
HAL Id: hal-03331729
https://hal.science/hal-03331729

Submitted on 16 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Porphyromonas gingivalis outside the oral cavity
Steeve Bregaint, Emile Boyer, Shao Bing Fong, Vincent Meuric, Martine

Bonnaure-Mallet, Anne Jolivet-Gougeon

To cite this version:
Steeve Bregaint, Emile Boyer, Shao Bing Fong, Vincent Meuric, Martine Bonnaure-Mallet, et al..
Porphyromonas gingivalis outside the oral cavity. Odontology, 2022, 110 (1), pp.1-19. �10.1007/s10266-
021-00647-8�. �hal-03331729�

https://hal.science/hal-03331729
https://hal.archives-ouvertes.fr


ACCEPTED MANUSCRIPT
1 

1 

Porphyromonas gingivalis outside the oral cavity 2 

 3 

Steeve Bregaint1, Emile Boyer1,2, Shao Bing Fong1, Vincent Meuric1,2, Martine Bonnaure-Mallet1,2, Anne Jolivet-4 
Gougeon1,2*  5 

6 
1 Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), U1241, 7 
Microbiology, F-35000 Rennes, France 8 
2 Teaching Hospital Pontchaillou – 2 rue Henri Le Guilloux, 35033 RENNES cedex 9 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

*Corresponding author 20 

Anne Jolivet-Gougeon, INSERM 1241 NuMeCan/CIMIAD, Université de Rennes, 2, avenue du Professeur Léon 21 
Bernard, 35043 Rennes, France 22 

Phone: (33) 2 23 23 49 05 – Fax: (33) 2 23 23 49 13  23 

E-mail: anne.gougeon@univ-rennes1.fr 24 

25 

26 

27 



ACCEPTED MANUSCRIPT
2 

 

ABSTRACT 28 

Porphyromonas gingivalis, a Gram-negative anaerobic bacillus present in periodontal disease, is considered one of 29 

the major pathogens in periodontitis. A literature search for English original studies, case series and review articles 30 

published up to December 2019 was performed using the MEDLINE, PubMed and GoogleScholar databases, with 31 

the search terms "Porphyromonas gingivalis" AND the potentially associated condition or systemic disease 32 

Abstracts and full text articles were used to make a review of published research literature on P. gingivalis outside 33 

the oral cavity. The main points of interest of this narrative review were: (i) a potential direct action of the bacterium 34 

and not the systemic effects of the inflammatory acute-phase response induced by the periodontitis, (ii) the presence 35 

of the bacterium (viable or not) in the organ, or (iii) the presence of its virulence factors. 36 

Virulence factors (gingipains, capsule, fimbriae, hemagglutinins, lipopolysaccharide, hemolysin, iron uptake 37 

transporters, toxic outer membrane blebs/vesicles, and DNA) associated with P. gingivalis can deregulate certain 38 

functions in humans, particularly host immune systems, and cause various local and systemic pathologies. The most 39 

recent studies linking P. gingivalis to systemic diseases were discussed, remembering particularly the molecular 40 

mechanisms involved in different infections, including cerebral, cardiovascular, pulmonary, bone, digestive and 41 

peri-natal infections. Recent involvement of P. gingivalis in neurological diseases has been demonstrated. P. 42 

gingivalis modulates cellular homeostasis and increases markers of inflammation. It is also a factor in the oxidative 43 

stress involved in beta-amyloid production. 44 

 45 

KEY WORDS: Porphyromonas gingivalis; systemic disease; virulence factor; gingipain; brain; bone; 46 

cardiovascular; lung. 47 

  48 
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1 INTRODUCTION 49 

 Porphyromonas gingivalis (P. gingivalis) is a strictly anaerobic bacterium and commonly associated with 50 

a chronic pathology of the gums: gingivitis or periodontitis, oral inflammation which destroys the gum and the bones 51 

carrying the teeth. An updated classification of periodontal diseases and a new classification of peri-implant diseases 52 

and conditions have been discussed by Caton et al. [1], following the work of the worldwide community of scholars 53 

and clinicians in periodontology and implant dentistry [1]. If periodontitis is not treated, periodontal pockets develop 54 

between the gum and the tooth, the inflammation spreading causing other complications such as halitosis, caused by 55 

synthesis of many substances present in the oral cavity and metabolized by P. gingivalis allowing the synthesis of 56 

volatile, malodorous sulfur compounds [2]. The involvement of P. gingivalis in pathologies other than periodontal 57 

disease has been suspected.  58 

 P. gingivalis has multiple virulence factors that may be responsible for the severity of disease following a 59 

mixed infection [3]. Virulence factors include capsule proteins [4,5], gingipains (proteinases) [6,7], fimbriae [8-11], 60 

hemagglutinins [12-14], lipopolysaccharide (LPS) [15-18], hemolysin, iron uptake transporters, toxic outer 61 

membrane blebs/vesicles, and DNA. Production of both gingipains and fimbriae are mechanistically important for 62 

the dysregulation of immune function, and the expression of capsule proteins aids in the evasion of immune effectors 63 

[19,20]. Phosphatidylinositol 3-kinase (PI3K) and Akt are well known to play a pivotal role in various cellular 64 

physiological functions including cell survival and glucose metabolism in mammalian cells [21]. These virulence 65 

factors participate in the pathogenicity of bacteria in infected tissues and enable bacterial dissemination. In vitro and 66 

clinical studies have shown P. gingivalis invasion and survival in non-oral human cells, such as coronary arterial 67 

endothelial and placental cells, where they could potentially contribute to localized inflammatory responses [22,23]. 68 

Lysine gingipain (Kgp), arginine gingipain A (Rgp A) and arginine gingipain B (Rgp B) are a set of cysteine 69 

proteinases. These enzymes play several roles in the cleavage and activation of numerous host and bacterial proteins. 70 

The first role is to capture nutrients (heme, peptides, and amino acids) through hydrolysis [24,25]. Other roles include 71 

aggregation (for example, with hemagglutinin domains in biofilm), cell adhesion, and cell invasion [26,27]. 72 

Gingipains also act to dysregulate the host’s innate and adaptive immune responses: gingipains can cleave cell 73 

surface receptors, cytokines, and antibodies (IgG, IgM, and C3 complement protein) [28]. Liu et al. [29] provided 74 

the first evidence that Rgp and Kgp cooperatively contribute to P. gingivalis-induced cell migration and the 75 

expression of pro-inflammatory mediators. Finally, as part of the C-terminal domain protein family, gingipains are 76 

more numerous on vesicle surfaces [30]. Vesicles [30-32], evaginations of the outer cell membrane measuring 50 to 77 

300 nm, are formed by a membrane bilayer composed of A-LPS and proteins with a C-terminal domain (CTD), such 78 
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as gingipains, peptidyl deaminase (PAD), or hemin-binding protein 35 (HBP35). Fimbriae allow bacteria to adhere 79 

to prokaryotic host cells, extramolecular matrix molecules, cytokines, and fibrinogens. As a pathogen-associated 80 

molecular pattern (PAMP), fimbriae can also bind to CD14, β2 integrins, TLR2, and TLR4. These interactions cause 81 

the synthesis of pro-inflammatory cytokines (monocyte chemotactic protein-1 (MCP-1), TNF-alpha, interleukin 82 

1beta (IL-1ß), IL-6, IL-8) and induce expression of a variety of molecular adhesives (intercellular adhesion 83 

molecule-1 (ICAM 1), vascular cell adhesion molecule-1 (VCAM-1), P-selectin, E-selectin, CD40, CD80, and 84 

