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SAFE RULES FOR THE IDENTIFICATION OF ZEROS
IN THE SOLUTIONS OF THE SLOPE PROBLEM∗

CLÉMENT ELVIRA† AND CÉDRIC HERZET‡

Abstract. In this paper we propose a methodology to accelerate the resolution of the so-
called “Sorted L-One Penalized Estimation” (SLOPE) problem. Our method leverages the concept
of “safe screening”, well-studied in the literature for group-separable sparsity-inducing norms, and
aims at identifying the zeros in the solution of SLOPE. More specifically, we derive a set of n(n+1)

2
inequalities for each element of the n-dimensional primal vector and prove that the latter can be
safely screened if some subsets of these inequalities are verified. We propose moreover an efficient
algorithm to jointly apply the proposed procedure to all the primal variables. Our procedure has
a complexity O(n logn + LT ) where T ≤ n is a problem-dependent constant and L is the number
of zeros identified by the test. Numerical experiments confirm that, for a prescribed computational
budget, the proposed methodology leads to significant improvements of the solving precision.

Key words. SLOPE, safe screening, acceleration techniques, convex optimization

AMS subject classifications. 68Q25, 68U05

1. Introduction. During the last decades, sparse linear regression has attracted
much attention in the field of statistics, machine learning and inverse problems. It
consists in finding an approximation of some input vector y ∈ Rm as the linear
combination of a few columns of a matrix A ∈ Rm×n (often called dictionary). Un-
fortunately, the general form of this problem is NP-hard and convex relaxations have
been proposed in the literature to circumvent this issue. The most popular instance
of convex relaxation for sparse linear regression is undoubtedly the so-called “LASSO”
problem where the coefficients of the regression are penalized by an `1 norm, see [11].
Generalized versions of LASSO have also been introduced to account for some possible
structure in the pattern of the nonzero coefficients of the regression, see [2].

In this paper, we focus on the following generalization of LASSO:

(1.1) min
x∈Rn

P (x) , 1
2‖y −Ax‖22 + λ rslope(x), λ > 0

where

(1.2) rslope(x) ,
n∑
k=1

γk|x|[k]

with

(1.3) γ1 > 0, γ1 ≥ · · · ≥ γn ≥ 0,

and |x|[k] is the kth largest element of x in absolute value, that is

(1.4) ∀x ∈ Rn : |x|[1] ≥ |x|[2] ≥ . . . ≥ |x|[n].
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2 CLÉMENT ELVIRA AND CÉDRIC HERZET

Problem (1.1) is commonly referred to as “Sorted L-One Penalized Estimation”
(SLOPE) or “Ordered Weighted L-One Linear Regression” in the literature and has
been introduced in two parallel works [5, 21].1 The first instance of a problem of the
form (1.1) (for some nontrivial choice of the parameters γk’s) is due to Bondell and
Reich in [7]. The authors considered a problem similar to (1.1), named “Octagonal
Shrinkage and Clustering Algorithm for Regression” (OSCAR), where the regulariza-
tion function is a linear combination of an `1 norm and a sum of pairwise `∞ norms
of the elements of x, that is

(1.5) roscar(x) = β1‖x‖1 + β2

∑
j′>j

max(|x(j′)|, |x(j)|),

for some β1 ∈ R∗+, β2 ∈ R+. It is not difficult to see that roscar can be expressed as
a particular case of rslope with the following choice γk = β1 + β2(n − k). We note
that some authors have recently considered “group” versions of the SLOPE problem
where the ordered `2 norm of subsets of x is penalized by a decreasing sequence of
parameters γk, see e.g., [9, 25,26].

SLOPE enjoys several desirable properties which have attracted many researchers
during the last decade. First, it was shown in several works that, for some proper
choices of parameters γk’s, SLOPE promotes sparse solutions with some form of
“clustering”2 of the nonzero coefficients, see e.g., [7, 21, 30, 39]. This feature has been
exploited in many application domains: portfolio optimization [31, 47], genetics [26],
magnetic-resonance imaging [16], subspace clustering [38], deep neural networks [49],
etc. Moreover, it has been pointed out in a series of works that SLOPE has very
good statistical properties: it leads to an improvement of the false detection rate (as
compared to LASSO) for moderately-correlated dictionaries [6, 25] and is minimax
optimal in some asymptotic regimes, see [33,40].

Another desirable feature of SLOPE is its convexity. In particular, it was shown
in [6, Proposition 1.1] and [48, Lemma 2] that rslope is a norm as soon as (1.3) holds.
As a consequence, several numerical procedures have been proposed in the literature
to find the global minimizer(s) of problem (1.1). In [6] and [50], the authors con-
sidered an accelerated gradient proximal implementation for SLOPE and OSCAR,
respectively. In [31], the authors tackled problem (1.1) via an alternating-direction
method of multipliers [8]. An approach based on an augmented Lagrangian method
was considered in [35]. In [48], the authors expressed rslope as an atomic norm and
particularized a Frank-Wolfe minimization procedure [23] to problem (1.1). An effi-
cient algorithm to compute the Euclidean projection onto the unit ball of the SLOPE
norm was provided in [14]. Finally, in [10] a heuristic “message-passing” method was
proposed.

In this paper, we introduce a new “safe screening” procedure to accelerate the
resolution of SLOPE. The concept of “safe screening” is well known in the LASSO
literature: it consists in performing simple tests to identify the zero elements of the
minimizers; this knowledge can then be exploited to reduce the problem dimension-
ality by discarding the columns of the dictionary weighted by the zero coefficients.
Safe screening for LASSO has been first introduced by El Ghaoui et al. in the sem-
inal paper [24] and extended to group-separable sparsity-inducing norm in [36]. Safe
screening has rapidly been recognized as a simple yet effective procedure to accelerate
the resolution of LASSO, see e.g., [12,20,27–29,34,42,43,45]. The term “safe” refers to

1We will stick to the former denomination in the following.
2More specifically, groups of nonzero coefficients tend to take on the same value.
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the fact that all the elements identified by a safe screening procedure are theoretically
guaranteed to correspond to zeros of the minimizers. In contrast, unsafe versions of
screening for LASSO (often called “strong screening rules”) also exist, see [41]. More
recently, screening methodologies have been extended to detect saturated components
in different convex optimization problems, see [17,18].

In this paper, we derive safe screening rules for SLOPE and emphasize that their
implementation enables significant improvements of the solving precision when ad-
dressing SLOPE with a prescribed computational budget. We note that the SLOPE
norm is not group-separable and the methodology proposed in [36] does therefore not
trivially apply here. Prior to this work, we identified two contributions addressing
screening for SLOPE. In [32], the authors proposed an extension of the strong screen-
ing rules derived in [41] to the SLOPE problem. In [3], the authors suggested a simple
test to identify some zeros of the SLOPE solutions. Although the derivations made
by these authors have been shown to contain several technical flaws [19], their test
can be cast as a particular case of our result in Theorem 4.3 (and is therefore quite
unexpectedly safe).

The paper is organized as follows. We introduce the notational conventions used
throughout the paper in Section 2 and recall the main concepts of safe screening for
LASSO in Section 3. Section 4 contains our proposed safe screening rules for SLOPE.
Section 5 illustrates the effectiveness of the proposed approach through numerical
simulations. All technical details and mathematical derivations are postponed to Ap-
pendices A and B.

