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Antoine Delmas · Jean-Pascal Lefaucheur

· Luc Bredoux · Pierre Jannin

Received: date / Accepted: date

Abstract Purpose: Transcranial Magnetic Stimulation (TMS) is a grow-
ing therapy for a variety of psychiatric and neurological disorders that arise
from or are modulated by cortical regions of the brain represented by singu-
lar 3D target points. These target points are often determined manually with
assistance from a pre-operative T1-weighted MRI, although there is growing
interest in automatic target point localisation using an atlas. However, both
approaches can be time-consuming which has an effect on the clinical workflow
and the latter does not take into account patient variability such as the vary-
ing number of cortical gyri where these targets are located. Methods: This
paper proposes a multi-resolution convolutional neural network for point local-
isation in MR images for a priori defined points in increasingly finely resolved
versions of the input image. This approach is both fast and highly memory
efficient, allowing it to run in high-throughput centres, and has the capability
of distinguishing between patients with high levels of anatomical variability.
Results: Preliminary experiments have found the accuracy of this network
to be 7.26 ± 5.30 mm, compared to 9.39 ± 4.63 mm for deformable registra-
tion and 6.94 ± 5.10 mm for a human expert. For most treatment points, the
human expert and proposed CNN statistically significantly outperform regis-
tration, but neither statistically significantly outperforms the other, suggesting
that the proposed network has human-level performance. Conclusions: The
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human-level performance of this network indicates that it can improve TMS
planning by automatically localising target points in seconds, avoiding more
time-consuming registration or manual point localisation processes. This is
particularly beneficial for out-of-hospital centres with limited computational
resources where TMS is increasingly being administered.

Keywords Transcranial magnetic stimulation, deep learning, convolutional
neural networks

1 Introduction

Transcranial Magnetic Stimulation (TMS) is a increasingly used for a variety
of psychiatric and neurological disorders, including its established use in the
treatment of neuropathic pain and major depression [12] and for motor stroke
rehabilitation [12,17], but also emerging potential use in the alleviation of
early Alzheimer’s disease [5] and vascular dementia [13]. TMS involves the
stimulation of particular functional networks in the cortex through the use of
brief intense magnetic fields which are applied by a coil placed on the patient’s
head proximal to the region of interest. For TMS in specific disorders, such as
drug-resistant chronic pain, an initial localisation of the stimulation site can be
highly beneficial as the ideal regions to stimulate can sometimes be determined
by the patient’s symptomatology [9]. For chronic pain, these targeted cortical
regions are located in the primary motor cortex (M1) corresponding to the
anatomical regions in which the patient feels pain on the contralateral side [9].
The pain alleviating effects of TMS can be short-lasting, often on the order of
days or weeks following stimulation. However, multiple follow-up sessions can
result in long-term pain alleviation but their frequency means that stream-
lining procedures for TMS planning is important [12].

TMS planning involves selecting and localising a collection of target points
for calibration and for treatment. Calibration target points help determine
the stimulation parameters by finding the minimum intensity threshold for
which stimulation results in a motor response and thus allow for the stimula-
tion parameters to be adjusted to suit that particular patient, avoiding over-
or under-stimulation. Treatment targets are the cortical regions that will be
stimulated in order to alleviate the patient’s individual disorder. Given the
more subjective nature of the disorders being treated, the precise locations of
treatment targets may be harder to identify by the human operator, especially
as there is often a delay between the stimulation and improvement in the pa-
tients symptoms [9]. There is some recent literature regarding identifying the
effect site of TMS stimulation using the parameters of said stimulation. How-
ever, these approaches are not suitable for pre-operative planning in which
said stimulation has yet to be performed [19].