CD86) [33,34]. IL-8 is able to induce hemoglobin receptor (HbR), which binds hemoglobin and acts as hemophore 85 

to capture porphyrin and heme in need of iron for the growth of P. gingivalis [21]. 86 

 Immune response, DNA methylation, post-translational modifications of DNA-associated histone protein 87 

in chromatin, and the activity of non-coding RNAs are regulated by epigenetic alterations [35]. The LPS of P. 88 

gingivalis is able to reduce DNA methylases and increase the levels of histone acetylase and NF-kB in human oral 89 

cells [36-38]. P. gingivalis can also produce short-chain fatty acids (SCFAs); higher levels of SCFAs have been 90 

detected in the saliva of patients with severe periodontal disease. SCFAs, such as buyric acid, were demonstrated to 91 

inhibit class-1/2 histone deacetylases and downregulate expression of histone N-lysine methyltransferases, which 92 

leads to gene expression by facilitating the binding of transcription factors and RNA polymerase to DNA strands 93 

[39,40]. This was confirmed by the use of DNA methylase inhibitors prior to P. gingivalis exposure [41], suggesting 94 

that DNA methylation differentially affects gingival cytokine secretion in response to P. gingivalis. P. gingivalis is 95 

therefore able to regulate gene expression, in particular virulence or latency-inducing genes, in other microorganisms 96 

such as viruses [42] or other bacterial species [43].  P. gingivalis-LPS was also demonstrated to induce production 97 

of beta-amyloid proteins (Aβ40 and Aβ42) in neural cell cultures, and strongly enhanced TNF-α and IL-1β 98 

production in a culture of microglial cells primed with Aβ [44]. 99 

 Enzymes from P. gingivalis are transported through the periplasm before being exposed to the bacterial 100 

outer membrane, or released in an extracellular environment. Non-proteolytic enzymes of P. gingivalis include 101 

phospholipase A, alkaline phosphatase, acid phosphatase, nuclease, hyaluronidase, chondroitin sulfatase, and 102 

heparinase. P. gingivalis also produces a number of proteolytic enzymes, including serine proteinases, collagenases, 103 

and the trypsin-like cysteine proteinases. As part of its amino acid catabolism, P. gingivalis produces toxic 104 

compounds, such as volatile sulfur compounds, short chain fatty acids (butyrate, propionate), indole, and ammonia, 105 

which are toxic to host cells or play a role in immune modulation. Other compounds, such as phosphorylated 106 

dihydroceramide (PDHC) lipids produced by various intestinal and oral microorganisms including P. gingivalis, 107 

have been reported not only in gingival tissues, but also in blood, vascular tissues, and brain. These lipids have been 108 
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shown to induce cellular effects through TLR2, inducing the secretion of IL-6 by dendritic cells, which can affect 109 

systemic immune homeostasis [45]. 110 

However, bacteria that require anaerobiotic conditions (80% N2, 10% H2, 10% CO2) [46,47] are usually 111 

cultured on blood agar or Columbia agar supplemented with hemin, nutrients (tryptic soy, peptone/proteose, yeast), 112 

and vitamin K3 (menadione); most strains are cultured for at least 24 to 48 hours at 37°C [48,49]. Selective media 113 

can be used to isolate P. gingivalis from biological samples, such as antibiotics (colistin, bacitracin, nalidixic acid), 114 

essentially for research purposes [50]. Metabolic activities are not adapted to diagnosis for several reasons. First, 115 

they are time-consuming and influenced by culture conditions, medium composition, growth phase of each 116 

microorganism, and possible presence of viable but non-cultivable bacteria. The second reason is the limited number 117 

of classification criteria [51]. The use of microbial culturomics is re-emerging as one of the most reliable means of 118 

bacterial identification [52]. 119 

Many immunological techniques, such as indirect fluorescent antibody techniques [53] and enzyme-linked 120 

immunosorbent assay (ELISAs) [54,55], have been tested in the identification of suspected P. gingivalis in 121 

pathologies outside the oral cavity. These simple, quick, and very specific techniques are limited by the small number 122 

of available antibodies, and are therefore not adapted to polymicrobial samples. 123 

Molecular diagnostic techniques can also be used, including molecular hybridization [56], real-time PCR 124 

(RT-PCR) [57] and multiplex PCR [58]. These methods, considered first-generation sequencing since Sanger et al. 125 

[59] and Maxam et al. [60], do not require cultivation. They are able to identify non-cultivable bacteria, but need 126 

specific probes for genome-sequenced bacteria, and require that the microorganisms studied have been sequenced 127 

beforehand. 128 

Finally, metagenomics using new generation sequencing (NGS) or high-throughput sequencing (HTS) 129 

appeared in 2005 [46,61-64]. Similar to molecular diagnosis, cell culture is not needed. After total DNA has been 130 

extracted from the sample, hypervariable regions of the 16S rRNA gene are amplified using universal primers, then 131 

sequenced through the NGS process [65]. Sequence comparison with ribosomal databases (e.g., GenBank, EMBL, 132 

HOMD, RDP) is used to identify or evaluate phylogenetic distances between species. This method has highlighted 133 

the gaps of previous methods and allowed the reassessment of bacterial phenotyping. 134 

 Many oral bacteria also produce many putative virulence factors that would likely have similar effects to 135 

the ones described to P. gingivalis. However, many of these pathogens have not been studied in any detail and, in 136 

addition to studying the bacterial genome, NGS can identify all bacteria in the sample, even difficult to cultivate or 137 

non-cultivable [20]. Although NGS does have some limits (it does not allow for susceptibility testing of 138 
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antimicrobial agents, and it can also lead to errors, such as wrongly reporting new bacterial species), this technique 139 

may be useful for determining the presence of P. gingivalis outside periodontal tissues. Metagenomic and 140 

metabolomic analyzes will make it possible to highlight the potential cooperation between species. This review takes 141 

stock of the particular virulence of P. gingivalis and discusses microbiota studies related to associated systemic 142 

pathologies, by collecting the most recent studies linking P. gingivalis to systemic diseases. Implications of P. 143 

gingivalis infections in different systems are discussed, especially cerebral, cardiovascular, pulmonary, bone, 144 

digestive, and peri-natal systems.  145 

 A literature search for English original studies, case series and review articles published up to December 146 

2019 was performed using the MEDLINE, PubMed and GoogleScholar databases, with the search terms 147 

"Porphyromonas gingivalis" AND the potentially associated condition or systemic disease (i.e. "atherosclerosis", 148 

"diabetes mellitus", "cardiovascular disease", "cancer", "rheumatoid arthritis", "inflammatory bowel disease", 149 

"neurological disease", "chronic obstructive pulmonary disease"). Reference lists of relevant articles were 150 

additionally screened to reduce the risk of missing relevant information and to guide the search for potential 151 

association. The search terms "oral bacteria" and "periodontitis" were also used as alternatives to "Porphyromonas 152 

gingivalis", however, only articles explicitly mentioning the bacterium and reporting its potential activity in the 153 

organ of interest were retained. The main points of interest were: (i) a potential direct action of the bacterium and 154 

not the systemic effects of the inflammatory acute-phase response induced by the periodontitis, (ii) the presence of 155 

the bacterium (viable or not) in the organ, or (iii) the presence of its virulence factors. 156 

 157 

2 P. GINGIVALIS AND DISEASES 158 

 159 

2.1 P. gingivalis and brain diseases (Figure 1) 160 

The relationship between infection of the oral cavity and systemic disease has been described often. In 161 

particular, the spread of infection from the oral cavity to the brain can lead to neurological diseases [66-69]. This 162 

was illustrated by clinical case reports describing brain abscesses in patients with recurrent periodontitis [70,71]. 163 