2. Notations. Unless otherwise specified, we will use the following conventions
throughout the paper. Vectors are denoted by lowercase bold letters (e.g., x) and
matrices by uppercase bold letters (e.g., A). The “all-zero” vector of dimension n is
written 0n. We use symbol T to denote the transpose of a vector or a matrix. x(j)

refers to the jth component of x. When referring to the sorted entries of a vector,
we use bracket subscripts; more precisely, the notation x[k] refers to the kth largest
value of x. For matrices, we use aj to denote the jth column of A. We use the
notation |x| to denote the vector made up of the absolute value of the components of
x. The sign function is defined for all scalars x as sign (x) = x/|x| with the convention
sign (x) = 0. Calligraphic letters are used to denote sets (e.g., J ) and card ( · ) refers
to their cardinality. If a < b are two integers, Ja, bK is used as a shorthand notation
for the set {a, a + 1, . . . , b}. Given a vector x ∈ Rn and a set of indices J ⊆ J1, nK,
we let xJ be the vector of components of x with indices in J . Similarly, AJ denotes
the submatrix of A whose columns have indices in J . A\` corresponds to matrix A
deprived of its `th column.

3. Screening: main concepts. “Safe screening” has been introduced by El
Ghaoui et al. in [24] for `1-penalized problems:

(3.1) min
x∈Rn

P (x) , f(Ax) + λ ‖x‖1, λ > 0

where f : Rm → R is a closed convex function. It is grounded on the following ideas.
First, it is well-known that `1-regularization favors sparsity of the minimizers of

(3.1). For instance, if f = 1
2‖ · ‖22 and the solution of (3.1) is unique, it can be shown

that the minimizer contains at most m nonzero coefficients, see e.g., [22, Theorem
3.1]. Second, if some zeros of the minimizers are identified, (3.1) can be shown to be
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equivalent to a problem of reduced dimension. More precisely, let L ⊆ J1, nK be a set
of indices such that we have for any minimizer x? of (3.1):

(3.2) ∀` ∈ L : x?(`) = 0

and let L̄ = J1, nK\L. Then the following problem

(3.3) min
z∈Rcard(L̄)

f(AL̄z) + λ ‖z‖1, λ > 0

admits the same optimal value as (3.1) and there exists a simple bijection between
the minimizers of (3.1) and (3.3). We note that x belongs to an n-dimensional space
whereas z is a card(L̄)-dimensional vector. Hence, solving (3.3) rather than (3.1) may
lead to dramatic memory and computational savings if card(L̄)� n.

The crux of screening consists therefore in identifying (some) zeros of the mini-
mizers of (3.1) with marginal cost. El Ghaoui et al. emphasized that this is possible
by relaxing some primal-dual optimality condition of problem (3.1). More precisely,
let

(3.4) u? ∈ arg max
u∈Rm

D(u) , −f∗(−u) s.t. ‖ATu‖∞ ≤ λ

be the dual problem of (3.1), where f∗ denotes the Fenchel conjugate. Then, by
complementary slackness, we must have for any minimizer x? of (3.1):

(3.5) ∀` ∈ J1, nK : (|aT
` u

?| − λ)x?(`) = 0.

Since dual feasibility imposes that |aT
` u

?| ≤ λ, we obtain the following implication:

(3.6) |aT
` u

?| < λ =⇒ x?(`) = 0.

Hence, if u? is available, the left-hand side of (3.6) can be used to detect if the `th
component of x? is equal to zero.

Unfortunately, finding a maximizer of dual problem (3.4) is generally as difficult
as solving primal problem (3.1). This issue can nevertheless be circumvented by
identifying some region R of the dual space (commonly referred to as “safe region”)
such that u? ∈ R. Indeed, since

(3.7) max
u∈R

|aT
` u| < λ =⇒ |aT

` u
?| < λ,

the left-hand side of (3.7) constitutes an alternative (weaker) test to detect the zeros
of x?. For proper choices of R, the maximization over u admits a simple analytical
solution. For example, if R is a ball, that is

(3.8) R = S(c, R) , {u ∈ Rm : ‖u− c‖2 ≤ R},

then maxu∈R |aT
` u| = |aT

` c|+R‖a`‖2 and the relaxation of (3.7) leads to

(3.9) |aT
` c| < λ−R‖a`‖2 =⇒ x?(`) = 0.

In this case, the screening test is straightforward to implement since it only requires
the evaluation of one inner product between a` and c.3

3We note that the `2-norm appearing in the expression of the test is usually considered as “known”
since it can be evaluated offline.
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Many procedures have been proposed in the literature to construct safe spheres
[20, 36, 46] or safe regions with refined geometries [12, 42, 44, 45]. If f∗ is a ζ-strongly
convex function, a popular approach to construct a safe region is the so-called “GAP
sphere” [36] whose center and radius are defined as follows:

(3.10)
c = u

R =
√

2
ζ (P (x)−D(u))

where (x,u) is any primal-dual feasible couple. This approach has gained in popularity
because of its good behavior when (x,u) is close to optimality. In particular, if f is
proper lower semi-continuous, x = x? and u = u?, then P (x) −D(u) = 0 by strong
duality [4, Proposition 15.22]. In this case, screening test (3.9) reduces to (3.6) and,
except in some degenerated cases, all the zero components of x? can be identified by
the screening test. Interestingly, this behavior also provably occurs for sufficiently
small values of the dual gap [37, Propositions 8 and 9] and has been observed in many
numerical experiments, see e.g., [17, 20,28,36].

As a final remark, let us mention that the framework presented in this section
extends to optimization problems where the (sparsity-promoting) penalty function
describes a group-separable norm, see e.g., [13,36]. In particular, the complementary
slackness condition (3.5) still holds (up to a minor modification), thus allowing to de-
sign safe screening tests based on the same rationale. We note that, since the SLOPE
penalization does not feature such a separability property, the methodology presented
in this section does unfortunately not apply.

4. Safe screening rules for SLOPE. In this section, we propose a new proce-
dure to extend the concept of safe screening to SLOPE. Our exposition is organized as
follows. In Subsection 4.1 we describe our working assumptions and in Subsection 4.2
we present a family of screening tests for SLOPE (see Theorem 4.3). Each test is de-
fined by a set of parameters {pq}q∈J1,nK and takes the form of a series of inequalities.
We show that a simple test of the form (3.9) can be recovered for some particular
values of the parameters {pq}q∈J1,nK, although this choice does not correspond to
the most effective test in the general case. In Subsection 4.3, we finally propose an
efficient numerical procedure to verify simultaneously all the proposed screening tests.

4.1. Working hypotheses. In this section, we present two working assump-
tions which are assumed to hold in the rest of the paper even when not explicitly
mentioned.

We first suppose that the regularization parameter λ satisfies

(4.1) 0 < λ < λmax , max
q∈J1,nK

(
q∑

k=1

∣∣ATy
∣∣
[k]
/

q∑
k=1

γk

)
.

In particular, the hypothesis λmax > 0 is tantamount to assuming that y /∈ ker(AT).
On the other hand, λ < λmax prevents the vector 0n from being a minimizer of the
SLOPE problem (1.1). More precisely, it can be shown that under condition (1.3),

(4.2) λ and {γk}nk=1 verify (4.1)⇐⇒ 0n is not a minimizer of (1.1).

A proof of this result is provided in Appendix A.2.
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Second, we assume that the columns of the dictionary A are unit-norm, i.e.,

(4.3) ∀j ∈ J1, nK : ‖aj‖2 = 1.

Assumption (4.3) simplifies the statement of our results in the next subsection. How-
ever, all our subsequent derivations can be easily extended to the general case where
(4.3) does not hold.

4.2. Safe screening rules. In this section, we derive a family of safe screening
rules for SLOPE.

Let us first note that (1.1) admits at least one minimizer and our screening prob-
lem is therefore well-posed. Indeed, the primal cost function in (1.1) is continuous and
coercive since rslope is a norm (see e.g., [6, Proposition 1.1] or [48, Lemma 2]); the
existence of a minimizer then follows from Weierstrass theorem [4, Theorem 1.29]. In
the following, we will assume that the minimizer is unique to simplify our statements.
Nevertheless, all our results extend to the general case where there exist more than
one minimizer by replacing “x?(`) = 0” by “x?(`) = 0 for any minimizer of (1.1)” in all
our subsequent statements.