The first method for identifying these points was to initially find the cali-
bration point through trial-and-error (as stimulating this point produced ob-
servable muscle contractions) and then navigate the coil a pre-specified dis-
tance along the scalp. Another early method avoiding this manual measure-
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ment used a fitted cap as markers on this cap allowed for somewhat more
accurate and repeatable targeting. However, both unguided methods tended
to have targeting errors on the order of 1-4 cm. [16]

Although the use of a standard T1-weighted MRI is highly beneficial for
the identification of target points and has resulted in improved TMS outcomes
[10], MRI-based navigation remains sparsely used for various reasons, among
which is the lack of neuroanatomical skill of most operators. The current work-
flow for MRI-based TMS planning involves the use of these images, which are
skull-stripped and then visualised, allowing for target points to be identified on
the patient’s cortical surface. Recent approaches have attempted to automate
this process by deformably registering this image to an atlas containing pre-
identified calibration and treatment target points which are then projected
onto the visualisation of the cortical surface. However, the process of regis-
tration takes several minutes which can be problematic for high-throughput
centres. In addition, it is susceptible to error resulting from topological dif-
ferences between the atlas image and the particular patient due to the high
patient variability in the number and position of cortical gyri. Circumventing
these image processing steps would be highly beneficial to the TMS workflow.

The TMS workflow is particularly interesting as an increasing proportion of
interventions are not performed in hospital, but in specialised out-of-hospital
centres. These centres can be more decentralised, facilitating patient access
to TMS, but have fewer computational resources and no additional imaging
capacity, placing particular constraints on TMS planning software. Firstly, it
must be fast as the image processing is often done after the patient has entered
the clinic and any delay due to computer processing delays the intervention.
Secondly, it must be immediately adaptable to having images from different
scanners as patients may be arriving from different hospital centres.

Recent advances in deep learning provide a possible solution and convo-
lutional neural networks (CNNs) have shown great promise in automatically
identifying [11] and localising [14] structures in natural images. Although par-
ticular affordances must be made to accommodate fully volumetric images due
to their size and the inherent memory limitations of CNNs [6], deep learning
does offer a new approach to point localisation in structural MRI that may be
more robust to patient anatomical variability. In addition, CNNs are highly
time-efficient compared to the multiple iterative optimisation-based algorithms
used by deformable registration. However, current CNN structures for local-
ising objects are designed for two-dimensional, rather than three-dimensional
images. This renders their immediate use difficult as the amount of memory re-
quired for storing volumetric activations can easily overwhelm a modern GPU
memory even for processing a single volume, let alone batches of volumes. In
addition, many of these frameworks are designed for also classifying objects,
which involves an additional layer of complexity not required for TMS planning
in which a fixed number of points with consistent identities are desired.
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Contributions

The purpose of this paper is to estimate the locations of a set of a priori de-
fined stimulation target points to assist in TMS planning directly from the T1
images using convolutional neural networks. By using the T1 images directly,
this framework avoids the skull-stripping and deformable registration steps,
allowing it to more easily fit into the clinical workflow. This paper also relates
the accuracy of these target points to that of human expert performance and
to the state-of-the-art deformable registration-based method currently em-
ployed. To the best of our knowledge, this system represents the first use of
deep learning to perform TMS target point localisation as well as the first of
such systems with an accuracy approaching that of a human expert.

2 Methods

2.1 Patient Images

26 patient T1-weighted MR images (1mm isotropic resolution) have been col-
lected with annotations of multiple TMS target points. (The majority of im-
ages have all target points identified.) As the patient base comes from multiple
hospital centres, there is some heterogeneity in MRI manufacturer (database
includes Phillips Acheiva, Siemens Verio, and GE Signa HDxt) and protocol
(T1 3D N NAV, MPRAGE, and CRANE STANDARD/20). To normalise the
differing image intensities, approximate min-max normalisation was employed,
using the 5 and 95 percentiles as the minimum and maximum intensity esti-
mates. These images have a common RAI orientation but have been resampled
to 256x256x256 voxels in order to facilitate downsampling. The images were
annotated with a series of targets points which are listed in Table 1. As not
all images had all target points identified, Table 1 also reports the number of
patients in which the target was identified by at least one human expert and
the total number of times it is identified across the entire database.