The detection of P. gingivalis-specific IgG intrathecal antibodies in early-stage Alzheimer’s disease (AD) 164 

was associated with T-tau level [72]. Antibodies found in the serum of periodontitis patients have been correlated 165 

with a higher risk of developing neurological diseases such as AD or complicated Marfan syndrome [73,74]. Anti-166 

P. gingivalis antibody levels were compared between cognitively intact control subjects and clinical participants 167 
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(diagnosed with AD or mild-cognitive impairment) at baseline blood draw and after cognitive conversion. P. 168 

gingivalis-specific antibodies were detected at significantly higher levels in patients who converted to AD, at 169 

baseline draw (when still cognitively normal). Interestingly, the antibody level measured in AD patients at baseline 170 

was similar to that of patients with chronic periodontitis. Due to the existence of P. gingivalis-specific antibodies in 171 

AD patients prior to their AD diagnosis, it was hypothesized that the elevation of these antibodies was not a result 172 

of secondary AD developmental factors, thus suggesting an association between periodontal pathogens and the 173 

development of AD [73]. 174 

In AD, P. gingivalis may affect permeability of the blood-brain barrier and inhibit local interferon-γ 175 

response by preventing the entry of immune cells into the brain [75]. Rokad et al. [76] revealed that the hippocampal 176 

microvascular structure of P. gingivalis-infected ApoE-/- mice were subjected to elevated oxidative stress levels, 177 

leading to the loss of functional integrity of tight junction proteins. Chronic local inflammation, observed in the case 178 

of periodontitis, leads to the release of inflammatory mediators, bacteria and/or their virulence factors, which can 179 

reach the brain via systemic circulation. This can induce a loss of neuronal integrity and loss of cellular function 180 

(memory alteration) [66,77]. The effects of periodontitis on organs such as the brain in terms of metabolic alterations 181 

remain unknown. Iliveski et al. [78] induced oral infection in mice by inoculating them with P. gingivalis and first 182 

demonstrated changes in redox homeostasis, with increases in markers of inflammation and oxidative stress and 183 

further amyloid beta production [79]. Dominy et al. [80] showed that gingipain can induce the bacterial load of an 184 

established P. gingivalis brain infection in a mice model, with levels correlated with tau and ubiquitin pathology, 185 

and stimulating Aβ1-42 (a component of amyloid plaques) production and neuroinflammation. Neuro-inflammation, 186 

strongly implicated in AD, can be enhanced during periodontitis through the intermediary of leptomeningeal cells, 187 

which are able to transduce pro-inflammatory signals from macrophages to microglia [81,82]. Furthermore, this 188 

neuro-inflammation is increased with aging, because senescent-type microglia are more susceptible to inflammatory 189 

processes [82]. The expression of TLR2, TLR4, TNF-alpha and inducible nitric oxide synthase (iNOS) are thought 190 

to be induced by LPS from P. gingivalis in M1 macrophages of chronic periodontitis patients [81]. However, when 191 

BALB/c mice were inoculated with P. gingivalis, Nemec et al. [83] observed lower levels of nitrite and nitric oxide 192 

in plasma and in the brain, respectively, compared with controls. Nitric oxide (NO) is involved in host defense 193 

mechanisms, and reduction of NO levels is likely to delay the host response, thereby promoting infection with P. 194 

gingivalis. However, Hayashi et al. [84] recently showed in a mouse model that continuous brain exposure of Pg-195 

LPS started sarcopenia and cardiac injury without enhancing cognitive impairment in AD model mice. 196 
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Using anti-P. gingivalis specific antibodies, LPS from P. gingivalis has been detected in brain tissues from 197 

brain dementia patients, post-mortem, as well as on the surface membrane of the astrocyte cell line SVGp12 exposed 198 

to P. gingivalis LPS [85]. DNA from oral bacteria was detected in 70% of cases of ruptured and unruptured aneurysm 199 

samples in a recent study, and prevalence of P. gingivalis was higher in ruptured aneurysm [86]. In a 2015 study, 200 

Poole et al. [87] reported detection of bacterial DNA and complement activation (activated C3 fragments) in the 201 

brains of ApoE-/- mice that had been orally infected previously with P. gingivalis. Therefore, they suggested that P. 202 

gingivalis LPS was able to access the brain during AD manifestation and contributed to neuron injury [87]. 203 

Administration of P. gingivalis-LPS can lead to learning and memory impairment in C57BL/6 mice, mediated by 204 

activation of the TLR4 signaling pathway [88]. Singhrao & Olsen [89] have highlighted the role of microvesicles in 205 

the transport of virulence factors, such as LPS, gingipains, capsule proteins, and fimbriae, secreted by P. gingivalis 206 

in bacterial cultures and established oral biofilms. Recently, Dominy et al. [80] even suggested that gingipain 207 

inhibitors could be valuable for treating P. gingivalis brain colonization and neurodegeneration in AD.  208 

Takayama et al. [90] investigated the mechanism of AD exacerbation through bacteria-induced microglial 209 

activation. By focally injecting live bacterial cells including P. gingivalis into the somatosensory cortex, they showed 210 

that the microglial extension process was strongly induced, along with the production of pro-inflammatory 211 

molecules, by the activated microglia. Interestingly, this process was significantly increased during the light 212 

(waking) phase compared with the dark (sleeping) phase, demonstrating a shared circadian rhythm link in AD 213 

pathology [91]. It was suggested that the bacteria-induced microglial extension was likely initiated through the 214 

secretion of UDP nucleotides in response to the bacteria, which are then taken up by P2Y6 receptors. Wu et al. [92] 215 

also speculated that cathepsin B might play a critical role in the initiation of neuroinflammation and neural 216 

dysfunction following chronic systemic exposure to LPS from P. gingivalis. 217 

Recently, Carter et al. [93] analyzed the P. gingivalis/host interactome and showed that misregulated genes 218 

in periodontitis tissue or P. gingivalis-infected macrophages also matched those in the AD hippocampus or 219 

atherosclerotic plaques. To this end, the biofilm concept of AD senile plaques has also been proposed, supported by 220 

the hypothesis that curli fibers (and/or other similar bacterial antigens) could aggregate and acquire Aβ conformation 221 

[29,34,44,68,72,76,79,94]. 222 

In conclusion, P. gingivalis is a key oral pathogen and has been suggested to have an important role in the 223 

pathogenesis of neurodegeneration, via interaction with iron metabolism, induction by LPS of deleterious 224 

immunological activations (leading to a brain toxic oxidative stress), expression of active specific proteases that 225 
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enable cleavage of the amyloid-β protein precursor and tau resulting in the formation of amyloid-β and 226 

neurofibrillary tangles.  227 

 228 

2.2 P. gingivalis and lung diseases (Figure 2) 229 

P. gingivalis is able to colonize respiratory airways and reportedly plays a role in aspiration pneumonia 230 

[95], especially in elderly patients and those with a weakened immune system. During aspiration, oral secretions 231 

containing periodontal bacteria may alter the respiratory epithelium and influence respiratory pathogen adhesion 232 

[96]. While oral bacteria such as Aggregatibacter actinomycetemcomitans induce the production of pro-233 

inflammatory cytokines and the recruitment of inflammatory cells, P. gingivalis has been found to suppress cytokine 234 

production, which will hinder the host’s immunological response against pathogens adhered to the respiratory 235 

epithelium. In addition, endotracheal tubes (ET) form a link between the oral cavity and lungs of intensive care unit 236 