Our starting point to derive our safe screening rules is the following primal-dual
optimality condition:

Theorem 4.1. Let

(4.4) u? = arg max
u∈U

D(u) , 1
2‖y‖

2
2 − 1

2‖y − u‖22,

where

(4.5) U =

{
u :

q∑
k=1

∣∣ATu
∣∣
[k]
≤ λ

q∑
k=1

γk, q ∈ J1, nK

}
.

Then, for all integers ` ∈ J1, nK:

(4.6) ∀q ∈ J1, nK :
∣∣aT
` u

?
∣∣+

q−1∑
k=1

∣∣AT
\`u

?
∣∣
[k]
< λ

q∑
k=1

γk =⇒ x?(`) = 0.

A proof of this result is provided in Appendix B.1. We mention that, although it
differs quite significantly in its formulation, Theorem 4.1 is closely related to [32,
Proposition 1].4 We also note that (4.4) corresponds to the dual problem of (1.1),
see e.g., [6, Section 2.5]. Moreover, u? exists and is unique because D is a continuous
strongly-concave function and U a closed set. The equality in (4.4) is therefore well-
defined.

Theorem 4.1 provides a condition similar to (3.6) relating the dual optimal solu-
tion u? to the zero components of the primal minimizer x?. Unfortunately, evaluating
the dual solution u? requires a computational load comparable to the one needed to
solve the SLOPE problem (1.1). Similarly to `1-penalized problems, tractable screen-
ing rules can nevertheless be devised if “easily-computable” upper bounds on the

4We refer the reader to Section SM1 of the electronic supplementary material of this paper for a
detailed description and a proof of the connection between these two results.

ex_supplement.pdf{}{}{}#section.1{}{}{}
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left-hand side of (4.6) can be found. In particular, for any set {Bq,` ∈ R}q∈J1,nK
verifying

(4.7) ∀q ∈ J1, nK :
∣∣aT
` u

?
∣∣+

q−1∑
k=1

∣∣AT
\`u

?
∣∣
[k]
≤ Bq,`,

we readily have that

(4.8) ∀q ∈ J1, nK : Bq,` < λ

q∑
k=1

γk =⇒ x?(`) = 0.

The next lemma provides several instances of such upper bounds:

Lemma 4.2. Let u? ∈ S(c, R). Then ∀` ∈ J1, nK and ∀q ∈ J1, nK, we have that

Bq,` ,
∣∣aT
` c
∣∣+

q−1∑
k=p

∣∣AT
\`c
∣∣
[k]

+ (q − p+ 1)R+ λ

p−1∑
k=1

γk

verifies (4.7) for any p ∈ J1, qK.

A proof of this result is available in Appendix B.2. We note that Lemma 4.2 defines
one particular family of upper bounds on the left-hand side of (4.7). The derivation of
these upper bounds is based on the knowledge of a safe spherical region and partially
exploits the definition of the dual feasible set, see Appendix B.2. We nevertheless em-
phasize that other choices of safe regions or majorization techniques can be envisioned
and possibly lead to more favorable upper bounds.

Defining

(4.9) κq,p , λ

(
q∑

k=p

γk

)
− (q − p+ 1)R,

a straightforward particularization of (4.8) then leads to the following safe screening
rules for SLOPE:

Theorem 4.3. Let {pq}q∈J1,nK be a sequence such that pq ∈ J1, qK for all q ∈
J1, nK. Then, the following statement holds:

(4.10) ∀q ∈ J1, nK :
∣∣aT
` c
∣∣+

q−1∑
k=pq

∣∣AT
\`c
∣∣
[k]
< κq,pq =⇒ x?(`) = 0.

We mention that the notation “pq” is here introduced to stress the fact that a different
value of p can be used for each q in (4.10). Since q ∈ J1, nK and each parameter pq can
take on q different values in Theorem 4.3, (4.10) thus defines n! different screening tests
for SLOPE where n(n+1)

2 distinct inequalities are involved. We discuss two particular
choices of parameters {pq}q∈J1,nK below and propose an efficient procedure to jointly
evaluate all the tests defined by feasible sequences {pq}q∈J1,nK in the next section.

Let us first consider the case where

(4.11) ∀q ∈ J1, nK : pq = 1.
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Fig. 1. Percentage of zero entries in x? detected by the safe screening tests as a function of
R, the radius of the safe sphere. Each curve corresponds to a different implementation of the safe
screening test (4.10): pq = 1 ∀q, see (4.12) (green curve), pq = q ∀q, see (4.14) (blue curve), and
all possible choices for {pq}q∈J1,nK (orange curve). The results are generated by using the OSCAR-1
sequence for {γk}nk=1, the Toeplitz dictionary and the ratio λ/λmax = 0.5, see Subsection 5.1.

Screening test (4.10) then particularizes as

(4.12) ∀q ∈ J1, nK :
∣∣aT
` c
∣∣+

q−1∑
k=1

∣∣AT
\`c
∣∣
[k]
< λ

(
q∑

k=1

γk

)
− qR =⇒ x?(`) = 0.

Interestingly, (4.12) shares the same mathematical structure as optimality condition
(4.6). In particular, (4.12) reduces to (4.6) when c = u? and R = 0. In this case, it
is easy to see that (4.12) is the best5 screening test within the family of tests defined
in Theorem 4.3 since an equality occurs in (4.7).

In practice, we may expect this conclusion to remain valid when R is “sufficiently”
close to zero. This behavior is illustrated in Figure 1. The figure represents the pro-
portion of zeros entries of x? detected by screening test (4.10) for different “qualities”
of the safe region and different choices of parameters {pq}q∈J1,nK. We refer the reader
to Subsection 5.1 for a detailed description of the simulation setup. The center of
the safe sphere used to apply (4.10) is assumed to be equal (up to machine preci-
sion) to u? and the x-axis of the figure represents the radius R of the sphere region.
The green curve corresponds to test (4.12); the orange curve represents the screen-
ing performance achieved when test (4.10) is implemented for all possible choices for
{pq}q∈J1,nK. We note that, as expected, the green curve attains the best screening
performance as soon as R becomes close to zero.

At the other extreme of the spectrum, another case of interest reads as:

(4.13) ∀q ∈ J1, nK : pq = q.

Using our initial hypothesis (1.3), the screening test (4.10) rewrites6

(4.14) |aT
` c| < λγn −R =⇒ x?(`) = 0.

Interestingly, this test has the same mathematical structure as (3.9) with the exception
that λ is multiplied by the value of the smallest weighting coefficient γn. In particular,

5In the following sense: if test (4.10) passes for some choice of the parameters {pq}q∈J1,nK, then
test (4.12) also necessarily succeeds.

6 More precisely, (4.10) reduces to “∀q ∈ J1, nK : |aT
` c| < λγq −R =⇒ x?

(`)
= 0” which, in view

of (1.3), is equivalent to (4.14).
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if γk = 1 ∀k ∈ J1, nK SLOPE reduces to LASSO and test (4.14) is equivalent to (3.9);
Theorem 4.3 thus encompasses standard screening rule (3.9) for LASSO as a particular
case. The following result emphasizes that (4.14) is in fact the best screening rule
within the family of tests defined by Theorem 4.3 when γk = 1 ∀k ∈ J1, nK:

Lemma 4.4. If γk = 1 ∀k ∈ J1, nK and test (4.10) passes for some choice of
parameters {pq}q∈J1,nK, then test (4.14) also succeeds.

A proof of this result is available in Appendix B.3.
As a final remark, let us mention that, although we just emphasized that some

choices of parameters {pq}q∈J1,nK can be optimal (in terms of screening performance)
in some situations, no conclusion can be drawn in the general case. In particular, we
found in our numerical experiments that the best choice for {pq}q∈J1,nK depends on
many factors: the weights {γk}nk=1, the radius of the safe sphere R, the nature of the
dictionary, the atom to screen, etc. This is illustrated in Fig. 1: we see that the blue
and green curves deviate from the orange curve for certain values of R, that is the
best screening performance is not necessarily achieved for pq = 1 or pq = q ∀q ∈ J1, nK.

