Supporting Information

Stereoselective Ring-Opening Polymerization of Functional β-Lactones: Influence of the Exocyclic Side-Group †

Rama M. Shakaroun,^{a,b,‡} Hui Li,^{a,‡} Philippe Jéhan,^c Marielle Blot,^a Ali Alaaeddine,^b Jean-François Carpentier,^{*a} and Sophie M. Guillaume^{*a}

^a Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, F-35042 Rennes, France. E-mail: <u>sophie.guillaume@univ-rennes1.fr</u>, <u>jean-francois.carpentier@univ-rennes1.fr</u>

^b Univ. Libanaise, Campus Universitaire Rafic Hariri Hadath, Faculté des Sciences, Laboratoire de Chimie Médicinale et des Produits Naturels, Beirut, Lebanon.

E-mail: Alikassem.alaaeddine@ul.edu.lb

^c Centre Régional de Mesures Physiques de l'Ouest-CRMPO, ScanMAT UMS 2001,

Université de Rennes 1, France

[†] Electronic Supplementary Information (ESI) available: complementing NMR and MS spectra, DSC thermograms of the BPL^{FG}s and PBPL^{FG}s and kinetics of the polymerizations of BPL^{FG}s. See DOI: 10.1039/x0xx00000x

‡ These authors performed all the experimental work (except the mass spectrometry (P.J.) and chiral HPLC (M.B.) analyses) and contributed to the writing of the paper.

List of Tables, Schemes, and Figures

Table S1. Kinetic data for the monitoring of the ROP of *rac*-BPL^{CH2ZPh}s with various 1/iPrOH (1:1) catalytic systems ([BPL^{CH2ZPh}] $_0/[1]_0/[iPrOH]_0 = 60:1:1;$ Figure 1).

Table S2: Tacticity and T_g values of PBPL^{FG}s prepared by ROP of different functional BPL^{FG}s with FG = CH₂OPh, and CH₂SPh, CH₂CH₂OCH₂Ph, CH₂OCH₂Ph, using the catalytic systems **1a–1g**/iPrOH.

Table S3: Tacticity of PBPL^{FG}s prepared by ROP of different (functional) BPL^{FG}s with FG = Me, CH₂OPh, CH₂SPh, CH₂CH₂OCH₂Ph, CH₂OMe, CH₂OAll, CH₂OBn, and CO₂All, CO₂Bn, using the catalytic systems 1a-1g /iPrOH.

Figure S1. Chiral HPLC chromatogram (column Chiralcel-OD DAICEL; 250 mm × 4.6 mm, 5µm; 20 °C with a UV detector at 214 nm) of : (left) *racemic* phenyl glycidyl ether (*rac*- G^{CH_2OPh}), and (right) 99.97 % enantiopure phenyl glycidyl ether ((*S*)- G^{CH_2OPh}) (hexane/isopropanol 90/10; 1 mL.min⁻¹, 22 bar).

Figure S2. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of *racemic* 2- ((phenylthio)methyl)oxirane (rac-G^{CH2SPh}) (*: residual water from the deuterated solvent).

Figure S3. Chiral HPLC chromatogram (column Chiralcel-OD DAICEL; 250 mm × 4.6 mm, 5 μ m; 20 °C with a UV detector at 214 nm) of : (left) *racemic* 2-((phenylthio)methyl)oxirane (*rac*-G^{CH2SPh}), and (right) 99.87% enantiopure (*S*)-2-((phenylthio)methyl)oxirane ((*S*)-G^{CH2SPh}) (hexane/isopropanol 99.5/0.5; 0.9 mL.min⁻¹, 23 bar).

Figure S4. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of *racemic* 2-(2-(benzyloxy)ethyl)oxirane (rac-G^{CH2CH2OBn}) (*: residual water from the deuterated solvent).

Figure S5. Chiral HPLC chromatogram (column Chiralcel-OD DAICEL; 250 mm × 4.6 mm, 5 μ m; 20 C with a UV detector at 214 nm) of : (left) 2-(2-(benzyloxy)ethyl)oxirane (*rac*-G^{CH2CH2OBn}), and (right) of 99.69% enantiopure (*R*)-2-(2-(benzyloxy)ethyl)oxirane ((*R*)-G^{CH2CH2OBn}) (hexane/isopropanol 99.7/0.3; 1 mL.min⁻¹, 25 bar).

Figure S6. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) (top) and ¹³C (125 MHz, CDCl₃, 25 °C) (bottom) of *racemic* 4-phenyloxymethylene- β -propiolactone (*rac*-BPL^{CH2OPh}) (*: residual water from the deuterated solvent).