(ICU) patients; oral biofilms have been found in ET, and this forms an association between periodontal disease and 237 

nosocomial pneumonia [97]. 238 

Chronic obstructive pulmonary disease (COPD), characterized by increased limitation of airflow, can lead 239 

to emphysema, chronic bronchitis, refractory asthma, and some forms of bronchiectasis. A study of the 16S rRNA 240 

subunit using RT-PCR was conducted to analyze bacteria in the dental plaque and lungs of ICU patients with severe 241 

acute exacerbation of COPD. The study results showed that P. gingivalis (as with Pseudomonas aeruginosa, P.a.) 242 

was found at higher rates in the tracheal aspirate samples of ICU patients than in the paired dental plaque samples 243 

[98]. P. gingivalis was found directly in the lung [99] but not statistically increased during infection. However, DNA 244 

from P. gingivalis was often found in lungs and respiratory infections [100,101], indicating activity remote from the 245 

periodontal bacteria. Another study showed with a multivariate logistic regression analysis that a normal IgG titer 246 

for P. gingivalis was correlated with an exacerbation of COPD, whereas the number of exacerbations is significantly 247 

diminished with a higher IgG titer [100]. Therefore, the measurement of P. gingivalis-specific IgG antibodies might 248 

be useful to identify patients susceptible to frequent COPD exacerbations. 249 

Similar to P. aeruginosa, P. gingivalis is able to modulate the apoptosis of respiratory epithelial cells [102]. 250 

Infection was initiated by adhesion to and invasion of mucosal epithelial cells. P. gingivalis and P. aeruginosa 251 

induced apoptosis in 12 h and 4 h, respectively. Although the association (co-infection) of P. gingivalis and P. 252 

aeruginosa slowed the process, it also enhanced the invasion ability of each species, and ultimately increased 253 

apoptosis. Indeed, P. gingivalis inhibited the P. aeruginosa-induced apoptosis in the first hours of the infection by 254 
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obscuring it from the immune system. The failure of the host defenses to eliminate P. aeruginosa allowed the 255 

bacteria to proliferate and destroy tissue during a prolonged infection. Co-infection with P. gingivalis and P. 256 

aeruginosa induced activation of the STAT3 signaling pathway during the first 2 h, following with the up-regulation 257 

of genes for anti-apoptotic survival proteins and bcl-2. In addition, pro-apoptotic bad was downregulated during the 258 

first 4 h, and caspase-3 activity was inhibited. During this time, P. gingivalis and P. aeruginosa were able to colonize 259 

more epithelial cells. Subsequently, STAT3 activation decreased while the activation of caspase-3 increased, causing 260 

apoptosis and tissue damage. Furthermore, it has been reported that pyocyanin, a P. aeruginosa virulence factor, can 261 

promote heme acquisition [95] and enhance the virulence of P. gingivalis by facilitating methemoglobin formation, 262 

leading to a heme-excess condition that upregulates gingipain activity, in particularly Kgp. 263 

Aspiration pneumonia is an infection of the lower airways and affects the pulmonary alveoli. It is a life-264 

threatening condition caused by aspiration of bacteria into the respiratory system during medical procedures, or by 265 

accidental aspiration of liquids (e.g., saliva) or solids (e.g., food). In a study on mice, mixed infections with P. 266 

gingivalis and Treponema denticola caused excessive inflammatory responses compared with mono-infections 267 

[103]. Up to 72 h after inoculation, the number of viable P. gingivalis cells in a mixed infection was significantly 268 

higher than after a mono-infection. Mixed infection caused more severe bronchopneumonia by delaying pulmonary 269 

clearance of P. gingivalis and caused 40% of death, versus only 10% with mono-infection. In addition, because of 270 

excessive cytokine production leading to shock, lung damage, and tissue dysfunction, 10% of the mice formed an 271 

abscess caused by P. gingivalis only. Another mouse study [95] demonstrated the role of gingipains (Kgp and Rgp) 272 

in the development of pneumonia. This study suggested that even in their inactive form, Kgp and Rgp could provoke 273 

strong inflammatory reactions in the host by increasing cytokine production and C-reactive protein (CRP) levels. 274 

Benedyk et al. [95] showed, in a mice model, that gingipains were not required for P. gingivalis colonization and 275 

survival in the lungs. They were essential for inflammation (neutrophil infiltration) and for manifestation of clinical 276 

symptoms (including hemorrhage, necrosis, and abscess) and infection-related mortality, which were absent from 277 

lungs infected with gingipain-null isogenic strains or WT bacteria preincubated with gingipain-specific inhibitors. 278 

A systemic inflammatory response was observed (high levels of TNF, IL-6, IL-17, and C-reactive protein), 279 

associated with an increase of platelet counts in the blood and activation of platelets in the lungs.  280 

 In conclusion, P. gingivalis can enter into the lower airway following inhalation, aspiration or through 281 

systemic dissemination by bacteremia. In the presence of lung cancer cells, the microenvironment is more conducive 282 

to the survival of the bacterium, which in turn promotes the malignant progression of lung cancer. 283 
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2.3 P. gingivalis in the cardiovascular system (Figure 3) 284 

In addition to releasing local inflammatory markers from the periodontium, P. gingivalis is able to travel into 285 

the bloodstream. Li et al. [104] reported that bacteremia, including anaerobic bacteria, can occur after oral surgery. 286 

A study detected the presence of viable bacteria, including P. gingivalis, with the use of invasion assays, 287 

immunofluorescence microscopy, and q-PCR in human atherosclerotic plaque (1 sample only) [105]. Bacterial 288 

viability of P. gingivalis was confirmed with invasion assay of non-phagocytic cells. Deshpande et al. [106] showed 289 

that P. gingivalis can actively adhere to and invade bovine heart and aorta endothelial cells, as well as human 290 

endothelial cells. Examination of human tissue samples (n=50) obtained during carotid endarterectomy revealed that 291 

26% of the surgical specimens were positive for P. gingivalis [107], Stelzel et al. [108] analyzed aortic tissue 292 

biopsies from 26 patients connected to a heart-lung machine during open-heart surgery. 16S rRNA PCR was used 293 

to detect bacterial cells (bacterial DNA was detected in 88.6% of samples), and specific primers revealed P. 294 

gingivalis in 15% of examined aortic tissues. 295 

Several mechanisms link P. gingivalis to cardiovascular disease: platelet aggregation due to arginine 296 

gingipains, exaggerated host immune response due to P. gingivalis LPS, and bacterial inflammatory products of 297 

periodontitis [109]. P. gingivalis induces platelet aggregation, which leads to thrombus formation [110]. Lourbakos 298 

et al. [111] studied the arginine gingipains (RgpA and RgpB), which were released in large quantities from P. 299 

gingivalis. After entering the circulation, the arginine gingipains increased the intracellular calcium level in platelets 300 

by activating both PAR-1 and PAR-4 receptors. Arginine gingipains also activated factor X, prothrombin, and 301 

protein C, promoting a thrombotic tendency through the release of thrombin, subsequent platelet aggregation, 302 

conversion of fibrinogen to fibrin, and intravascular clot formation. One study on hyperlipidemic mice determined 303 

that oral infection with wild-type (WT) P. gingivalis (detected by 16S rRNA PCR) significantly increased the area 304 

of the aortic sinus that was covered with atherosclerotic plaques compared with P. gingivalis mutants inactivated 305 

with gingipain or FimA [112]. WT P. gingivalis activated innate immune cells through the NLRP3 inflammasome 306 