4.3. Efficient implementation. Since the best values for {pq}q∈J1,nK cannot
be foreseen, it is desirable to evaluate the screening rule (4.10) for any choice of these
parameters. Formally, this ideal test reads:

(4.15) ∀q ∈ J1, nK,∃pq ∈ J1, qK :
∣∣aT
` c
∣∣+

q−1∑
k=pq

∣∣AT
\`c
∣∣
[k]
< κq,pq =⇒ x?(`) = 0.

Since verifying this test for a given index ` involves the evaluation of O(n2) inequali-
ties, a brute-force evaluation of (4.15) for all atoms of the dictionary requires O(n3)
operations. In this section, we present a procedure to perform this task with a com-
plexity scaling as O(n log n+ TL) where T ≤ n is some problem-dependent constant
(to be defined later on) and L is the number of atoms of the dictionary passing test
(4.15). Our procedure is summarized in Algorithms 4.1 and 4.2, and is grounded on
the following nesting properties.

Nesting of the tests for different atoms. We first emphasize that there exists an
implication between the failures of test (4.15) for some group of indices. In particular,
the following result holds:

Lemma 4.5. Let Bq,` be defined as in Lemma 4.2 and assume that

(4.16)
∣∣aT

1 c
∣∣ ≥ . . . ≥ ∣∣aT

nc
∣∣.

Then ∀q ∈ J1, nK:

(4.17) ` < `′ =⇒ Bq,` ≥ Bq,`′ .

A proof of this result is provided in Appendix B.4. Lemma 4.5 has the following
consequence: if (4.16) holds, the failure of test (4.15) for some `′ ∈ J2, nK implies the
failure of the test for any index ` ∈ J1, `′ − 1K. This immediately suggests a backward
strategy for the evaluation of (4.15), starting from ` = n and going backward to
smaller indices. This is the sense of the main recursion in Algorithm 4.1.

We note that hypothesis (4.16) can always be verified by a proper reordering of
the elements of |ATc|. This can be achieved by state-of-the-art sorting procedures
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Algorithm 4.1 Fast implementation of SLOPE screening test (4.15)
Require: radius R ≥ 0, sorted elements {|ATc|[k]}nk=1

1: L = ∅ {Set of screened atoms: init}
2: ` = n {Index of atom under testing: init}
3: Evaluate {g(p)}np=1, {p?(q)}nq=1, {q?(k)}nk=1

4: run = 1

5: while run == 1 and ` > 0 do
6: test = Algorithm 4.2(R,`,{g(p)}np=1,{p?(q)}nq=1,{q?(k)}nk=1)
7: if test == 1 then
8: L = L ∪ {`}
9: ` = `− 1

10: else
11: run = 0 {Stop testing as soon as one atom does not pass the test}
12: end if
13: end while
14: return L (Set of indices passing test (4.15))

with a complexity of O(n log n). Therefore, in the sequel we will assume that (4.16)
holds even if not explicitly mentioned.

Nesting of some inequalities. We next show that the number of inequalities to be
verified may possibly be substantially smaller than O(n2). We first focus on the case
“` = n” and then extend our result to the general case “` < n”.

Let us first note that under hypothesis (4.16):

(4.18) ∀k ∈ J1, n− 1K : |AT
\nc|[k] = |AT

\nc|(k),

that is the kth largest element of |AT
\nc| is simply equal to its kth component. The

particularization of (4.15) to ` = n can then be rewritten as:

(4.19) ∀q ∈ J1, nK,∃pq ∈ J1, qK :
∣∣aT
nc
∣∣ < τq,pq

where τq,p is defined ∀q ∈ J1, nK and p ∈ J1, qK as

(4.20) τq,p , κq,p −
q−1∑
k=p

∣∣ATc
∣∣
(k)

=

q−1∑
k=p

(λγk −
∣∣ATc

∣∣
(k)
−R) + (λγq −R).

We show hereafter that (4.19) can be verified by only considering a “well-chosen”
subset of thresholds T ⊆ {τq,p : q ∈ J1, nK, p ∈ J1, qK}, see Lemma 4.6 below.

If

(4.21) p?(q) , arg max
p∈J1,qK

τq,p,

we obviously have

(4.22)
∣∣aT
nc
∣∣ < τq,p?(q) ⇐⇒ ∃pq ∈ J1, qK :

∣∣aT
nc
∣∣ < τq,pq .

In other words, for each q ∈ J1, nK, satisfying the inequality “
∣∣aT
nc
∣∣ < τq,p” for p =

p?(q) is necessary and sufficient to ensure that it is verified for some pq ∈ J1, qK.
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Motivated by this observation, we show the following items below: i) p?(q) can be
evaluated ∀q ∈ J1, nK with a complexity O(n); ii) similarly to p, only a subset of
values of q ∈ J1, nK are of interest to implement (4.19).

Let us define the function:

(4.23)
g : J1, nK→ R

p 7→
∑n
k=p(λγk −

∣∣ATc
∣∣
(k)
−R) .

We then have ∀q ∈ J1, nK and p ∈ J1, qK:

(4.24) τq,p = g(p)− (g(q)− λγq)−R.

In view of (4.24), the optimal value p?(q) can be computed as

(4.25) p?(q) = arg max
p∈J1,qK

g(p).

Considering (4.23), we see that the evaluation of g(p) ∀p ∈ J1, nK (and therefore p?(q)
∀q ∈ J1, nK) can be done with a complexity scaling as O(n). This proves item i).

Let us now show that only some specific indices q ∈ J1, nK are of interest to
implement (4.19). Let

(4.26) q?(k) , arg max
q∈J1,kK

g(q)− λγq,

and define the sequence {q(t)}t as

(4.27)

{
q(1) = q?(n)

q(t) = q?(p?(q(t−1))− 1)

where the recursion is applied as long as p?(q(t−1)) > 1.7 We then have the following
result whose proof is available in Appendix B.5:

Lemma 4.6. Let T ,
{
τq,p?(q) : q ∈ {q(t)}t

}
where {q(t)}t is defined in (4.27).

Test (4.19) is passed if and only if

(4.28) ∀τ ∈ T : |aT
nc| < τ.

Lemma 4.6 suggests the procedure described in Algorithm 4.2 (with ` = n) to verify
if (4.19) is passed. In a nutshell, the lemma states that only card(T ) inequalities
need to be taken into account to implement (4.19). We note that card(T ) ≤ n since
only one value of p (that is p?(q)) has to be considered for any q ∈ J1, nK. This is
in contrast with a brute-force evaluation of (4.19) which requires the verification of
O(n2) inequalities.

We finally emphasize that the procedure described in Algorithm 4.2 also applies
to ` < n as long as the screening test is passed for all `′ > `. More specifically, if test
(4.15) is passed for all `′ ∈ J`+ 1, nK, then its particularization to atom a` reads

(4.29) ∀τ ∈ T ′ :
∣∣aT
` c
∣∣ < τ

for some T ′ ⊆ T .

7We note that the sequence {q(t)}t is strictly decreasing and thus contains at most n elements.
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Algorithm 4.2 Check if test (4.15) is passed for ` if it is passed for `′ > `

Require: radius R ≥ 0, index ` ∈ J1, nK, {g(p)}np=1, {p?(q)}nq=1,{q?(k)}nk=1

1: q = q?(`)
2: test = 1
3: run = 1

4: while run == 1 do
5: τ = g(p?(q))− g(q) + (λγq −R) {Evaluation of current threshold, see (4.24)}
6: if |aT

` c| ≥ τ then
7: test = 0 {Test failed}
8: run = 0 {Stops the recursion}
9: end if

10: if p?(q) > 1 then
11: q = q?(p?(q)− 1) {Next value of q to test, see (4.27)}
12: else
13: run = 0 {Stops the recursion}
14: end if
15: end while
16: return test (= 1 if test passed and 0 otherwise)

Indeed, if screening test (4.15) is passed for all `′ ∈ J`+ 1, nK, the corresponding
elements can be discarded from the dictionary and we obtain a reduced problem
only involving atoms {a`′}`′∈J1,`K. Since (4.16) is assumed to hold, a` attains the
smallest absolute inner product with c and we end up with the same setup as in the
case “` = n”. In particular, if screening test (4.15) is passed for all `′ ∈ J`+ 1, nK,
Lemma 4.6 still holds for a` by letting q(1) = q?(`) in the definition of the sequence
{q(t)}t in (4.27).