Figure S7. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) (top) and ¹³C (100 MHz, CDCl₃, 25 °C) (bottom) of *racemic* 4-(phenylthio)methylene-β-propiolactone (*rac*-BPL^{CH2SPh}).

Figure S8. ESI-MS (ionized by Na⁺, solvent CH₂Cl₂/CH₃OH (95/5 *v*:*v*)) of freshly synthesized *racemic* 4-(phenylthio)methylene- β -propiolactone, *rac*-BPL^{CH₂SPh} and ESI-MSMS of [M+H]⁺ *m/z* 195 with a collision energy of 10 eV. The zoomed region shows the peak for [(COCH₂CH(CH₂SC₆H₅)O)H]·Na⁺ (*m/z* = 217.0293). The two other fragmentation products depicted in red correspond to the loss of CH₂CO (*m/z* 149), and to the subsequent loss of CH₂ from the latter (*m/z* 135), or to the loss of CH₂CH₂CO from the monomer, respectively.

Figure S9. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) showing the decomposed (**2**) and the rearrangement (**3**) products of *rac*-BPL^{CH2SPh}. Such rearrangements are known for β-lactones: J. W. Kramer, D. S. Treitler, G. W. Coates, Low Pressure Carbonylation of Epoxides to β-Lactones. *Organic Syntheses* **2003**, *86*, 287-297.

Figure S10. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) (top) and ¹³C (100 MHz, CDCl₃, 25 °C) (bottom) of *racemic* 4-(2-(benzyloxy)ethylene)-β-propiolactone, *rac*-BPL^{CH2CH2OCH2Ph}.

Figure S11. ESI-MS (ionized by Na⁺, solvent CH₃OH of *racemic* 4-(2-(benzyloxy)ethylene)- β -propiolactone, *rac*-BPL^{CH2CH2OCH2Ph}. Zoomed regions correspond to the experimental (middle) and simulated (bottom) spectra.

Figure S12. ¹H NMR (500 MHz, CDCl₃, 25 °C) (top) and J-MOD (125 MHz, CDCl₃, 25 °C) (bottom) spectra of isotactic PBPL^{CH₂OPh} prepared from the ROP of (*S*)-BPL^{CH₂OPh} mediated by complex **1d** in the presence of *i*PrOH and precipitated twice in cold pentane (Table 1, entry 13).

Figure S13. ¹H NMR (500 MHz, CDCl₃, 25 °C) (top) and J-MOD (125 MHz, CDCl₃, 25 °C) (bottom) spectra of isotactic PBPL^{CH₂SPh} prepared from the ROP of (*S*)-BPL^{CH₂SPh} mediated by complex **1d** in the presence of *i*PrOH and precipitated twice in cold pentane (Table 1, entry 27)

Figure S14. ¹H (top) and ¹³C (bottom) NMR spectrum (500 and 125 MHz, CDCl₃, 25 °C) of *isotactic* PBPL^{CH2CH2OCH2Ph} prepared from the ROP of (*R*)-BPL^{CH2CH2OCH2Ph} mediated by complex **1d** in the presence of *i*PrOH and precipitated twice in cold pentane (Table 1, entry 40).

Figure S15. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) (top) and ¹H-¹³C HMBC (500 MHz, 125 MHz, CDCl₃, 25 °C) (bottom) of syndiotactic PBPL^{CH2OPh} precipitated twice in cold pentane (Table 1, entry 6) (*: residual H-grease).

Figure S16. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) (top) and ¹H-¹³C HMBC (500 MHz, 125 MHz, CDCl₃, 25 °C) (bottom) of syndiotactic PBPL^{CH2SPh} precipitated twice in cold pentane(Table 1, entry 26).

Figure S17. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) (top) and ¹H-¹³C HMBC (500 MHz, 125 MHz, CDCl₃, 25 °C) (bottom) of syndiotactic PBPL^{CH2CH2OCH2Ph} precipitated twice in cold pentane(Table 1, entry 33).

Figure S18. (a) Details of ¹³C NMR spectrum (125 MHz, CDCl₃) of *isotactic* PBPL^{CH2CH2OCH2Ph}; (b) a blend of *isotactic* PBPL^{CH2CH2OCH2Ph} and PBPL^{CH2CH2OCH2Ph} (Table 1, entries 40,39); (c) Details of ¹³C NMR spectrum of PBPL^{CH2CH2OCH2Ph} (Table 1, entry 39).