(NOD-like receptor pyrin domain 3, including pro-IL-1ß, pro-IL-18 and pro-caspase 1), which led to sustained 307 

inflammation. 308 

LPS induces major vascular responses [104], including infiltration of inflammatory cells, vascular smooth 309 

muscle proliferation, vascular fatty degeneration, and intravascular coagulation. LPS upregulate the expression of 310 

endothelial cell adhesion molecules and the secretion of IL-1ß, tumor necrosis factor alpha (TNF-α), low-density 311 

lipoprotein (LDL) and thromboxane, which results in the recruitment of macrophages, platelet aggregation and 312 
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adhesion, foam cell formation, and cholesterol deposition. Then IL-1ß promoted enhanced CD36/SR-B2 and TLR2 313 

(LPS receptor). In parallel, P. gingivalis LPS inhibited pyroptosis, which enabled macrophage survival and promoted 314 

the development of atherosclerotic plaques. 315 

The detection of P. gingivalis has been attested in many cardiovascular diseases, such as atherosclerosis, 316 

myocardial infarction, stroke, aneurysm, pericarditis, and tamponade [113,114]. 317 

 In atherosclerosis, the surface of atheroma enhances platelet aggregation and thrombus formation, which 318 

can occlude the artery or be released to cause thrombosis, coronary heart disease, and stroke. P. gingivalis infection 319 

itself does not cause atherosclerosis [115], but can accelerate it. In turn, that acceleration leads to inflammation 320 

and deteriorating lipid metabolism, particularly in the context of underlying hyperlipidemia or susceptibility to 321 

hyperlipidemia [116]. Some studies have shown that P. gingivalis infection accelerates atherosclerosis in 322 

hyperlipidemic animals [112,117-120] and humans [107,121]. Viable P. gingivalis were detected in the aortic wall 323 

of mice (on the luminal side and the adventitia) by fluorescence in situ hybridization [119]. That study noted the 324 

presence of macrophages and select classes of T cells in early lesions. Then the study also determined that levels 325 

of total cholesterol, very low-density lipoprotein (VLDL) particles, chylomicrons (CM), LDL, and high-density 326 

lipoprotein (HDL) particles were slightly increased in P. gingivalis-infected mice, but remained comparable to 327 

corresponding levels in control mice. In humans, a study came to the same conclusion regarding non-obese patients 328 

with type 2 diabetes [121]: total serum triglycerides and LDL cholesterol levels were higher in patients with a high 329 

P. gingivalis IgG titer than in those with a normal IgG titer, but there were no statistically significant differences 330 

between the 2 groups. Only the oxidized LDL (plaque area) significantly increased, and HDL cholesterol decreased 331 

[115]. This shift in the lipid profile was concomitant with a significant increase in atherosclerotic lesions. Indeed, 332 

stimulation with P. gingivalis LPS induced a change in cholesterol transport by targeting the expression of LDL 333 

receptor-related genes, resulting in the disturbance of regulatory mechanisms that control cholesterol level in 334 

macrophages. This can occur without any predisposition to high cholesterol. Furthermore, a study on pigs 335 

(histomorphometry and immunohistochemistry), showed a significant increase of atherosclerotic lesions (coronary 336 

and aortic) in infected pigs with normal cholesterol, and an increase in intimal plaque and lesions in the 337 

hypercholesterolemic group that neared statistical significance when compared with controls [118]. Diet is an 338 

aggravating factor for atherosclerosis, but regardless of diet, a P. gingivalis infection can accentuate atherosclerosis 339 

lesions. In a murine study [117], P. gingivalis was detected in the proximal aorta by 16S rRNA PCR, while 340 

inflammatory markers were detected using ELISA. 24 weeks after inoculation, the proximal aortic lesion size 341 
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(quantified by histomorphometry) was 9-fold greater in chow-fed infected mice than in controls, and was 2-fold 342 

greater in P. gingivalis-inoculated mice versus non-inoculated mice that were fed a high-fat diet. 343 

 Myocardial infarction is the damage or necrosis of an area of heart muscle due to reduced blood supply 344 

to that area. An article that studied the bacterial signatures in thrombus aspirates from patients with myocardial 345 

infarction [122] measured endodontic bacteria in 78.2% of thrombi, periodontal pathogens in 34.7%, and detected 346 

P. gingivalis in 5%. Matrix metalloproteinase (MMP)-9 (produced by leukocytes) levels directly correlate with 347 

dysfunction and remodeling of the left ventricle (LV) post-myocardial infarction, and modulates inflammation. 348 

Exposure to P. gingivalis lipopolysaccharide was shown to increase LV MMP-9 levels in mice and leads to cardiac 349 

inflammation [123]. After intravenously inoculation of P. gingivalis, myocarditis and/or myocardial infarction were 350 

observed, and Akamatsu et al. [124] showed that IL-17A plays an important role in the pathogenesis of these 351 

diseases. High mobility group box 1 (HMGB1), a nuclear protein released from necrotic cells, inducing 352 

inflammatory responses was detected in degenerated cardiomyocytes, extracellular fields, immune cells, and 353 

vascular endothelial cells [125]. 354 

Stroke or acute cerebral infarction is a cerebrovascular disease that affects blood vessels supplying blood to the 355 

brain. P. gingivalis binds to the vascular endothelium via major and minor fimbriae and the infected vascular 356 

endothelium responds by the production of cytokines, chemokines, and surface molecules. P. gingivalis enters 357 

immune cells such as monocytes/macrophages or dendritic cells in the oral mucosal lesion, enter the circulation and 358 

diapedesis into the vascular intima. Immune cells activated by P. gingivalis drive modification of low-density 359 

lipoproteins and ischemic event comes from occlusive thrombus [126]. In a human study of a Chinese population 360 

[127], levels of P. gingivalis IgG antibodies were significantly higher in individuals with acute cerebral infarction 361 

than in healthy controls. P. gingivalis IgG titers also correlated significantly with total cholesterol, LDL, and 362 

apolipoprotein-B. 363 

An aneurysm is a localized, blood-filled evagination in the wall of a blood vessel. A study compared the 364 

number of human aortic aneurysms between P. gingivalis-infected and uninfected groups [128]. It concluded a 365 

higher number of aneurysms occurred in the distal aorta in the P. gingivalis-infected group than in the control group. 366 

Cellular accumulation of adipocytes in aneurysms was identified less frequently in the infected group; the expression 367 

of a phenotypic marker for proliferative smooth muscle cells that tends to weaken vascular walls (embryonic myosin 368 

heavy chain isoform) was higher in the P. gingivalis-infected group than the non-infected group.  In a similar study 369 

[129], P. gingivalis was detected in 23.1% of aortic aneurysms. P. gingivalis infection decreased HDL levels and 370 

provoked atherosclerosis, thrombosis, and then aneurysm. HDLs displayed multiple functions, including anti-371 
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inflammatory and LPS scavenging properties. With this reason, Delbosc et al. [130] injected HDL into rats, and the 372 

resulting reduction of neutrophil activation in P. gingivalis-injected rats was associated with decreased cytokine 373 

levels in conditioned media and plasma. 374 

Pericarditis is an inflammation of the pericardium, which is composed of two thin layers of tissue that 375 

surround the heart, holding it in place and helping it work. A small amount of fluid keeps the layers separate so there 376 

is no friction between them. A tamponade is an acute heart compression, usually due to a pericardial effusion. A 377 

recent study demonstrated the presence of DNA from oral bacteria in the pericardial fluid [131]. In a case report 378 

[132] P. gingivalis was detected in the pericardial fluid of a 45-year-old man who developed tamponade 10 weeks 379 

after angioplasty and insertion of an endoprosthesis for myocardial infarction (using 16S rRNA investigation, and 380 

universal amplification with ribotyping). 381 

In conclusion, oral bacteremia lead to systemic dissemination of P. gingivalis that seems to be markedly 382 

involved in the atherosclerotic process, contributing to LDL oxidation, and this being facilitated by fimbriae 383 

adhesion to aneurysmal tissue, biofilm formation in vessels and activation of inflammasomes. 384 