To conclude this section, let us summarize the complexity needed to implement
Algorithms 4.1 and 4.2. First, Algorithm 4.1 requires the entries |ATc| to be sorted
to satisfy hypothesis (4.5). This involves a complexity O(n log n). Moreover, the se-
quences {g(p)}np=1, {p?(q)}nq=1, {q?(k)}nk=1 can be evaluated with a complexity O(n).
Finally, the main recursion in Algorithm 4.1 implies to run Algorithm 4.2 L times,
where L is the number of atoms passing test (4.15). Since Algorithm 4.2 requires to
verify at most T = card (T ) inequalities, the overall complexity of the main recursion
scales asO(LT ). Overall, the complexity of Algorithm 4.1 is thereforeO(n log n+LT ).

5. Numerical simulations. We present hereafter several simulation results
demonstrating the effectiveness of the proposed screening procedure to accelerate
the resolution of SLOPE. This section is organized as follows. In Subsection 5.1, we
present the experimental setups considered in our simulations. In Subsection 5.2 we
compare the effectiveness of different screening strategies. In Subsection 5.3, we show
that our methodology enables to reach better convergence properties for a given com-
putational budget.

5.1. Experimental setup. We detail below the experimental setups used in all
our numerical experiments.

Dictionaries and observation vectors: New realizations of A and y are drawn for
each trial as follows. The observation vector is generated according to a uniform
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distribution on them-dimensional sphere. The elements ofA obey one of the following
models:

1. the entries are i.i.d. realizations of a centered Gaussian,
2. the entries are i.i.d. realizations of a uniform distribution on [0, 1],
3. the columns are shifted versions of a Gaussian curve.

For all distributions, the columns of A are normalized to have unit `2-norm. In the
following, these three options will be respectively referred to as “Gaussian”, “Uniform”
and “Toeplitz”.

Regularization parameters: We consider three different choices for the sequence {γk}nk=1,
each of them corresponding to a different instance of the well-known OSCAR prob-
lem [7, Eq. (3)]. More specifically, we let

(5.1) ∀k ∈ J1, nK : γk , β1 + β2(n− k)

where β1, β2 are nonnegative parameters chosen so that γ1 = 1 and γn ∈ {.9, .1, 10−3}.
In the sequel, these parametrizations will respectively be referred to as “OSCAR-1”,
“OSCAR-2” and “OSCAR-3”.

5.2. Performance of screening strategies. We first compare the effectiveness
of different screening strategies described in Section 4. More specifically, we evaluate
the proportion of zero entries in x? – the solution of SLOPE problem (1.1) – that can
be identified by tests (4.12), (4.14) and (4.15) as a function of the “quality” of the
safe sphere. These tests will respectively be referred to as “test-p=1”, “test-p=q”
and “test-all” in the following. Figures 1 (see Subsection 4.2) and 2 represent this
criterion of performance as a function of some parameter R0 (described below) and
different values of the ratio λ/λmax. The results are averaged over 50 realizations.
For each simulation trial, we draw a new realization of y ∈ R100 and A ∈ R100×300

according to the distributions described in Subsection 5.1. We consider Toeplitz
dictionaries in Figure 1 and Gaussian dictionaries in Figure 2.

The safe sphere used in the screening tests is constructed as follows. A primal-
dual solution (xa,ua) of problems (1.1) and (4.4) is evaluated with “high-accuracy”,
i.e., with a duality GAP of 10−14 as stopping criterion. More precisely, xa is first
evaluated by solving the SLOPE problem (1.1) with the algorithm proposed in [5].
To evaluate ua, we extend the so-called “dual scaling” operator [24, Section 3.3] to
the SLOPE problem: we let ua = (y −Axa)/β(y −Axa) where

(5.2) ∀z ∈ Rm : β(z) , max

(
1, max
q∈J1,nK

∑q
k=1

∣∣ATz
∣∣
[k]

λ
∑q
k=1 γk

)
.

The couple (xa,ua) is then used to construct a sphere S(ca, Ra) in Rm whose param-
eters are given by

c = ua(5.3a)

R = R0 +
√

2(P (xa)−D(ua))(5.3b)

where R0 is a nonnegative scalar. We note that for R0 = 0, the latter sphere corre-
sponds to the GAP safe sphere described in (3.10).8 Hence, (5.3a) and (5.3b) define

8We note that the GAP safe sphere derived in [36] for problem (3.1) extends to SLOPE since
1) the dual problem has the same mathematical form and 2) its derivation does not leverage the
definition of the dual feasible set.
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Fig. 2. Percentage of zero entries in the solution of the SLOPE problem identified by test-p=1
(orange lines), test-p=q (green lines) and test-all (blue lines) as a function of R0 for the Gaussian
dictionary, three values of λ/λmax and three parameter sequences {γk}nk=1.

a safe sphere for any choice of the nonnegative scalar R0 ≥ 0.
Figure 1 concentrates on the sequence OSCAR-1 whereas each subfigure corre-

sponds to a different choice for {γk}nk=1 in Figure 2. For the three considered screen-
ing strategies, we observe that the detection performance decreases as R0 increases.
Interestingly, different behaviors can be noticed. For all simulation setups, test-p=1
reaches a detection rate of 100% whenever R0 is sufficiently small. The performance of
test-p=q varies from one sequence to another: it outperforms test-p=1 for OSCAR-1,
is able to detect at most 20% of the zeros for OSCAR-2 and fail for all values of R0

for OSCAR-3. Finally, test-all outperforms quite logically the two other strategies.
The gap in performance depends on both the considered setup and the radius R0

but can be quite significant in some cases. For example, when λ/λmax = 0.5 and
R0 = 10−2, there is 80% more entries passing test-all than test-p=1 for all param-
eter sequences.

These results may be explained as follows. First, we already mentioned in Sec-
tion 4 that when the radius of the safe sphere is sufficiently small (that is, when R0 is
close to zero), test-p=1 is expected to be the best9 screening test within the family
of tests defined in Theorem 4.3. Similarly, if the SLOPE weights satisfy γ1 = γn, we
showed in Lemma 4.4 that no test in Theorem 4.3 can outperform test-p=q. Hence,
one may reasonably expect that this conclusion remains valid whenever γ1 ' γn, as
observed for the sequence OSCAR-1 in our simulations. On the other hand, passing
test-p=q becomes more difficult as parameter γn is small. As a matter of fact, the
test will never pass when γn = 0. In our experiments, the sequences {γk}nk=1 are such
that γn is close to zero for OSCAR-2 and OSCAR-3. Finally, since test-all encom-
passes the two other tests, it is expected to always perform at least as well as the latter.

5.3. Benchmarks. As far as our simulation setup is concerned, the results pre-
sented in the previous section show a significant advantage in implementing test-all
in terms of detection performance. However, this conclusion does not include any con-
sideration about the numerical complexity of the tests. We note that, although the
proposed screening rules can lead to a significant reduction of the problem dimen-

9in the sense defined in Footnote 5 page 8.
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sions, our tests also induce some additional computational burden. In particular,
we emphasized in Subsection 4.3 that test-all can be verified for all atoms of the
dictionary with a complexity O(n log n + TL) where T ≤ n is a problem-dependent
parameter and L is the number of atoms passing the test. Moreover, we also note
that, as far as a GAP safe sphere is considered in the implementation of the tests, its
construction requires the identification of a dual feasible point u and this operation
typically induces a computational overhead of O(n log n) (see below for more details).