Figure S19. MALDI-ToF MS (DCTB matrix, ionized by Na⁺) of PBPL^{CH2OPh} precipitated twice in cold pentane (Table 1, entry 5). Right zoomed regions correspond to the simulated (top) and experimental (bottom) spectra.

Figure S20. ESI-MS (ionized by Na⁺, solvent CH₃OH/CH₂Cl₂ (90/10 v:v) of PBPL^{CH2SPh} (Table 1, entry 24) precipitated twice in cold pentane; right zoom spectra are theoretical data (top) vs. experimental (bottom).

Figure S21. MALDI-ToF MS (DCTB matrix, ionized by Na⁺) of PBPL^{CH2CH2OCH2Ph} precipitated twice in cold pentane (Table 1, entry 34). Zoomed regions correspond to the simulated (top) and experimental (bottom) spectra.

Figure S22. TGA thermograms of syndiotactic PBPL^{CH2OPh} (top-left) (Table 1, entry 7); syndiotactic PBPL^{CH2SPh} (top-right) (Table 1, entry 22); syndiotactic PBPL^{CH2CH2OCH2Ph} (bottom-left) (Table 1, entry 38); and (bottom right) for PBPL^{Me} ($M_{n,NMR} = 7900 \text{ g mol}^{-1}$, $\mathcal{D}_M = 1.04$; $P_r = 0.84$) prepared by ROP as previously reported (A. Amgoune, C. M. Thomas, S. Ilinca, T. Roisnel and J.-F. Carpentier, *Angew. Chem. Int. Ed.* 2006, **45**, 2782 –2784).

Figure S23. DSC thermogram (heating rate of 10 °Cmin⁻¹, second heating cycle, from –80 to 200 °C) of: (left) syndiotactic PBPL^{CH2OPh} ($P_r 0.75$) synthesized by ROP of *rac*-BPL^{CH2OPh} with Y{ONNO^{C12}}/(*i*PrOH) (Table 1, entry 4); (right) syndiotactic PBPL^{CH2OPh} ($P_r 0.83$) synthesized by ROP of *rac*-BPL^{CH2OPh} with Y{ONNO^{tBu2}}/(*i*PrOH) (Table 1, entry 12).

Figure S24. DSC thermogram (heating rate of 10 °C min⁻¹, second heating cycle –80 to 200 °C) of: (left) syndiotactic PBPL^{CH2SPh} (P_r 0.76) synthesized by ROP of *rac*-BPL^{CH2SPh} with Y{ONNO^{Me2}}/(*i*PrOH) (Table 1, entry 15); (right) syndiotactic PBPL^{CH2SPh} (P_r 0.86) synthesized by ROP of *rac*-BPL^{CH2SPh} with Y{ONNO^{tBu2}}/(*i*PrOH) (Table 1, entry 21).

Figure S25. DSC thermogram (heating rate of 10 °Cmin⁻¹, second heating cycle –60 to 200 °C) of : (left) syndiotactic PBPL^{CH2CH2OCH2Ph} (P_r 0.86) synthesized by ROP of *rac*-BPL^{CH2CH2OCH2Ph} with Y{ONNO^{cumyl2}}/(*i*PrOH) (Table 1, entry 36); (right) atactic PBPL^{CH2CH2OCH2Ph} (P_r 0.49) synthesized by ROP of *rac*-BPL^{CH2CH2OCH2Ph} with Y{ONNO^{Cl2}}/(*i*PrOH) (Table 1, entry 31).