 385 

2.4 P. gingivalis and bone diseases 386 

 Epidemiological studies suggest that the prevalence of rheumatoid arthritis (RA) (autoimmune disease) 387 

and periodontitis (infectious etiology) are superposable [133]. P. gingivalis has a strong association with 388 

progressive periodontal disease and RA [134,135] linked to an induction of local immune system disorders 389 

[136,137]. A significant association between the presence of P. gingivalis, halitosis and RA was demonstrated and 390 

linked to biofilm formation on the tongue and increased inflammation leading to more active disease [138]. The 391 

association between rheumatoid arthritis (RA) and periodontal disease (PD) has been the subject of numerous studies 392 

justified by common inflammatory processes and the presence of anti-citrullinated protein autoantibodies (ACPA). 393 

RA is an autoimmune disease characterized by chronic inflammation, causing inflammation and destruction of the 394 

synovial joints. PD is a chronic inflammatory disease associated with dysbiosis of oral microbiota affecting the 395 

support tissues around the teeth, resulting in the destruction of connective tissue and loss of teeth. P. gingivalis has 396 

been implicated in the generation of ACPA and studies show the clinical link between PR and DR and the possible 397 

similar mechanisms linking the development and progression of the two diseases [139]. P. gingivalis produces the 398 

enzyme PAD, cysteine proteinases, or other gingipains [140-142]. which induce citrullination of different 399 

autoantigens (levels of anti-citrullinated protein antibodies are considerably higher in RA patients with than in those 400 



ACCEPTED MANUSCRIPT
15 

 

without periodontal disease) [143]. These results were recently confirmed on a mice model [144]. Dysregulation 401 

would induce tissue destruction and bone resorption. The presence of autoimmune anticitrullinated protein 402 

antibodies (ACPA) during preclinical stages of disease and accumulation of hypercitrullinated proteins in arthritic 403 

joints has been demonstrated. Protein citrullination causes deregulation of the host’s inflammatory signaling network 404 

by altering the spatial arrangement of the original 3D-structure and function of the protein [145]. P. gingivalis is 405 

able to citrulinate some proteins, as peptidyl arginine deiminase (PAD), and anti-PAD antibodies to P. gingivalis 406 

have been identified in the serum of RA patients and patients with periodontitis. The levels of antibodies against P. 407 

gingivalis in the sera and synovial fluid of RA and non-RA patients were comparable to those found in respective 408 

controls [146], and PAD was demonstrated not to be a major virulence mechanism during early stages of 409 

inflammatory arthritis, suggesting that other mechanisms might be involved [147]. However, P. gingivalis DNA 410 

was detected in the synovial tissue of RA patients, suggesting the possible intracellular localization of the bacteria 411 

[148-152]. A significant correlation has been observed between osteoporosis and missing teeth, with dysbiosis and 412 

the detection of P. gingivalis in 98.7% [153]. The P. gingivalis capsule also seems to play a role: using a murine 413 

model of periodontitis, Monasterio et al. [154] have shown that bone resorption was less important in mutated mice, 414 

due to decreased Th1 / Th17 immune response and less osteoclast activity. 415 

 When the gingival immune response is impaired, matrix metalloproteinases are released from neutrophils 416 

and T cells, mediating alveolar bone loss [155]. Monocytes in inflamed tissues differentiate into osteoclasts, and 417 

also accelerate bone resorption through the production of pro-inflammatory mediators [126,156]. The pro-418 

inflammatory cytokine IL-17, and IL-17–producing CD4+ T cells (also called helper T, or Th17, cells) have been 419 

detected in periodontal disease lesions in humans, especially those associated with disease severity [157,158]. TLR2 420 

and TNF mediate destructive effects in oral infection and oral bone loss [159]. Chemokine antagonist treatments 421 

have been employed successfully to improve periodontitis [160,161]. The prevalence of periodontal disease is higher 422 

in RA patients than in the general population, linked to an increased prevalence of the shared epitope HLA-DRB1-423 

04 and various immunological disorders. TNF-α antagonists or biotherapies slow alveolar resorption, but may 424 

maintain infection in periodontal pockets [162]. P. gingivalis carries heat shock proteins (HSPs) that may also trigger 425 

autoimmune responses in subjects with RA [133]. 426 

 The complement is also involved in the dysbiosis of the periodontal microbiota and inflammation leading 427 

to the destruction of periodontal bone [163]. This gingival inflammation resulted in alveolar bone resorption and 428 

loss of periodontal ligament [164], leading to continued loss of attachment. This has been confirmed in animal 429 

models, with alveolar bone loss induced by inoculation or injection of human oral bacteria (e.g., P. gingivalis) in 430 
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different animal models [165]. Oral infection in mice with P. gingivalis was demonstrated to induce alveolar bone 431 

loss [126,166]. 432 

 In conclusion, P. gingivalis can induce citrullination, and production of anticitrullinated antibodies, often 433 

detected in rheumatoid arthritis and other auto-immune diseases. P. gingivalis can also induce osteoclastogenesis, 434 

and Th17 proinflammatory response leading to bone damage and systemic inflammation.  435 

 436 

2.5 P. gingivalis in the digestive system 437 

Because of saliva and the continuity between the mouth and the gut, a large quantity of oral bacteria is 438 

constantly ingested [167]. P. gingivalis may invade or alter the gut microbiota, thereby leading to increased 439 

permeability of the gut epithelium and endotoxemia, which in turn can cause systemic inflammation and disease. 440 

A study showed the presence of P. gingivalis in esophagus squamous cell carcinoma (ESCC) [168]. This 441 

study proceeded to qRT-PCR to detect P. gingivalis 16S rRNA by using antibodies targeting whole bacteria and the 442 

gingipain Kgp. P. gingivalis was detected immunohistochemically in 61% of cancerous tissues and 12% of adjacent 443 

tissues; it was not detected in normal esophageal mucosa. In metastatic cancers, the percentage of infection by P. 444 

gingivalis rose to 84.2%. 445 

FimA protein from P. gingivalis was found in 50% of saliva specimens from patients with liver cirrhosis or 446 

a previous round of treatment for hepatocellular carcinoma, compared with 21.43% in patients with hepatitis C 447 

alone. This in vivo human study [169] supposed that periodontal disease might be associated with the progression 448 

of viral liver disease, but no studies revealed P. gingivalis in the liver. Pyogenic liver abscess (PLA) formation has 449 

three major infectious transmission paths: the biliary tract, portal vein, and hepatic artery; however, 50% are 450 

cryptogenic (unknown origin). One case report [170] demonstrated that periodontal infection was a potential source 451 

of infection in PLA formation. Cryptogenic PLA presented in the autopsy of a 59-year-old woman who suddenly 452 

developed cardiopulmonary arrest and died. She had also had periodontitis for a long time. Immunohistochemical 453 

staining of a liver puncture and other samples detected isolated P. gingivalis and other periodontal pathogens in this 454 

patient’s PLA, heart, and kidney, as well as in the thrombus. 455 

Hepatic steatosis in patients with nonalcoholic fatty liver disease (NAFLD) is characterized by intracellular 456 

accumulation of lipid droplets (triglycerides) in hepatocytes. It is widely regarded as being the hepatic manifestation 457 

of conditions related to metabolic syndromes [171], including type 2 diabetes, insulin resistance, obesity, 458 
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hyperlipidemia, hypertriglyceridemia, and hypertension. Studies on mice [172] revealed that infection with P. 459 