In this section, we therefore investigate the benefits (from a “complexity-accuracy
trade-off” point of view) of interleaving the proposed safe screening methodology
with the iterations of an accelerated proximal gradient algorithm [5]. In all our tests,
we consider the GAP safe sphere defined in (3.10). The primal point used in the
construction of the GAP sphere corresponds to the current iterate of the solving
procedure, say x(t). A dual feasible point u(t) is constructed as

u(t) =
y −Ax(t)

β(y −Ax(t))
(5.4)

where β : Rm → Rm is either defined as in (5.2) or as follows:

(5.5) ∀z ∈ Rm : β(z) , max

(
1, max
k∈J1,nK

∣∣ATz
∣∣
[k]

λγk

)
.

(5.2) matches the standard definition of the “dual scaling” operator proposed in [24,
Section 3.3] whereas (5.5) corresponds to the option considered in [3].10 We notice that
the two options require to sort the elements of

∣∣ATz
∣∣ and thus lead to a complexity

overhead scaling as O(n log n).
In our simulations, we consider the four following solving strategies:

1. Run the proximal gradient procedure [5] with no screening.
2. Interleave some iterations of the proximal gradient algorithm with test-p=q

and construct the dual feasible point with (5.2).
3. Interleave some iterations of the proximal gradient algorithm with test-p=q

and construct the dual feasible point with (5.5).
4. Interleave some iterations of the proximal gradient algorithm with test-all

and construct the dual feasible point with (5.2).

These strategies will respectively be denoted “PG-no”, “PG-p=q”, “PG-Bao” and “PG-all”
in the sequel. We note that PG-Bao closely matches the solving procedure considered
in [3].

We compare the performance of these solving strategies by resorting to Dolan-
Moré profiles [15]. More precisely, we run each procedure for a given budget of time
(that is the algorithm is stopped after a predefined amount of time) on I = 50 different
instances of the SLOPE problems. In PG-p=q, PG-Bao and PG-all, the screening
procedure is applied once every 20 iterations. Each problem instance is generated by
drawing a new dictionary A ∈ R100×300 and observation vector y ∈ R100 according
to the distributions described in Subsection 5.1. We then compute the following
performance profile for each solver solv ∈ {PG-no, PG-p=q, PG-Bao, PG-all}:

(5.6) ρsolv(δ) , 100
card ({i ∈ J1, IK : di,solv ≤ δ})

I
∀δ ∈ R+

10See companion code of [3] available at
https://github.com/brx18/Fast-OSCAR-and-OWL-Regression-via-Safe-Screening-Rules/tree/
1e08d14c56bf4b6293899ae2092a5e0238d27bf6.

https://github.com/brx18/Fast-OSCAR-and-OWL-Regression-via-Safe-Screening-Rules/tree/1e08d14c56bf4b6293899ae2092a5e0238d27bf6
https://github.com/brx18/Fast-OSCAR-and-OWL-Regression-via-Safe-Screening-Rules/tree/1e08d14c56bf4b6293899ae2092a5e0238d27bf6
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where di,solv denotes the dual gap attained by solver solv for problem instance i.
ρsolv(δ) thus represents the (empirical) probability that solver solv reaches a dual
gap no greater than δ for the considered budget of time.

Figure 3 presents the performance profiles obtained for three types of dictionaries
(Gaussian, Uniform and Toeplitz) and three different weighting sequences {γk}nk=1

(OSCAR-1, OSCAR-2 and OSCAR-3). The results are displayed for λ/λmax = 0.5 but
similar performance profiles have been obtained for other values of the ratio λ/λmax.
All algorithms are implemented in Python with Cython bindings and experiments are
run on a Dell laptop, 1.80 GHz, Intel Core i7. For each setup, we adjusted the time
budget so that ρPG-all(10−8) ' 50% for the sake of comparison.

As far as our simulation setup is concerned, these results show that the proposed
screening methodologies improve the solving accuracy as compared to a standard
proximal gradient. PG-all improves the average accuracy over PG-no in all the con-
sidered settings. The gap in performance depends on the setup but is generally quite
significant. PG-p=q also enhances the average accuracy in most cases and performs
at least comparably to PG-Bao in all setups. As expected, the behavior of PG-p=q
and PG-Bao is more sensitive to the choice of the weighting sequence {γk}nk=1. In
particular, the screening performance of these strategies decreases when γn ' 0 as
emphasized in Subsection 5.2. This results in no accuracy gain over PG-no for the se-
quence OSCAR-3 as illustrated in Figure 3. Nevertheless, we note that, even in absence
of gain, PG-p=q and PG-Bao do not seem to significantly degrade the performance as
compared to PG-no.

6. Conclusions. In this paper we proposed a new methodology to safely identify
the zeros of the solutions of the SLOPE problem. In particular, we introduced a fam-
ily of screening rules indexed by some parameters {pq}nq=1 where n is the dimension of
the primal variable. Each test of this family takes the form of a series of n inequalities
which, when verified, imply the nullity of some coefficient of the minimizers. Inter-
estingly, the proposed tests encompass standard “sphere” screening rule for LASSO
as a particular case for some {pq}nq=1, although this choice does not correspond to
the most effective test in the general case. We then introduced an efficient numerical
procedure to jointly evaluate all the tests in the proposed family. Our algorithm has a
complexity O(n log n+ TL) where T ≤ n is some problem-dependent constant and L
is the number of elements passing at least one test of the family. We finally assessed
the performance of our screening strategy through numerical simulations and showed
that the proposed methodology leads to significant improvements of the solving ac-
curacy for a prescribed computational budget.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their thoughtful comments and for pointing out one technical flaw in the first
version of the manuscript.

Appendix A. Miscellaneous results. Appendix A.1 reminds some useful
results from convex analysis applied to the SLOPE problem (1.1). Appendix A.2
provides a proof of (4.2). In all the statements below, ∂rslope(x) denotes the subdif-
ferential of rslope evaluated at x.
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Fig. 3. Performance profiles of PG-no, PG-p=q, PG-Bao and PG-all obtained for the “Gaussian”
(column 1), “Uniform” (column 2) and “Toeplitz” (column 3) dictionaries and λ/λmax = 0.5 with a
budget of time. First row: OSCAR-1, second row: OSCAR-2 and third row: OSCAR-3.

A.1. Some results of convex analysis. We remind below several results of
convex analysis that will be used in our subsequent derivations. The first lemma
provides a necessary and sufficient condition for x? ∈ Rn to be a minimizer of the
SLOPE problem (1.1):

Lemma A.1. x? is a minimizer of (1.1) ⇐⇒ λ−1AT(y −Ax?) ∈ ∂rslope(x?).

Lemma A.1 follows from a direct application of Fermat’s rule [4, Proposition 16.4] to
problem (1.1). We note that under condition (1.3), rslope defines a norm on Rn, see
e.g., [6, Proposition 1.1] or [48, Lemma 2]. The subdifferential ∂rslope(x) is therefore
well defined for all x ∈ Rn and writes as

(A.1) ∂rslope(x) =
{
g ∈ Rn : gTx = rslope(x) and rslope,∗(g) ≤ 1

}
,

where

(A.2) rslope,∗(g) , sup
x∈Rn

gTx s.t. rslope(x) ≤ 1

is the dual norm of rslope, see e.g., [1, Eq. (1.4)].
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The next lemma states a technical result which will be useful in the proof of The-
orem 4.1 in Appendix B:

Lemma A.2. If g ∈ ∂rslope(x), then xT(g−g′) ≥ 0 ∀g′ ∈ Rn s.t. rslope,∗(g
′) ≤ 1.