BPL ^{CH2ZPh}	Time	Conv.	In([RDI CH2ZPh],/[RDI CH2ZPh])	M _{n,theo}	M _{n,NMR}	M _{n,SEC}	Đ .,
Catalyst 1	(h)	(%)	$\mathbf{m}(\mathbf{D}\mathbf{I}\mathbf{L} = \mathbf{j}_0/(\mathbf{D}\mathbf{I}\mathbf{L} = \mathbf{j}_t)$	(g.mol ⁻¹)	(g.mol ⁻¹)	(g.mol ⁻¹)	$\boldsymbol{D}_{\mathrm{M}}$
Table 1 entry 4	0	0	0	0	0	0	-
RPI CH2OPh	1.17	19	0.21	3 000	2 500	3 500	1.09
	4	38	0.48	4 100	3 900	4 300	1.10
	7	48	0.65	5 100	5 000	5 200	1.13
10	50	54	-	5 800	5 400	6 200	1.15
	0	0	0	0	0	0	-
Table 1, entry 2	0.25	20	0.22	2 200	2 000	2 600	1.11
BPL ^{CH2OPh}	0.50	40	0.51	4 300	5 700	5 100	1.11
{ONNO} ^{Me2}	1.17	64	1.03	6 900	6 900	8 200	1.13
1 a	2.17	83	1.78	8 900	8 000	10 400	1.13
	4.17	95	3.22	10 200	10 000	11 100	1.13
Table 1, entry 11	0	0	0	0	0	0	-
BPL ^{CH2OPh}	0.14	100	4.61	10 700	10 000	12 200	1.12
{ONNO} ^{Cumyl2}	0.5	100		10 700	10.000	12 200	1 15
1f	0.5	100	-	10 /00	10 000	12 200	1.15
Table 1, entry 6	0	0	0	0	0	0	-
BPL ^{CH2OPh}	0.14	100	4.61	10 700	10 600	12 200	1.11
{ONNO} ^{tBu2}	0.25	100		10 700	10 600	12 200	1 1 1
1d	0.23	100	-	10 /00	10 000	12 200	1.14
Table 1 ontry 18	0	0	0	0	0	0	-
PDI CH2SPh	24	12	0.13	1 500	1 300	1 600	1.08
DI L (ONNO)C2	48	21	0.24	2 500	2 400	2 600	1.12
{UNNU}	60	28	0.33	3 300	3 200	3 600	1.14
10	96	48	-	5 700	5 100	6 400	1.17
	0	0	0	0	0	0	-
Table 1, entry 15	0.25	10	0.11	1 200	1 100	1 500	1.13
BPL ^{CH2SPh}	0.5	20	0.22	2 400	2 400	3 200	1.14
{ONNO} ^{Me2}	2	55	0.80	6 400	6 300	8 900	1.16
1 a	4	88	2.12	10 400	10 200	12 500	1.18
	8	99	4.61	11 600	11 300	13 900	1.21
Table 1, entry 25	0	0	0	0	0	0	-
BPL ^{CH2SPh}	0.17	100	4.61	11 700	11 300	12 700	1.08
{ONNO} ^{Cumyl2}	1	100		11 700	11 300	13 300	1 1 2
1f	1	100	-	11 /00	11 300	15 500	1.12
Table 1 autor 20	0	0	0	0	0	0	-
<i>1 uble 1, entry 20</i> DDI CH2SPh	0.17	100	4.61	15 600	15 200	16 200	1.07
	1	100	4.61	15 600	15 200	17 900	1.15
10							

Table S1. Kinetic data for the monitoring of the ROP of *rac*-BPL^{CH2ZPh}s with various 1/iPrOH (1:1) catalytic systems ([BPL^{CH2ZPh}]₀/[1]₀/[*i*PrOH]₀ = 60:1:1; Figure 1).

BPL ^{CH2ZPh}	Time	Conv.	Im (FDDI CH2ZPh1 /FDDI CH2ZPh1)	M n,theo	M _{n,NMR}	M _{n,SEC}	A	
Catalyst 1	(h)	(%)	$III([\mathbf{DPL}^{\circ}]_{0}/[\mathbf{DPL}^{\circ}]_{1})$	(g.mol ⁻¹)	(g.mol ⁻¹)	(g.mol ⁻¹)	$\boldsymbol{\nu}_{\mathrm{M}}$	
1	1	11	0.118	1400	1300	1400	1.05	
I DDI CH2CH2OBn	2	19	0.213	2400	2200	2000	1.07	
$(ONNO)^{Me2}$	3	27	0.311	3300	3200	2700	1.07	
	4	31	0.375	3900	3400	3100	1.07	
18	9	46	0.625	5800	5500	4300	1.07	
2	1	8	0.081	1000	1100	1300	1.08	
Z DDI CH2CH2OBn	2	13	0.143	1700	1600	2100	1.08	
ONNO)Cl2	3	19	0.211	2400	2500	2600	1.09	
	4	21	0.234	2600	2700	2800	1.09	
п	9	33	0.402	4100	3900	3700	1.13	
2	0.5min	35	0.439	4400	4000	3600	1.08	
ג דסד CH2CH2OBn	1 min	66	1.07	8200	7600	6600	1.09	
	2 min	90	2.31	11200	11000	8700	1.07	
{UNNU}	3 min	96	3.27	11900	11200	9400	1.07	
10	5 min	100	-	12400	11900	9400	1.08	
	0.5min	8	0.088	1100	1000	1600	1.07	
4 BPL ^{CH2CH2OBn}	1 min	17	0.19	2200	2000	2300	1.09	
	2 min	35	0.428	4300	4100	3800	1.09	
{ONNO} ^{Cumyl2}	3 min	50	0.687	6200	5600	4900	1.08	
1f	4 min	61	0.952	7600	7200	6200	1.08	
	5 min	71	1.25	8900	8100	7200	1.08	

Table 1 Entry 2: Variation of $M_{n,NMR} \blacksquare$, $M_{n,SEC} \bullet$, and $M_{n,theo}$ (solid line) values of PBPL^{CH2OPh}s synthesized from the ROP of *rac*-BPL^{CH2OPh}s mediated by **1a**/(iPrOH) (1:1) catalytic system as a function of the monomer conversion.