The non-motor treatment points (i.e. LOFC, ROFC, LDLPFC, RDLPFC,
and LHESCHL) were annotated independently by an expert neurologist or
neurosurgeon. (All patients were annotated the same annotator for each point
but the different point types had different annotators.) The chronic pain treat-
ment points (i.e. LFACEMC, RFACEMC, LULIMBMC, RULIMBMC, LL-
LIMBMC, and RLLIMBMC, noting that the LULIMBMC and RULIMBMC
are also used for calibration as stimulating them leads to an observable twitch-
ing in the hand) have been annotated in each image by three expert neurolo-
gists in order to estimate the expert variability (i.e. the average performance
of human experts) on this task. To ensure that the accuracy of the training
data is of high quality, an ”consensus” point is derived from these three ex-
pert annotations. This process involves multiple manual steps including: the
visual confirmation that the point data is adequate (i.e. appears in the correct
cortex on the correct hemisphere), determining which of the three experts are
in agreement (i.e. have selected on the same gyral fold as visually determined
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Acronym Region Type P# T# C#

LOFC Left orbitofrontal cortex Treatment
(depression,
schizophrenia,
anxiety,
OCD, etc...)

26 26
ROFC Right orbitofrontal cortex 26 26
LDLPFC Left dorsolateral pre-frontal cortex 24 24
RDLPFC Right dorsolateral pre-frontal cortex 24 24
LHESCHL Left Heschl’s gyrus (i.e. the trans-

verse gyrus) of the temporal lobe
23 23

LFACEMC Facial region of the left primary mo-
tor cortex

Treatment
(chronic
pain)

26 78 25

RFACEMC Facial region of the right primary
motor cortex Calibration

(LULIMBMC,
RULIMBMC)

26 78 26

LLLIMBMC Lower limb region of the left primary
motor cortex

26 78 24

RLLIMBMC Lower limb region of the right pri-
mary motor cortex

26 78 26

LULIMBMC Upper limb region of the left primary
motor cortex

26 78 25

RULIMBMC Upper limb region of the right pri-
mary motor cortex

26 78 26

Table 1 Points used in our TMS dataset containing both depression and chronic pain
patients. The P# column refers to the number of patients in this dataset with at least one
annotation of this particular target point, T# refers to the total number of target points,
and the C# column refers to the number of patients with consensus annotations. Greyed
out cells represent regions that could not be computed, having a single expert annotation.

by an expert neurologist visualising all three points) and finding the centre-of-
mass point for the experts with the highest agreement. Although not a strict
requirement, the further distance between two experts considered to be in
agreement was less than 12mm. Often, all three experts agree, that is, they
report similar points for a desired target in an individual patient. However, it
is a common occurrence for only two of the three experts to agree and for the
consensus point to be determined only by those two experts. In the case of 4
points (across the entire patient dataset), no consensus could be found, that is,
all three experts identified clearly different anatomical locations as the target
point. The network is trained on these consensus points (when available) for
the aforementioned point types, rather than on the multiple expert annota-
tions as the consensus points are intuitively more likely to be correct and given
the limited amount of data for training, we did not expect the network to be
able to disambiguate erroneous manually defined points. For the other point
type, the dataset had only been annotated by one expert and whose points
are thus used for training.

2.2 Multi-Resolution Convolutional Neural Network Architecture

Our method uses a deep convolutional neural network inspired by multi-
resolution architectures such as U-Nets [15] expanding on our previous work
in localising points in volumetric images for the purpose of small region seg-
mentation. [3] This work compared a traditional neural network approach for
localising a single point, treated as an image-to-vector regression problem,
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Fig. 1 Network Diagram for Point Localisation with 20 residual layers and 6 ‘single reso-
lution subnetworks’ shown in Figures 2 and 3 respectively.

Linear + ReLU
1296 channels

Linear
 36 channels +

Fig. 2 Residual network layer. All 20 residual layers are used at the end of each resolution
subnetwork acting a six residual networks with shared parameters.

with an earlier multi-resolution approach, motivating our network structure.
The network architecture is shown in Figure 1. Similarly, there is a sequence
of downsampling operations to create the image volumes at each resolution
level. (We used average pooling due its small size and fast implementation.)