Proof. Let g ∈ ∂rslope(x). One has

g ∈ ∂rslope(x) ⇐⇒ x ∈ ∂r∗slope(g)

⇐⇒ ∀g′ ∈ Rn, r∗slope(g′) ≥ r∗slope(g) + 〈x,g′ − g〉(A.3)

where r∗slope refers to the Fenchel conjugate of rslope. The first equivalence is a conse-
quence of [4, Theorem 16.29] and the second of the definition of the subdifferential set.
Lemma A.2 follows by noticing that r∗slope(g′) = 0 ∀g′ ∈ Rn such that rslope,∗(g

′) ≤ 1
by property of r∗slope [4, Item (v) of Example 13.3].

In the last lemma of this section, we provide a closed-form expression of the
subdifferential and the dual norm of rslope:11

Lemma A.3. The dual norm and the subdifferential of rslope(x) respectively write:

rslope,∗(g) = max
q∈J1,nK

1∑q
k=1 γk

q∑
k=1

|g|[k],

∂rslope(x) =

{
g ∈ Rn : gTx = rslope(x) and ∀q ∈ J1, nK :

q∑
k=1

|g|[k] ≤
q∑

k=1

γk

}
.

Proof. The expression of the dual norm is a direct consequence of [48, Lemma 4].
More precisely, the authors showed that

(A.4) rslope,∗(g) = max
v∈

⋃n
q=1 Vq

gTv

where Vq ,
{

1∑q
k=1 γk

s : s ∈ {0,−1,+1}n, card
(
{j : s(j) 6= 0}

)
= q
}

for all q ∈ J1, nK.
The expression of rslope,∗ given in Lemma A.3 is a compact rewriting of (A.4) that
can be obtained as follows. See first that for all q ∈ J1, nK,

(A.5) max
v∈Vq

gTv ≤ 1∑q
k=1 γk

q∑
k=1

|g|[k].

Second, for q ∈ J1, nK, let Jq ⊂ J1, nK be a set q distinct indices such that |g(j)| ≥ |g|[q]
for all j ∈ Jq. Then, the upper bound in (A.5) is attained by evaluating the left-hand
side at v ∈ Vq defined as

(A.6) ∀j ∈ J1, nK : v(j) =

{
1∑q

k=1 γk
sign

(
g(j)

)
if j ∈ Jq

0 otherwise.

The expression of the subdifferential follows from (A.1) by plugging the expression of
the dual norm in the inequality “rslope,∗(g) ≤ 1”.

11We note that an expression of the subdifferential of rslope has already been derived in [10,
Fact A.2 in supplementary material]. However, the expression of the subdifferential proposed in
Lemma A.3 has a more compact form and is better suited to our subsequent derivations.
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A.2. Proof of (4.2). We first observe that

(A.7) 0n is not a minimizer of (1.1)⇐⇒ λ−1ATy /∈ ∂rslope(0n),

as a direct consequence of Lemma A.1. Particularizing the expression of ∂rslope(x)
in Lemma A.3 to x = 0n, the right-hand side of (A.7) can equivalently be rewritten
as

(A.8) ∃q ∈ J1, nK : λ−1

q∑
k=1

∣∣ATy
∣∣
[k]
>

q∑
k=1

γk.

Since γ1 > 0 and the sequence {γk}nk=1 is nonnegative by hypothesis (1.3), (A.8) can
also be rewritten as

(A.9) ∃q ∈ J1, nK : λ <

∑q
k=1

∣∣ATy
∣∣
[k]∑q

k=1 γk
.

The statement in (4.2) then follows by noticing that the right-hand side of (4.1) is a
compact reformulation of (A.9).

Appendix B. Proofs related to screening tests.

B.1. Proof of Theorem 4.1. In this section, we provide the technical details
leading to (4.6). Our derivation leverages the Fermat’s rule and the expression of the
subdifferential derived in Lemma A.3.

We prove (4.6) by contraposition. More precisely, we show that if x?(`) 6= 0 for
some ` ∈ J1, nK, then

(B.1) ∃q0 ∈ J1, nK,
∣∣aT
` u

?
∣∣+

q0−1∑
k=1

∣∣AT
\`u

?
∣∣
[k]

= λ

q0∑
k=1

γk.

Using Lemma A.1 and the following connection between primal-dual solutions (see [6,
Section 2.5])

(B.2) u? = y −Ax?,

we have that x? is a minimizer of (1.1) if and only if

(B.3) g? , λ−1ATu? ∈ ∂rslope(x?).

In the rest of the proof, we will use Lemma A.2 with x = x?, g = g? and different
instances of vector g′ to prove our statement. First, let us define g′ ∈ Rn as

g′(j) = g?(j) ∀j ∈ J1, nK \ {`},
g′(`) = 0.

It is easy to verify that rslope,∗(g
′) ≤ 1. Applying Lemma A.2 then leads to

(B.4) g?(`)x
?
(`) ≥ 0.

Since x?(`) is assumed to be nonzero, we then have

(B.5) sign
(
g?(`)

)
sign

(
x?(`)

)
≥ 0,
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where the equality holds if and only if g?(`) = 0.
Second, let us consider the following choice for g′ ∈ Rn:

g′(j) = g?(j) ∀j ∈ J1, nK \ {`},
g′(`) = g?(`) + sδ,

(B.6)

where

(B.7) s ,

{
sign

(
g?(`)

)
if g?(`) 6= 0

sign
(
x?(`)

)
otherwise,

and δ is any nonnegative scalar such that

(B.8) rslope,∗(g
′) ≤ 1.

On the one hand, we note that (B.8) is verified for δ = 0. On the other hand, it
can be seen that (B.8) is violated as soon as δ > 0 by using the following arguments.
First, applying Lemma A.2 with g′ defined as in (B.6) leads to

(B.9) − sx?(`)δ ≥ 0.

Second, using (B.5) and the definition of s in (B.7), we must have sx?(`) > 0. Hence,
satisfying inequality (B.8) necessarily implies that δ = 0. The contraposition of this
result implies:

(B.10) ∀δ > 0,∃q0 ∈ J1, nK :

q0∑
k=1

|g?|[k] + δ >

q0∑
k=1

γk

or equivalently

(B.11) ∃q0 ∈ J1, nK :

q0∑
k=1

|g?|[k] =

q0∑
k=1

γk.

Let us next emphasize that the range of values for q0 can be restricted by choosing
some suitable value for δ. In particular, let q′0 ∈ J1, nK be the smallest integer such
that |g?(`)| = |g

?|[q′0] and let

(B.12) 0 < δ < |g?|[q′0−1] − |g?|[q′0]

with the convention g?[0] = +∞. Considering g′ as defined in (B.6) with δ satisfy-
ing (B.12), we have that the first q′0 − 1 largest absolute elements of g′ and g? are
the same. Since rslope,∗(g

?) ≤ 1, the inequality in the right-hand side of (B.10) can
therefore not be verified for q0 ∈ J1, q′0 − 1K. Hence, considering δ as in (B.12), we
have

(B.13) ∃q0 ∈ Jq′0, nK :

q0∑
k=1

|g?|[k] =

q0∑
k=1

γk.

We finally obtain our original assertion (B.1) by using the definition of g? in (B.3)
and the fact that

(B.14)
q0∑
k=1

∣∣ATu?
∣∣
[k]

=
∣∣aT
` u

?
∣∣+

q0−1∑
k=1

∣∣AT
\`u

?
∣∣
[k]

since |aT
` u

?| = |ATu?|[q′0] ≥ |ATu?|[q0] by definition of q0 ≥ q′0.
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B.2. Proof of Lemma 4.2. We first state and prove the following technical
lemma:

Lemma B.1. Let g ∈ Rn and h ∈ Rn be such that g(j) ≤ h(j) ∀j ∈ J1, nK. Then

(B.15) g[k] ≤ h[k] ∀k ∈ J1, nK.