Table 1 Entry 15: Variation of $M_{n,NMR} \blacksquare$, $M_{n,SEC} \bullet$, and $M_{n,theo}$ (solid line) values of PBPL^{CH2SPh}s synthesized from the ROP of *rac*-BPL^{CH2SPh}s mediated by **1a**/(iPrOH) (1:1) catalytic system as a function of the monomer conversion.

Table S1 Entry 1: Variation of $M_{n,NMR} =$, $M_{n,SEC} \oplus$, and $M_{n,theo}$ (solid line) values of PBPL^{CH2CH2OCH2Ph}s synthesized from the ROP of *rac*-BPL^{CH2CH2OCH2Ph}s mediated by **1a**/(iPrOH) (1:1) catalytic system as a function of the monomer conversion.

Table S2: Tacticity and T_g values of PBPL^{FG}s prepared by ROP of different functional BPL^{FG}s with FG = CH₂OPh, and CH₂SPh, CH₂CH₂OCH₂Ph, CH₂OCH₂Ph, using the catalytic systems **1a–1g**/iPrOH.

BPL ^{FG} Cat.	O BPL ^{CH2OPh}	O O BPL ^{CH2SPh}	BPL ^{CH2CH2OCH2Ph}	BPL CH2OCH2Ph
	Syndiotactic	Syndiotactic	Atactic	Atactic *
1a,b	$P_r = 0.76 - 0.79$	$P_r = 0.74 - 0.76$	$P_r = 0.49 - 0.52$	$P_r = 0.50$
	$T_g = 30 \ ^{\circ}\mathrm{C}$	$T_g = 8, 9 ^{\circ}\mathrm{C}$	$T_g = -11 \ ^{\circ}\mathrm{C}$	$T_g = -6 \ ^{\circ}\mathrm{C}$
	Syndiotactic	Syndiotactic	Atactic	Isotactic *
1c	$P_r = 0.75 - 0.77$	$P_r = 0.73 - 0.74$	$P_r = 0.49$	$P_r = 0.10$
	$T_g = 21, 22 ^{\circ}\mathrm{C}$	$T_g = 9 \ ^{\circ}\mathrm{C}$	$T_g = -13 \ ^{\circ}\mathrm{C}$	$T_g = -1 ^{\circ}\mathrm{C}$
	Syndiotactic	Syndiotactic	Syndiotactic	Syndiotactic *
1 d -1g	$P_r = 0.81 - 0.87$	$P_r = 0.83 - 0.87$	$P_r = 0.77 - 0.86$	$P_r = 0.85 - 0.90$
	$T_g = 36 - 40 \ ^{\circ}\mathrm{C}$	$T_g = 12 - 14 ^{\circ}\mathrm{C}$	$T_g = -813 ^{\circ}\mathrm{C}$	$T_g = 0 \ ^{\circ}\mathrm{C}$

* (a) Ligny, R.; Hanninen, M. M.; Guillaume, S. M.; Carpentier, J. F. *Angew. Chem. Int. Ed.* **2017**, *56* (35), 10388-10393; (b) Ligny, R.; Hänninen, M. M.; Guillaume, S. M.; Carpentier, J.-F., Chem. Commun. **2018**, *54* (58), 8024-8031.

Table S3: Tacticity of PBPL^{FG}s prepared by ROP of different (functional) BPL^{FG}s with FG = Me, CH₂OPh, CH₂SPh, CH₂CH₂OCH₂Ph, CH₂OMe, CH₂OAll, CH₂OBn, and CO₂All, CO₂Bn, using the catalytic systems 1a-1g /iPrOH.