gingivalis promoted the pathological progression of NAFLD. Internalized P. gingivalis was localized in 460 

autophagosomes and lysosomes in HepG2 cells, rather than in liquid droplets. However, lipid droplets increased the 461 

existence of P. gingivalis in HepG2 cells at an early phase of infection and affected the formation of autolysosomes 462 

to eliminate P. gingivalis. Thus, lipid droplets were likely to affect the persistence of P. gingivalis in HepG2 cells 463 

by altering the autophagy-lysosomal system. 464 

Nonalcoholic steatohepatitis (NASH) is a subtype of NAFLD in patients that have hepatic lesions and 465 

inflammation in addition to an excess of fats (NASH-hepatitis). A study on mice conducted by Furusho et al. [173], 466 

using histological and immunohistochemical examinations, measured LPS levels in the liver. Cytokines were studied 467 

by ELISA, which determined that P. gingivalis led to the upregulation of its LPS receptor (TLR2), formation of 468 

areas of fibrosis, proliferation of hepatic cells, and collagen formation. 469 

The effect of bacteria and inflammation on the gallbladder is capital. Indeed, as cirrhosis progresses, 470 

modifications of the microbiome can lead to inflammation. On the other hand, the LPS of P. gingivalis has been 471 

shown to induce TNF-α through TLR2 and TLR4. Inflammation suppressed synthesis of the bile acid deoxycholic 472 

acid [174] and modified the intestinal and colonic pH, favoring a positive feedback mechanism and resulting in the 473 

overgrowth of pro-inflammatory members of the microbiome, including P. gingivalis. 474 

Pancreatic cancer is the fourth leading cause of cancer deaths worldwide. Anti-P. gingivalis antibody titers 475 

are reportedly higher in patients with pancreatic cancer than in healthy controls [175]. This finding resulted in the 476 

hypothesis that PAD enzymes found in oral bacteria, and especially in P. gingivalis, might cause the p53 point 477 

mutations observed in patients with pancreatic cancer. This hypothesis has not yet been tested, and there is a need 478 

to detect P. gingivalis DNA or anti P. gingivalis antibody in patients with a p53 arginine mutation. However, a 479 

recent murine study [176] showed that P. gingivalis did not need to be present in the tissue where the tumor 480 

developed or cause inflammation in the tumor tissue in order to promote carcinogenesis. In mouse models [176], the 481 

LPS of P. gingivalis was able to accelerate pancreatic carcinogenesis through TLR4 activation (in addition to TLR2). 482 

TLRs inhibited apoptosis and promoted tumor growth and angiogenesis. LPS increased the invasive ability of 483 

pancreatic cancer cells. 484 

Animal studies have suggested that periodontitis accelerates the onset of hyperinsulinemia and insulin 485 

resistance [177]. The LPS of P. gingivalis stimulated serpine 1 expression in the pancreatic beta cell line MIN6 and 486 

induced insulin secretion. To prove that, an in vitro study (using cell culture, ELISA, and real-time PCR) co-487 



ACCEPTED MANUSCRIPT
18 

 

incubated P. gingivalis with MIN6 cells and measured the effect on insulin secretion. In addition, the involvement 488 

of serpine 1 in insulin secretion was determined by downregulating serpine 1 expression. It was demonstrated that 489 

P. gingivalis was able to stimulate insulin by 3-fold in a normoglycemic context and 1.5-fold in a hyperglycemic 490 

context. P. gingivalis significantly upregulated expression of the serpine 1 gene, which causes an increase in insulin 491 

secretion by MIN6 cells. Cells with downregulated serpine1 expression were resistant to the effects of P. gingivalis 492 

on insulin stimulation under normoglycemic conditions. 493 

Inflammatory bowel disease (IBD) and diseases of the small intestine were correlated with periodontal risk 494 

and bad oral health [178]. In a mouse model, oral administration of P. gingivalis induced changes in the composition 495 

of the gut microbiota associated with epithelial alteration and cell barrier function (increased phylum Bacteroidetes, 496 

decreased phylum Firmicutes) [179]. P. gingivalis administration also highlighted insulin resistance and changes of 497 

gene expression in adipose tissue and liver, but this study did not detect P. gingivalis in the gut. P. gingivalis 498 

downregulated tight junction protein 1, occluding expression in the small intestine, and upregulated IL-6 expression. 499 

In the large intestine, P. gingivalis increased TNF-α expression. 500 

In acute appendicitis in children [180], sequencing of one sample among 22 (concerning a perforated 501 

appendicitis) demonstrated that P. gingivalis was the most abundant species (1 sample contained 63%, other 502 

contained <1%, and non-appendicitis samples contained 0%). In another in vivo study, Porphyromonas spp. was 503 

cultured in 16.7% of surveyed patients with gangrenous appendicitis [181]. In another study of gangrenous or 504 

perforated appendicitis, a Wadsworth experience [182] with black-pigmented anaerobes isolated 5 strains of P. 505 

gingivalis among 76 patients. 506 

In a human in vivo study [183], Bacteroides-Prevotella-Porphyromonas was significantly more abundant in 507 

patients with ulcerative colitis (UC) or Crohn’s Disease (CD) than in controls. As for P. gingivalis, Bibiloni et al. 508 

[184] reported an increase of Porphyromonas species in biopsies from UC patients, without specifying the 509 

mechanisms. 510 

Studies have shown that the CRC risk is linked to decreased bacterial diversity in feces [185]. One study of 511 

human fecal samples (16S rRNA PCR and pyrosequencing) showed a decrease of Clostridia (Gram positive, fiber-512 

fermenting) and increased Fusobacterium and Porphyromonas (Gram negative, pro-inflammatory). These were 513 

already known to synergistically promote oral cancer [186]. Here, 16S rRNA gene sequencing results [186] 514 

suggested that F. nucleatum and Porphyromonas spp. form a bacterial biofilm on the tumor. To confirm this 515 

hypothesis, another study [187] showed that detection of F. nucleatum and P. gingivalis metabolites was linked to 516 
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the number of CRC with these high-risk microbes (29% and 34%, respectively).Cultivation of mouse colon 517 

carcinoma cells showed that P. gingivalis GroEL protein (a chaperone protein), as a virulence factor, accelerated 518 

tumor growth [188] (volume and weight) by enhancing endothelial progenitor cell function and neovascularization. 519 

 In conclusion, P. gingivalis can induce a persistent elevation in the cytokine response linked to type 2 520 

diabetes, that leads to dysregulation of lipid metabolism and effects on pancreatic beta cells. Particularly, TNF-521 

alpha, a potent inhibitor of the tyrosine kinase activity of the insulin receptor, has been implicated as an etiologic 522 

factor for insulin resistance. Inflammation can also contribute to formation of areas of fibrosis, proliferation of 523 

hepatic cells, collagen formation and cancerization. 524 

 525 

2.6 P. gingivalis and genital or perinatal infections 526 

The relationship between adverse pregnancy outcomes and maternal antibody response to P. gingivalis was 527 

studied by Sasahara et al. [189], who demonstrated that a lack of humoral immunity against P. gingivalis during 528 

early pregnancy was associated with intrauterine growth retardation and some preterm birth. In Lebanon, P. 529 

gingivalis was detected in the oral plaque of pregnant subjects (65%) with clinical periodontitis compared with a 530 

healthy periodontium. However, none of the 20 study participants experienced preterm labor [190], and the authors 531 

concluded that these preliminary results did not indicate a relationship among P. gingivalis, periodontitis, CRP 532 

levels, and preterm labor. Other authors [191,192] confirmed that there was no significant correlation between the 533 

presence of P. gingivalis in the placenta and perinatal complications. Ibrahim et al. [193] studied the association 534 

between P. gingivalis infection and recurrent miscarriage. The prevalence of P. gingivalis DNA in chorionic villous 535 

tissue samples and in cervicovaginal secretions was significantly higher in the case of recurrent early miscarriage 536 