Proof. Let k ∈ J1, nK. We have by definition

h[k] = max
J⊆J1,nK

card(J )=k

min
j∈J

h(j),

≥ max
J⊆J1,nK

card(J )=k

min
j∈J

g(j),

= g[k],

where the inequality follows from our assumption g(j) ≤ h(j) ∀j ∈ J1, nK.

We are now ready to prove Lemma 4.2. For any p ∈ J1, qK, we can write:

(B.16)
∣∣aT
` u

?
∣∣+

q−1∑
k=1

∣∣AT
\`u

?
∣∣
[k]

=
∣∣aT
` u

?
∣∣+

p−1∑
k=1

∣∣AT
\`u

?
∣∣
[k]

+

q−1∑
k=p

∣∣AT
\`u

?
∣∣
[k]
.

First, since u? is dual feasible, we have:

(B.17)
p−1∑
k=1

∣∣AT
\`u

?
∣∣
[k]
≤ λ

p−1∑
k=1

γk.

We next show that if u? ∈ S(c, R), then

(B.18)
∣∣aT
` u

?
∣∣+

q−1∑
k=p

∣∣AT
\`u

?
∣∣
[k]
≤
∣∣aT
` c
∣∣+

q−1∑
k=p

∣∣AT
\`c
∣∣
[k]

+ (q − p+ 1)R.

We then obtain the result stated in the lemma by combining (B.17)-(B.18).
Inequality (B.18) can be shown as follows. First,

(B.19) ∀j ∈ J1, nK : max
u∈S(c,R)

|aT
j u| = |aT

j c|+R.

Hence,

(B.20)
(

max
u∈S(c,R)

∣∣AT
\`u
∣∣)

[k]

=
∣∣AT
\`c
∣∣
[k]

+R

where the maximum is taken component-wise in the left-hand side of the equation.
Applying Lemma B.1 with g = |AT

\`u| and h = maxũ∈S(c,R) |AT
\`ũ|, we have

(B.21) ∀u ∈ S(c, R) :
∣∣AT
\`u
∣∣
[k]
≤
(

max
ũ∈S(c,R)

∣∣AT
\`ũ
∣∣)

[k]

and therefore

(B.22) max
u∈S(c,R)

(∣∣AT
\`u
∣∣
[k]

)
≤
(

max
u∈S(c,R)

∣∣AT
\`u
∣∣)

[k]

.
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Combining these results leads to

∣∣aT
` u

?
∣∣+

q−1∑
k=p

∣∣AT
\`u

?
∣∣
[k]
≤ max

u∈S(c,R)

∣∣aT
` u
∣∣+

q−1∑
k=p

∣∣AT
\`u
∣∣
[k]


≤ max

u∈S(c,R)

∣∣aT
` u
∣∣+

q−1∑
k=p

max
u∈S(c,R)

(∣∣AT
\`u
∣∣
[k]

)

≤ max
u∈S(c,R)

∣∣aT
` u
∣∣+

q−1∑
k=p

(
max

u∈S(c,R)

∣∣AT
\`u
∣∣)

[k]

≤
∣∣aT
` c
∣∣+

q−1∑
k=p

∣∣AT
\`c
∣∣
[k]

+ (q − p+ 1)R.

B.3. Proof of Lemma 4.4. We want to show that if test (4.10) is passed for
some {pq}q∈J1,nK, then test (4.14) is also passed when γk = 1 ∀k ∈ J1, nK.

Assume (4.10) holds for some {pq}q∈J1,nK, that is ∀q ∈ J1, nK, ∃pq ∈ J1, qK such
that

(B.23)
∣∣aT
` c
∣∣+

q−1∑
k=pq

∣∣AT
\`c
∣∣
[k]
< κq,pq ,

where κq,p , λ
(∑q

k=p γk

)
− (q − p + 1)R. Considering the case “q = 1”, we have

p1 = 1, κ1,1 = λγ1 −R and (B.23) thus particularizes to

(B.24)
∣∣aT
` c
∣∣ < λγ1 −R.

Since γk = 1 ∀k ∈ J1, nK by hypothesis, the latter inequality is equal to (4.14) and the
result is proved.

B.4. Proof of Lemma 4.5. We prove the result by showing that ∀q ∈ J1, nK
the sequence {Bq,`}`∈J1,nK is non-increasing. To this end, we first rewrite Bq,` in a
slightly different manner, easier to analyze. Let

(B.25)
Cq,p , (q − p+ 1)R+ λ

(∑p−1
k=1 γk

)
∀q ∈ J1, nK,∀p ∈ J1, qK

σq ,
∑q
k=1 |aT

k c| ∀q ∈ J0, nK

with the convention σ0 , 0. Using these notations and hypothesis (4.16), Bq,` can be
rewritten as

Bq,` − Cq,p =
∣∣aT
` c
∣∣+

q−1∑
k=1

∣∣AT
\`c
∣∣
(k)
−
p−1∑
k=1

∣∣AT
\`c
∣∣
(k)

(B.26)

=


|aT
` c|+ σq−1 − σp−1 if q < `

σq − σp−1 if p− 1 < ` ≤ q
|aT
` c|+ σq − σp if ` ≤ p− 1.

(B.27)

We next show that ∀q ∈ J1, nK the sequence {Bq,`}`∈J1,nK is non-increasing. We first
notice that Cq,p does not depend on ` and we can therefore focus on (B.27) to prove
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our claim. Using the fact that |aT
` c| ≥ |aT

`+1c| by hypothesis, we immediately obtain
that Bq,` ≥ Bq,`+1 whenever ` /∈ {p − 1, q}. We conclude the proof by treating the
cases “` = p− 1” and “` = q” separately.

If ` = q we have from (B.27):

(B.28) Bq,`+1 −Bq,` = |aT
q+1c|+ σq−1 − σq = |aT

q+1c| − |aT
q c| ≤ 0,

where the last inequality holds true by virtue of (4.16).
If ` = p− 1 (and provided that p ≥ 2) the same rationale leads to

(B.29) Bq,`+1 −Bq,` = |aT
p c| − |aT

p−1c| ≤ 0.

B.5. Proof of Lemma 4.6. The necessity of (4.28) can be shown as follows.
Assume |aT

nc| ≥ τ for some τ ∈ T and let q ∈ J1, nK be such that τ = τq,p?(q). From
(4.22) we then have

(B.30) ∀p ∈ J1, qK : |aT
nc| ≥ τq,p

and test (4.19) therefore fails.
To prove the sufficiency of (4.28), let us first notice that the definition of τq,p given

in (4.24) can be naturally extended to any arbitrary couple of indices q, p ∈ J1, nK,
i.e.,

(B.31) ∀q, p ∈ J1, nK : τq,p = g(p)− (g(q)− λγq)−R.

On the other hand, the index q(1) has been defined as

(B.32) q(1) , q?(n) = arg max
q∈J1,nK

g(q)− λγq,

see (4.26) and (4.27). Combining (B.31) and (B.32), one obtains ∀p ∈ J1, nK:

(B.33) τq(1),p = arg min
q∈J1,nK

τq,p.

In particular, letting p = p(1), we have

(B.34) ∀q ∈ Jp(1), nK : τq(1),p(1) ≤ τq,p(1) .

Hence,

(B.35) |aT
nc| < τq(1),p(1) =⇒ ∀q ∈ Jp(1), nK : |aT

nc| < τq,p(1) .

In other words, satisfying the left-hand side of (B.35) implies that test (4.19) is verified
for each q ∈ Jp(1), nK.

We can apply the same reasoning iteratively to show that ∀t ∈ J1, card (T )K:

(B.36) |aT
nc| < τq(t),p(t) =⇒ ∀q ∈ Jp(t), p(t−1) − 1K : |aT

nc| < τq,p(t) .

Since p(card(T )) = 1, we obtain that (4.28) implies that (4.19) is verified ∀q ∈ J1, nK.
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