BPL ^{FG} Cat.	BPL ^{Me}	O BPLCH2OPh/SPh	O T BPL ^{CH2OMe/All/Bn}	O BPL ^{CH₂CH₂OCH₂Ph}	BPL ^{CO2All/Bn}
Crowded	Syndiotactic ‡	Syndiotactic	Syndiotactic *	Syndiotactic	Syndiotactic †
	$P_r = 0.70 - 0.96$	$P_r = 0.81 - 0.87$	$P_r = 0.78 - 0.90$	$P_r = 0.77 - 0.86$	$P_r = 0.68 - 0.87$
Non-crowded	Atactic ‡	Syndiotactic	Atactic *	Atactic	Syndiotactic †
	$P_r = 0.56$	$P_r = 0.74 - 0.79$	$P_r = 0.49 - 0.51$	$P_r = 0.49 - 0.52$	$P_r = 0.92 -> 0.95$
Halogenated	Atactic ‡	Syndiotactic	Isotactic *	Atactic	Syndiotactic †
non-crowded	$P_r = 0.42 - 0.45$	$P_r = 0.73 - 0.77$	$P_r = < 0.05 - 0.12$	$P_r = 0.49$	$P_r = 0.91 -> 0.98$

‡ (a) Chapurina, Y.; Klitzke, J.; Casagrande Ode, L., Jr.; Awada, M.; Dorcet, V.; Kirillov, E.; Carpentier, J. F. *Dalton Trans* 2014, *43* (38), 14322-14333; (b) Bouyahyi, M.; Ajellal, N.; Kirillov, E.; Thomas, C. M.; Carpentier, J.-F. *Chem. –Eur. J.*, 2011, *17*, 1872-1883; (c) Amgoune, A.; Thomas, C. M.; Ilinca, S.; Roisnel, T.; Carpentier, J.-F. *Angew. Chem. Int. Ed.* 2006, *118* (17), 2848-2850.

* (a) Ligny, R.; Hanninen, M. M.; Guillaume, S. M.; Carpentier, J. F. *Angew. Chem. Int. Ed.* **2017**, *56* (35), 10388-10393; (b) Ligny, R.; Hänninen, M. M.; Guillaume, S. M.; Carpentier, J.-F. *Chem. Commun.* **2018**, *54* (58), 8024-8031; (c) Ligny, R.; Guillaume, S. M.; Carpentier, J. F., *Chem. –Eur. J.*, **2019**, *25*, 6412–6424.

† (a) Jaffredo, C. G.; Chapurina, Y.; Kirillov, E.; Carpentier, J. F.; Guillaume, S. M. *Chem. – Eur. J.*, **2016**, 22 (22), 7629-7641; (b) Jaffredo, C. G.; Chapurina, Y.; Guillaume, S. M.; Carpentier, J. F. *Angew Chem. Int. Ed.* **2014**, *53* (10), 2687-2691.

Figure S1. Chiral HPLC chromatogram (column Chiralcel-OD DAICEL; 250 mm × 4.6 mm, 5µm; 20 °C with a UV detector at 214 nm) of : (left) *racemic* phenyl glycidyl ether (*rac*- G^{CH_2OPh}), and (right) 99.97 % enantiopure phenyl glycidyl ether ((*S*)- G^{CH_2OPh}) (hexane/isopropanol 90/10; 1 mL.min⁻¹, 22 bar).

Figure S2. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of *racemic* 2- ((phenylthio)methyl)oxirane (rac-G^{CH2SPh}) (*: residual water from the deuterated solvent).

Figure S3. Chiral HPLC chromatogram (column Chiralcel-OD DAICEL; 250 mm × 4.6 mm, 5 μ m; 20 °C with a UV detector at 214 nm) of : (left) *racemic* 2-((phenylthio)methyl)oxirane (*rac*-G^{CH2SPh}), and (right) 99.87% enantiopure (*S*)-2-((phenylthio)methyl)oxirane ((*S*)-G^{CH2SPh}) (hexane/isopropanol 99.5/0.5; 0.9 mL.min⁻¹, 23 bar).

Figure S4. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of *racemic* 2-(2-(benzyloxy)ethyl)oxirane (rac-G^{CH2CH2OBn}) (*: residual water from the deuterated solvent).

Figure S5. Chiral HPLC chromatogram (column Chiralcel-OD DAICEL; 250 mm × 4.6 mm, 5 μ m; 20 C with a UV detector at 214 nm) of : (left) 2-(2-(benzyloxy)ethyl)oxirane (*rac*-G^{CH2CH2OBn}), and (right) of 99.69% enantiopure (*R*)-2-(2-(benzyloxy)ethyl)oxirane ((*R*)-G^{CH2CH2OBn}) (hexane/isopropanol 99.7/0.3; 1 mL.min⁻¹, 25 bar).