However, due to the nature of point localisation (distinct from other tasks
such as image segmentation) the majority of the image at finer resolutions
does not contribute information relevant to the problem at hand. (That is,
if the network knows at a coarse resolution that the target point is located
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Fig. 3 Architecture for the single resolution subnetwork.

within a particular region, the intensity of voxels outside of said region do
not contain information able to improve the network’s accuracy in localising
that particular target.) As our problem requires full volumetric images, re-
taining these non-informative regions represents additional memory and time
consumption that could limit its utility. Thus, our network is designed also
with a non-differentiable image cropping operation that takes the estimate of
the point’s location at a coarse resolution and uses it to crop the image at a
finer resolution to a smaller region. This cropped region surrounds the esti-
mated point location, allowing each subsequent layer to update the estimate
at a finer without requiring for the entire volume to be stored in memory.

This cropping operation gives us significantly more flexibility in terms of
the remaining elements of the network architecture as significantly more GPU
memory is available. This allows for the subnetworks that update the centroid
locations to be relatively large, each consisting of four convolution layers with
a larger number of kernels than in the downsampling operations. These con-
volutional layers are then interpreted as unnormalised probability maps for a
collection of distinct point estimates. To get an updated weighted point es-
timate, they are passed through a spatial softmax layer and their centroids
taken according to the formula:∑

i cie
Wi∑

i e
Wi

where ci =

∑
x∈Ω xe

Mi(x)∑
x∈Ω e

Mi(x)
(1)

where i is a channel, x is a location in the image, Mi(x) is the output of the
convolution stack for that channel, ci is the centroid of the resulting probability
map, and Wi is the weight of channel i determined by a series of two linear
layers, the first of which operates on the flattened image. The architecture of
these components is shown in Figure 3.

These are treated as initial estimates for the point locations at this par-
ticular resolution layer. However, due to missing or unclear information in the
image, it may also be beneficial for these points to updated given knowledge
of the other points. Thus, a series of 20 residual layers is appended to each
resolution layer. In order to prevent this from causing a large increase in the
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number of parameters, all six resolution layers share the same residual com-
ponents. This final sub-network also allows for information about the general
configuration to be used, similar to a learned statistical shape model. [8]

2.3 Training

Unlike in traditional neural network architectures, it is not feasible to apply a
loss function that uses only the final localisation estimate. This is because:

1. The cropping operations are not differentiable with respect to the location
they are cropping around meaning that gradients cannot travel from finer
resolution layers into coarser ones;

2. Due to the increasing pixel-width, changes in the coarser resolution layers
are magnified, i.e., an error of 1 pixel at the coarsest layer is equivalent to
an error of 32 pixels at the finest; and

3. Each layer has a limited space of possible estimates, its field-of-view, and
cannot learn from gradients when the ground truth is outside of that space.

These considerations together require a specialised training structure and loss
function. To address the first problem, a separate loss is applied to the estimate
from each layer. To address the second, the error for each level can be divided
by the resolution. To address this third component, a weighting scheme is used
to partition the error towards the layers whose estimates are in the same order
of magnitude as their resolution, i.e., the layers that are the best equipped in
terms of both resolution and field-of-view. The loss and weighting scheme is
described as:

L =
∑
l

wl
e2l
r2l

where wl = sigmoid

(
−α

(
log2 el − log2 rl − 1

log2 fl

))
(2)

where l is a resolution layer, el is the error of that layer’s estimate, rl is
that layer’s resolution, fl is that layer’s field-of-view measured in pixels. The
constant α is used to control how close this weighting is to binary, i.e. how
much it allows a particular layer to learn information that is coarser than its
optimal resolution but still within its field of view. For our experiments, this
value was set to 8. In addition, the weights for each layer are adjusted by its
resolution, ensuring gradients for each resolution layer a similar magnitude.

The Stochastic Gradient Descent SGD optimiser was used with a learning
rate of 10−3 which decays over the number of iterations, i, with a factor of

1
1+0.1i . All training was performed on an NVIDIA Titan X GPU with 12Gb
of memory. A relatively large batch size of 16 full volumetric images was used
illustrating the network’s capability to conserve GPU memory.

