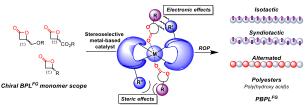
# Polyhydroxyalkanoate (PHA) copolymers for drug delivery applications: a ring-opening polymerization of functional β-lactones approach

Sophie M. GUILLAUME

Sophie.guillazume@univ-rennes1.fr

Rennes Institute of Chemical Sciences (ISCR), UMR 6226 CNRS - Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France

## Introduction


Polyhydroxyalkanoates (PHAs) are a unique class of natural or synthetic aliphatic polyesters which feature the same three-carbon backbone structure, only differing by their side-chain substituent. Introduction of a pendant functional group (FG) along the PHA backbone provides a handle to tune their properties, such as their thermal, mechanical and (bio)degradability signature. PHAs have attracted considerable interest as "green" engineering plastics. These biodegradable and biocompatible polymers represent a targeted choice as versatile green alternatives to single-use plastics especially for packaging, and for biomedical applications.

### **Results and Discussion**

Recent highlights of research in our group have been achieved in the field of 1) tunable catalytic systems for the ring-opening (co)polymerization (ROP) of functional  $\beta$ -lactones (BPL<sup>FG</sup>) (e.g.  $\beta$ -butyrolactone (BPL<sup>Me</sup>),  $\beta$ -malolactonates (BPL<sup>CO<sub>2</sub>R</sup>s; R = CH<sub>2</sub>Ph (Bn),  $(CH_2)_2=CH_2$  (All)), or 4-alkoxymethylene- $\beta$ -propiolactones (BPL<sup>CH<sub>2</sub>OR</sup>s; R = Me, Allyl, Bn)) into their corresponding PHAs (namely poly(3hydroxybutyrate) (PBPL<sup>CH3</sup>, aka. PHB), poly(alkyl  $\beta$ -malolactonate) (PBPL<sup>CO<sub>2</sub>R</sup>s), or poly(alkoxy methylene- $\beta$ -propiolactones) (PBPL<sup>CH<sub>2</sub>OR),</sup> respectively), of 2) original sequence controlled PHAs featuring a high degree of control over molecular and microstructural characteristics (Figure  $1)^{1-3}$ , and of 3) PHA copolymers as promising drug delivery systems (Figure 2).<sup>5</sup>

### Conclusions

Our most significant achievements in the ROP of functional  $\beta$ -lactones include the development of catalytic strategies that enable the controlled synthesis of functional PHAs with tunable microstructure, alternated or block PHA-based copolymers, and the evidences of the relationship between the catalytic system, the chemical structure (especially the nature of the pendant functional



**Figure 1.** Stereoselective ROP of various chiral *racemic* 4-substituted- $\beta$ -propiolactones *rac*-BPL<sup>FG</sup>s (FG = Me, CO<sub>2</sub>R, CH<sub>2</sub>OR; R = Me, All, Bn) catalyzed by diaminoor amino-alkoxy-bis(phenolate) complexes, affording the corresponding PBPL<sup>FG</sup>s.<sup>1–3</sup>



**Figure 2.** Design of nanoparticles derived from PHA based copolymers.<sup>4</sup>

substituent along the PHA backbone imparted by the exocyclic  $\beta$ -lactone FG substituent) and the composition of the macromolecules. Amphiphilic PHAs also revealed as promising biobased and biocompatible drug delivery systems.

### References

1. (a) H. Li, R. M. Shakaroun, S. M. Guillaume and J.-F. Carpentier, *Chem. – Eur. J.*, 2020, **26**, 128; (b) R. Ligny, M. M. Hänninen, S. M. Guillaume and J.-F. Carpentier, *Chem. Commun.* 2018, **54**, 8024.

2. (a) C. G. Jaffredo, Y. Chapurina, E. Kirillov, J. F. Carpentier and S. M. Guillaume, *Chem. – Eur. J.*, 2016, **22**, 7629; (b) C. G. Jaffredo, Y. Chapurina, E. Kirillov, S. M. Guillaume and J. F. Carpentier, *Angew Chem Int. Ed.* 2014, **53**, 2687.

3. (a) R. Ligny, M. M. Hänninen, S. M. Guillaume and J.-F. Carpentier, *Angew. Chem. Int. Ed.* 2017, **56**, 10388; (b) R. Ligny, S. M. Guillaume and J. F. Carpentier, *Chem. – Eur. J.*, 2019, **25**, 6412.

4. (a) G. Barouti, A. Khalil, C. Orione, K. Jarnouen, S. Cammas-Marion, P. Loyer, S. M. Guillaume, *Chem. Eur. J.* **2016**, *22*, 2819; (b) G. Barouti, K. Jarnouen, S. Cammas-Marion, P. Loyer, S. M. Guillaume, *Polym. Chem.* **2015**, *6*, 5414.