Figure S6. ¹H NMR spectrum (500 MHz, CDCl₃, 23 °C) (top) and ¹³C (125 MHz, CDCl₃, 25 °C) (bottom) of *racemic* 4-phenyloxymethylene- β -propiolactone (*rac*-BPL^{CH2OPh}) (*: residual water from the deuterated solvent).

Figure S7. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) (top) and ¹³C (100 MHz, CDCl₃, 25 °C) (bottom) of *racemic* 4-(phenylthio)methylene-β-propiolactone (*rac*-BPL^{CH2SPh}).

Figure S8. ESI-MS (ionized by Na⁺, solvent CH₂Cl₂/CH₃OH (95/5 *v*:*v*)) of freshly synthesized *racemic* 4-(phenylthio)methylene- β -propiolactone, *rac*-BPL^{CH₂SPh} and ESI-MSMS of [M+H]⁺ *m*/*z* 195 with a collision energy of 10 eV. The zoomed region shows the peak for [(COCH₂CH(CH₂SC₆H₅)O)H]·Na⁺ (*m*/*z* = 217.0293). The two other fragmentation products depicted in red correspond to the loss of CH₂CO (*m*/*z* 149), and to the subsequent loss of CH₂ from the latter (*m*/*z* 135), or to the loss of CH₂CH₂CO from the monomer, respectively.

Figure S9. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) showing the decomposed (2) and the rearrangement (3) products of *rac*-BPL^{CH2SPh}. Such rearrangements are known for β -lactones: J. W. Kramer, D. S. Treitler, G. W. Coates, Low Pressure Carbonylation of Epoxides to β -Lactones. *Organic Syntheses* **2003**, *86*, 287-297.

Figure S10. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) (top) and ¹³C (100 MHz, CDCl₃, 25 °C) (bottom) of *racemic* 4-(2-(benzyloxy)ethylene)-β-propiolactone, *rac*-BPL^{CH2CH2OCH2Ph}.

Figure S11. ESI-MS (ionized by Na⁺, solvent CH₃OH of *racemic* 4-(2-(benzyloxy)ethylene)- β -propiolactone, *rac*-BPL^{CH2CH2OCH2Ph}. Zoomed regions correspond to the experimental (middle) and simulated (bottom) spectra.

Figure S12. ¹H NMR (500 MHz, CDCl₃, 25 °C) (top) and J-MOD (125 MHz, CDCl₃, 25 °C) (bottom) spectra of isotactic PBPL^{CH₂OPh} prepared from the ROP of (*S*)-BPL^{CH₂OPh} mediated by complex **1d** in the presence of *i*PrOH and precipitated twice in cold pentane (Table 1, entry 13), * residual water.

Figure S13. ¹H NMR (500 MHz, CDCl₃, 25 °C) (top) and J-MOD (125 MHz, CDCl₃, 25 °C) (bottom) spectra of isotactic PBPL^{CH₂SPh} prepared from the ROP of (*S*)-BPL^{CH₂SPh} mediated by complex **1d** in the presence of *i*PrOH and precipitated twice in cold pentane (Table 1, entry 27) (*: minor peaks correspond to the degradation product **3** of BPL^{CH₂SPh}).

Figure S14. ¹H (top) and ¹³C (bottom) NMR spectrum (500 and 125 MHz, CDCl₃, 25 °C) of *isotactic* PBPL^{CH2CH2OCH2Ph} prepared from the ROP of (*R*)-BPL^{CH2CH2OCH2Ph} mediated by complex **1d** in the presence of *i*PrOH and precipitated twice in cold pentane (Table 1, entry 40).

Figure S15. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) (top) and ¹H-¹³C HMBC (500 MHz, 125 MHz, CDCl₃, 25 °C) (bottom) of syndiotactic PBPL^{CH2OPh} precipitated twice in cold pentane (Table 1, entry 6) (*: residual H-grease).

Figure S16. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) (top) and ¹H-¹³C HMBC (500 MHz, 125 MHz, CDCl₃, 25 °C) (bottom) of syndiotactic PBPL^{CH2SPh} precipitated twice in cold pentane(Table 1, entry 26).

Figure S17. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) (top) and ¹H-¹³C HMBC (500 MHz, 125 MHz, CDCl₃, 25 °C) (bottom) of syndiotactic PBPL^{CH2CH2OCH2Ph} precipitated twice in cold pentane(Table 1, entry 33).