Data augmentation has been implemented in the form of random rotations
(std. 10◦) and translations (std. 10 mm) which can be easily applied to the
point location as well. These augmentations were performed in training time,
transforming the image immediately prior to inputting it into the network,
rather than saving a database of transformed images.
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2.4 Comparative Method

In order to judge the efficacy of the network, it is compared against deformable
registration which is showing emerging use in TMS applications. [1] The com-
parative method uses the SyN toolbox [2] to perform first a rigid registration
step, followed by an affine step, then a final non-rigid step. The atlas used is a
T1 image of a healthy individual which has been pre-annotated by an expert
neurologist. This registration procedure takes on the order of 10-15 minutes to
compute per patient compared to 1-2 seconds using the proposed CNN. This
registration method has previously been used in research studies performed
using the same centre’s technology. [4,7,18]

2.5 Evaluation Criteria and Methods

In order to evaluate the method, the mean distance error was calculated in
a Leave-One-Out cross-validation system. All hyper-parameters were deter-
mined prior to performing cross-validation in order to ensure that bias is not
introduced through selecting the best model post-cross-validation. The cross-
validation is repeated 5 times in order to calculate a dispersion metric, that is,
the expected distance between a given prediction and the expected prediction.
The dispersion measures how robust the network prediction is to randomness
in the network initialisation, which training images are used in the validation
set, the order in which training images are presented, random data augmen-
tation etc... The dispersion therefore measures the precision of the prediction
as opposed to its quality. The dispersion of point p of patient i is:

D(p,i) =
1

NR

∑
r

∣∣∣∣∣P(n,p,i) −
1

NR

∑
n

P(n,p,i)

∣∣∣∣∣ (3)

where NR is the number of repetitions (i.e. 5) and P(n,p,i) is the nth network’s
estimate of point p in patient i. This dispersion also allows for us to intuitively
separate the error into the patient/point-specific bias component and a random
component that results from non-deterministic aspects in training.

3 Preliminary Results

Preliminary quantitative results are shown in Table 2 with the statistical test
results in Table 3. Note that for the non-motor target points only one manual
annotation was available. Thus the manual annotation error for these points
cannot be estimated. Corresponding qualitative results are shown in Figure 4.

To determine the effect of ensembling and of the residual layers, an exper-
iment was performed in which the LOOCV procedure was repeated five times
for six variants of the network. A pair of networks used a shared residual
component with another pair using separate residual components for each res-
olution layer and the last pair having no residual component whatsoever. Each
pair had one ’ensemble’ that combined the five repetitions, averaging together
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the individual network’s predictions, while the other item in the pair used
the individual network predictions directly. Qualitative results and statistical
analysis are given in Tables 4 and 5 respectively.

Point CNN Error Disp. Reg. Error Expert Var.

LOFC 5.77 ± 3.42 1.86 ± 2.24 9.95 ± 4.43
(n = 130) (n = 130) (n = 23)

ROFC 6.15 ± 3.65 1.33 ± 0.93 7.21 ± 4.66
(n = 130) (n = 130) (n = 23)

LDLPFC 9.08 ± 8.29 3.24 ± 5.60 7.44 ± 4.03
(n = 120) (n = 130) (n = 23)

RDLPFC 7.20 ± 4.30 2.43 ± 2.49 8.21 ± 3.34
(n = 120) (n = 130) (n = 23)

LHESCHL 6.13 ± 3.52 2.54 ± 1.64 6.38 ± 3.30
(n = 115) (n = 130) (n = 22)

LFACEMC 5.54 ± 3.25 2.29 ± 1.33 12.93 ± 3.75 7.12 ± 4.54
(n = 125) (n = 130) (n = 22) (n = 75)

RFACEMC 7.78 ± 5.37 2.39 ± 1.67 13.32 ± 3.33 8.84 ± 5.45
(n = 130) (n = 130) (n = 23) (n = 78)

LLLIMBMC 6.54 ± 5.12 2.62 ± 2.07 8.74 ± 5.24 5.65 ± 3.95
(n = 120) (n = 130) (n = 21) (n = 72)

RLLIMBMC 8.73 ± 7.17 2.96 ± 2.30 8.63 ± 5.58 6.73 ± 6.30
(n = 130) (n = 130) (n = 23) (n = 78)

LULIMBMC 7.82 ± 5.39 2.58 ± 1.54 9.51 ± 4.31 6.85 ± 4.70
(n = 125) (n = 130) (n = 22) (n = 75)

