 2W with reflective trans-
verse boundaries. The boundary conditions are opened
at the right and left surfaces. The wavelength λ is chosen
so that the empty waveguide supports N = 8 channels
(W = 4λ). The Green’s functions between points at the
input and output interfaces of a random waveguide are
first obtained by solving the two-dimensional wave equa-
tion ∇2ψ(x, y) + k2

0
ǫ(x, y)ψ(x, y) = 0 using the recursive

Greens function method [1]. The dielectric permittivity
ǫ(x, y) is a random asymmetrical function drawn from a
rectangular distribution. We add a constant imaginary
part ǫi representing absorption to ǫ(x, y). The elements
of the transmission matrix tba between incoming modes
a and outgoing modes b are then calculated by project-
ing the Greens functions onto the modes of the empty
waveguide. The transmission eigenvalues τn are found
from a diagonalization of t†t, t†t = ΣN

n=1
vnτnv

†
n
with vn

being the corresponding eigenvectors.
The distribution of transmission eigenvalues P (τ) is

found from an ensemble of 4000 random waveguides. The
variance of ǫ(x, y) is chosen so that the average transmis-
sion 〈T 〉 = 〈τ〉 = 0.44 in the absence of absorption. In
this case, P (τ) is bimodal with two peaks at τ = 0 and
τ = 1 corresponding to closed and open channels, respec-
tively. However, the second characteristic peak shifts to-
wards smaller transmission τm as absorption within the
samples increases (see Fig. S1(a)), in agreement with our
experimental result. The transmission τm corresponding
to this peak increases monotonically with ǫi as seen in
Fig. S1(b) with an amplitude first rapidly decreasing with
absorption strength and then saturating (see Fig. S1(c)).
Even though the geometry of the cavity considered ex-

perimentally is different from the case of random waveg-
uides since the empty cavity features strong internal re-
flections at left and right interfaces instead of internal
disorder, these simulations demonstrate that small inter-
nal losses do not suppress the second peak on the distri-
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FIG. S1. (a) Distribution of transmission eigenvalues of a
random waveguide with N = 8 channels for different values of
the imaginary part of the dielectric permittivity. The second
characteristic peak shifts from τm = 1 to smaller values as ǫi

increases. (b,c) Variations of τm (b) and amplitude (c) of the
second characteristic peak of P (τ) with ǫi.

bution of transmission eigenvalues but rather leads to a
shift of this peak.

[1] H. U. Baranger and P. A. Mello, Phys. Rev. Lett. 73, 142
(1994).

[2] R. A. Jalabert, J. L. Pichard, and C. W. J. Beenakker,
Europhys. Lett. 27, 255 (1994).

[3] A. Goetschy and A. . Stone, Phys. Rev. Lett. 111, 063901
(2013).


	Supplemental Material for 'Experimental evidence of enhanced broadband transmission in disordered systems with mirror symmetry'
	References