(a) iso-PBPL^{CH₂CH₂OCH₂Ph}

Figure S18. (a) Details of ¹³C NMR spectrum (125 MHz, CDCl₃) of *isotactic* PBPL^{CH2CH2OCH2Ph}; (b) a blend of *isotactic* PBPL^{CH2CH2OCH2Ph} and PBPL^{CH2CH2OCH2Ph} (Table 1, entries 40,39); (c) Details of ¹³C NMR spectrum of PBPL^{CH2CH2OCH2Ph} (Table 1, entry 39). The P_r values of PBPL^{CH2CH2OCH2Ph} is then typically determined from the area fitting (or integration) values obtained from the NMR MestReNova software of the deconvoluted signals (labelled 1 and 2) corresponding to the *racemic* (*r*) and *meso* (*m*) diads, according to the equation: $P_r = (P_r(C_3) + P_r(C_5) + P_r(C_4)) / 3$, with $P_r(C_x) = \text{Area } 1 / (\text{Area } 1 + \text{Area } 2)$ and Cx = corresponding carbon atom labeling.

Figure S19. MALDI-ToF MS (DCTB matrix, ionized by Na⁺) of PBPL^{CH2OPh} precipitated twice in cold pentane (Table 1, entry 5). Right zoomed regions correspond to the simulated (top) and experimental (bottom) spectra.

Figure S20. ESI-MS (ionized by Na⁺, solvent CH₃OH/CH₂Cl₂ (90/10 v:v) of PBPL^{CH2SPh} (Table 1, entry 24) precipitated twice in cold pentane; right zoom spectra are theoretical data (top) vs. experimental (bottom).

Figure S21. MALDI-ToF MS (DCTB matrix, ionized by Na⁺) of PBPL^{CH2CH2OCH2Ph} precipitated twice in cold pentane (Table 1, entry 34). Zoomed regions correspond to the simulated (top) and experimental (bottom) spectra.

Figure S22. TGA thermograms of syndiotactic PBPL^{CH2OPh} (top-left) (Table 1, entry 7); syndiotactic PBPL^{CH2SPh} (top-right) (Table 1, entry 22); syndiotactic PBPL^{CH2CH2OCH2Ph} (bottom-left) (Table 1, entry 38); and (bottom right) for PBPL^{Me} ($M_{n,NMR} = 7900 \text{ g mol}^{-1}$, $\mathcal{D}_M = 1.04$; $P_r = 0.84$) prepared by ROP as previously reported (A. Amgoune, C. M. Thomas, S. Ilinca, T. Roisnel and J.-F. Carpentier, *Angew. Chem. Int. Ed.* 2006, **45**, 2782 –2784).

Figure S23. DSC thermogram (heating rate of 10 °Cmin⁻¹, second heating cycle, from –80 to 200 °C) of: (top) syndiotactic PBPL^{CH2OPh} ($P_r 0.75$) synthesized by ROP of *rac*-BPL^{CH2OPh} with Y{ONNO^{C12}}/(*i*PrOH) (Table 1, entry 4) - The spikes observed (ca 160° C, 190° C) arise from the cooling that sometimes occur upon filling in the liquid nitrogen fluid required to cool down the temperature; (bottom) syndiotactic PBPL^{CH2OPh} ($P_r 0.83$) synthesized by ROP of *rac*-BPL^{CH2OPh} with Y{ONNO^{tBu2}}/(*i*PrOH) (Table 1, entry 12).

Figure S24. DSC thermogram (heating rate of 10 °C min⁻¹, second heating cycle –80 to 200 °C) of: (top) syndiotactic PBPL^{CH2SPh} (P_r 0.76) synthesized by ROP of *rac*-BPL^{CH2SPh} with Y{ONNO^{Me2}}/(*i*PrOH) (Table 1, entry 15); (bottom) syndiotactic PBPL^{CH2SPh} (P_r 0.86) synthesized by ROP of *rac*-BPL^{CH2SPh} with Y{ONNO^{tBu2}}/(*i*PrOH) (Table 1, entry 21).

Figure S25. DSC thermogram (heating rate of 10 °Cmin⁻¹, second heating cycle –60 to 200 °C) of : (top) syndiotactic PBPL^{CH2CH2OCH2Ph} (P_r 0.86) synthesized by ROP of *rac*-BPL^{CH2CH2OCH2Ph} with Y{ONNO^{cumyl2}}/(*i*PrOH) (Table 1, entry 36); (bottom) atactic PBPL^{CH2CH2OCH2Ph} (P_r 0.49) synthesized by ROP of *rac*-BPL^{CH2CH2OCH2Ph} with Y{ONNO^{Cl2}}/(*i*PrOH) (Table 1, entry 31).