RULIMBMC 8.30 ± 5.01 2.93 ± 1.82 10.88 ± 3.99 6.35 ± 4.79
(n = 130) (n = 130) (n = 23) (n = 78)

MEAN 7.24 ± 5.23 2.53 ± 2.39 9.39 ± 4.63 6.94 ± 5.10
(n = 1475) (n = 1690) (n = 268) (n = 456)

Table 2 Quantitative results (mm) including the error of the proposed method (CNN
Error), its dispersion (Disp.), the error of the registration approach (Reg. Error) and the
expert variability, i.e. the error between the individual human experts and the consensus
point (Expert Var.). The MEAN row aggregates together the chronic pain treatment points.
Greyed out cells represent regions that could not be computed due to only having a single
expert annotation.

Point CNN vs. Reg. CNN vs. Expert Reg. vs. Expert

LOFC 3.74 ∗ ∗ CNN
ROFC 1.46
LDLPFC 0.55
RDLPFC 1.28
LHESCHL 0.89
LFACEMC 3.84 ∗ ∗ CNN 2.11 3.68 ∗ ∗ Expert
RFACEMC 3.65 ∗ ∗ CNN 1.64 3.95 ∗ ∗ Expert
LLLIMBMC 2.81∗ CNN 0.63 2.81∗ Expert
RLLIMBMC 0.85 1.23 1.55
LULIMBMC 2.66∗ CNN 0.61 2.85∗ Expert
RULIMBMC 3.04∗ CNN 2.12 3.55 ∗ ∗ Expert

Table 3 Results of paired Wilcoxon tests on the mean error (absolute Z-values) for each
pair of methods. (Data is paired by patient.) Statistically significant results (after Holm-
Bonferroni correction) are shown in bold with * meaning p ≤ 5%, ** meaning p ≤ 1% and
*** meaning p ≤ 0.1%. The best performing method in the pair is shown for statistically
significant differences.
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EV(L): 8.54 EV(R): 8.92 EV(L): 8.35 EV(R): 3.40 EV(L): 3.75 EV(R): 5.47
RE(L): 6.53 RE(R): 3.63 RE(L): 11.34 RE(R): 10.49 RE(L): 9.46 RE(R): 9.05
NE(L): 4.79 NE(R): 2.93 NE(L): 13.84 NE(R): 16.77 NE(L): 3.83 NE(R): 5.68
ND(L): 0.81 ND(R): 3.76 ND(L): 2.15 ND(R): 6.24 ND(L): 1.69 ND(R): 2.45

EV(L): 3.82 EV(R): 3.71 EV(L): 3.60 EV(R): 2.06 EV(L): 2.71 EV(R): 5.96
RE(L): 3.64 RE(R): 1.34 RE(L): 6.48 RE(R): 2.17 RE(L): 8.46 RE(R): 8.59
NE(L): 3.51 NE(R): 2.47 NE(L): 5.77 NE(R): 7.12 NE(L): 6.95 NE(R): 7.86
ND(L): 1.18 ND(R): 1.98 ND(L): 3.50 ND(R): 5.26 ND(L): 3.58 ND(R): 1.84

Fig. 4 Results for the left and right lower limb areas of the motor cortex (LLLIMBMC and
RLLIMBMC, respectively) of a representative patient. Points selected by a clinical expert
are shown in red, the proposed method in blue, and the atlas method in green. The expert
variability (EV), registration error (RE), network error (NE) and network dispersion (ND)
are given for both sides of the patient shown.

4 Discussion

From our results, we can clearly see that the proposed algorithm borders on
human performance as it sometimes outperforms and sometimes underper-
forms the expert variability but these differences are not statistically signifi-
cant. The most significant results are in favour of the proposed network for
the LFACEMC targets and the human expert for the RULIMBMC targets
although both of these reflect a difference in error of approximately 2mm.
The similarity between expert variability and the proposed framework’s per-
formance is further underlined by the aggregate scores for the chronic pain
treatment points which differ by an insignificant 0.30 mm. The registration
based approach’s error, however, is larger than the expert variability with sta-
tistical significance for all but two targets. With respect to the expert users,
there is a large degree of variability which is likely a result of the high degree
of patient variability and the lack of functional information in the T1w images.
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Thus, the use of the proposed network in TMS planning could possibly be
considered equivalent to the manual approach, the current standard-of-care,
and is a significantly better candidate for automatic target point localisation
in TMS than the deformable registration approach. The general improvement
in accuracy of the network compared to registration indicates that patient
anatomical variability at least has been partially addressed. In addition, due
to the deep learning nature of the proposed, it can always be improved through
the addition of more annotated images to the training database.