(16% and 18%, respectively) than in women with no such history. 537 

In conclusion, P. gingivalis can directly injure and alter the morphology of the foetal and maternal tissues, by 538 

increasing the production of cytokines and free radicals in the uterine compartment, that could increase the risk of 539 

myometrial contraction and onset of preterm labor. 540 

 541 

2.7 P. gingivalis and cooperation with other oral bacteria 542 
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 If P. gingivalis plays a crucial role in oral pathologies, studies of microbiome have shown that inter-543 

bacterial cooperation is also possible, most often leading to an increase in its abundance [194] or/ and pathogenic 544 

power [195]. In the colon these bacteria can alter the composition of the residual microbiota, in the context of 545 

complex biofilms, resulting in intestinal dysbiosis by production of virulence factors creating bacterial instability 546 

and outgrowth of pathogens [196]. Cooperative biofilm formation and motility by Streptococcus gordonii, 547 

Fusobacterium nucleatum, Treponema denticola and Porphyromonas gingivalis were particularly documented in 548 

vitro, using growth models and scanning electron microscopy [197,198], and confirmed by metagenomics analysis 549 

[199]. Within an oral biofilm P. gingivalis is capable of increasing the expression of its fimbriae and facilitating the 550 

invasion of F. nucleatum into dendritic cells [200]. Communities of P. gingivalis with the accessory pathogen 551 

S. gordonii, which are synergistically pathogenic, show an increase in expression of genes encoding T9SS 552 

components [201]. The 4-aminobenzoate/para-amino benzoic acid (pABA) synthetized by S. gordonii is required 553 

for maximal accumulation of P. gingivalis in dual-species communities. Metabolomic and proteomic data showed 554 

P. gingivalis leads to decreased stress, virulence in vivo, extracellular polysaccharide production by P. gingivalis, 555 

but promote increase expression of fimbrial adhesins, colonization and survival of P. gingivalis in a murine oral 556 

infection model [202]. The chymotrypsin-like proteinase (CTLP) or dentilisin, a virulence factor of T. denticola, 557 

was shown to mediate its adherence to other potential periodontal pathogens, P. gingivalis, F. nucleatum, Prevotella 558 

intermedia and Parvimonas micra [203]. 559 

 560 

3 CONCLUSION 561 

Many virulence factors produced by P. gingivalis, such as lipopolysaccharide, capsule, fimbriae, 562 

gingipains, adhesins, outer membrane vesicles, interleukin-8 (IL-8) production induced by "Hemoglobin receptor 563 

(HbR), have been demonstrated in oral pathologies, inducing chronic inflammation and alveolar bone resorption. P. 564 

gingivalis is also able to indirectly act on DNA by inhibiting enzymes involved in its synthesis or activity. Concurrent 565 

studies support the role of P. gingivalis in many systemic diseases. Recent work on microbiota confirmed the first 566 

studies by PCR-sequencing and cultures. We hope that, in the future, new technologies (e.g., those studying the 567 

microbiome and bacterial metabolites) will be able to confirm these many assumptions, which have been put forward 568 

about the major role of P. gingivalis, as well as the intra-bacterial cooperation in the genesis of systemic diseases. 569 

 570 
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FIGURE LEGENDS 1180 

 1181 

Figure 1. Porphyromonas gingivalis (P. gingivalis) and brain diseases: molecular mechanisms involved. 1182 

P. gingivalis can easily access the systemic circulation in periodontitis patients. A relationship between P. gingivalis-1183 

specific antibodies in serum and neurologic disorders has been pointed out by several studies. Once it reaches the 1184 

bloodstream, P. gingivalis. can induce an impaired inflammatory state via its virulence factors and secreted 1185 

molecules from macrophages and immune cells. The expression of TLR2, TLR4, TNF-α and inducible nitric oxide 1186 

synthase (iNOS) is thought to be induced by the LPS of P. gingivalis in M1 macrophages of chronic periodontitis 1187 

patients. Pro-inflammatory signals are communicated to microglia through leptomeningeal cells. The presence of 1188 

LPS from P. gingivalis can be detected in brain tissue (post-mortem brain dementia) and on the surface membrane 1189 

of astrocytes, and could therefore raise neuro-inflammation, which is strongly implicated in Alzheimer's disease. P. 1190 

gingivalis may also affect the blood-brain barrier in Alzheimer's patients, which may explain the detection of 1191 

bacterial DNA and LPS in brain tissues. In turn, these virulence factors may enhance neuro-inflammation and 1192 

neuronal damage, with increased expression of inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8.  1193 

IL-6: interleukin 6; LPS: lipopolysaccharide; PHPC lipid: 1-palmitoyl-2-hexadecyl-sn-glycero-3-phosphocholine 1194 

lipid; TLR2/4: Toll-like receptors 2 and 4; TNF-α, TNF-γ: tumor necrosis factors α and γ. 1195 
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 1196 

Figure 2. P. gingivalis and lung diseases: molecular mechanisms involved. 1197 

During aspiration, oral secretions containing periopathogenic bacteria may spread in the respiratory airways. 1198 

Bacteria involved in respiratory diseases (e. g., cystic fibrosis), such as P. gingivalis (P. g) or Pseudomonas 1199 

aeruginosa (P. a), may also colonize the respiratory tree through endotracheal tubes. As in gingival tissues, P. 1200 

gingivalis can adhere to and invade respiratory epithelial cells, escaping the host defense and modulating apoptosis. 1201 

P. gingivalis and P. aeruginosa induced apoptosis in 12 h and 4 h, respectively. Furthermore, a mixed infection with 1202 

a common opportunistic pathogen of the respiratory system (P. aeruginosa) may lead to bacterial synergy to promote 1203 

inflammation (increase of CRP; polynuclear recruitment; putative role of gingipains Rgp and Kgp for P.g; or 1204 

pyocyanin for P.a) and ultimately facilitate the pathogenesis of respiratory diseases. 1205 

COPD: chronic obstructive pulmonary disease; CRP: C-reactive protein, C: complement activation. 1206 
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Figure 3. P. gingivalis and atherosclerosis: molecular mechanisms involved. 1209 

Following bacteremia, P. gingivalis can travel from the oral cavity through the bloodstream to the heart and aorta, 1210 

adhering to endothelial cells.  1211 

A1 and B 1: P. gingivalis adheres to endothelial cells, inducing inflammation and cytokine liberation. LPS also 1212 

induces an increased immune response, with liberation of cytokines. 1213 

A2: Gingipains from P. gingivalis can activate platelets and induce their aggregation, as well as foam cell formation 1214 

and cholesterol deposition. Atherosclerosis is an inflammatory disease stimulated by LPS from P. gingivalis, which 1215 

can inhibit pyroptosis, enabling macrophage survival and promoting the development of atherosclerosis plaques. 1216 

A3: A shift in the lipid profile (oxidized LDL in the plaque area significantly increased, and HDL cholesterol 1217 

decreased) was concomitant with a significant increase in atherosclerotic lesions. Induced inflammation and vascular 1218 

lesions promote thrombus formation. 1219 

 1220 

HDL: high-density lipoprotein; IL-1β, IL-18: interleukins 1β and 18; LDL: low-density lipoprotein; NLRP3: 1221 

cryopyrin; TLR2/4: Toll-like receptors 2 and 4; TNF-α: tumor necrosis factor α; TXA2: thromboxane A2. 1222 
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