For the non-motor treatment points in which a consensus annotation was
not available, the learning and registration methods performed much more
similarly. The proposed CNN outperformed registration for five of the six
targets (although only with statistical significance for one) whereas registration
outperformed the network for only the LDLPFC and not with significance.
This indicates that there is a distinct advantage to using consensus points
rather than a single observer for this particular machine learning framework.
There is a possibility that the singular expert annotations for these points is
not fully correct, which renders any comparison between two algorithms using
said annotation questionable. However, there is also a possibility that the
proposed framework is more sensitive to error in the training dataset although
both of these would be difficult to verify without an independent gold standard,
which will be discussed in the subsequent section.

We originally hypothesised that certain elements of the network had a
non-negligible effect on its performance. However, comparing against small
ablations/modifications of the algorithm tells us only that using ensembling
improves the accuracy of the methods on the order of 0.1-0.5mm, although
this improvement would not affect the statistical significance of comparisons
against either the atlas or the human experts. Despite our hypothesis, the
effect of the residual layers was negligible, indicating that information about
the location of the target points is determined almost entirely from the image,
rather than from a statistical understanding of the relationships between the
target points’ locations.

Limitations

The primary limitation of this work is the method in which the reference target
points are collected for both training and evaluating the automatic methods.
Our dataset inherently contains a non-negligible level of error due to the possi-
bility that the singular rater for these points is incorrect or that (for targets in
which all three raters are available) two raters simultaneously mis-localise the
target, resulting in an incorrect consensus being used. Currently, independent
and high-accuracy ground-truth target points are not available as the T1 MRI
on which these targets are determined does not contain the functional infor-
mation required to make such a distinction. Previous studies have addressed
this issue by defining these points in terms of the point that gives maximal
stimulation effect [1] but this can be difficult to ascertain for target points
outside of the primary motor cortex. The lack of consensus points in some
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scenarios effectively gave the CNN fewer full datasets to use for training that,
given the relatively small size of the dataset, could have detrimental effects on
its accuracy with respect to the chronic pain treatment targets.

This lack of independent ground truth annotations also has a distinct effect
on the interpretation of the network results, specifically a bias in favour of the
human experts. For example, a larger number of targets in which all three
experts disagreed should intuitively increase the expert variability. However,
since no consensus point be identified, there is no reference against which
to measure this error, thus decreasing the number of datasets used in the
comparison rather than increasing the error. By increasing the number of
experts, we would be more likely to find correct consensus points, allowing for
a more unbiased comparison between algorithms and human experts.

From a technical perspective, there are some remaining advantages to the
registration approach that are not currently implemented by the proposed
network. The most important is that new targets can be easily added to the
atlas, allowing for new calibration or treatment targets to be incorporated as
desired. As TMS is an evolving therapy for a range of neurological disorders,
this is likely to happen. To extend a deep learning framework in a similar
manner however would involve the annotation of existing images in the training
database with these new target points, which requires significantly more time.

Future Work

As suggested in the previous sections, there is still work to be done regarding
improving this network and putting it into clinical use. The first is to con-
tinue to collect datasets with multiple expert annotations in order to find high
quality consensus points to use in training the network. Although the network
boarders on human accuracy, it still likely has room to improve.

From a research perspective, we would like to specifically investigate the
effects of topological differences to further ensure our hypothesis that this
network is more robust to large patient anatomical variations. This would
involve the collection of a larger and more varied dataset of individuals that we
could then separate into different classes based on common variations (number
of gyri, etc...) that have a strong effect on registration performance.

5 Conclusion

This paper presents a multi-resolution convolutional neural neural that is
specifically designed for localising points in large volumetric images. The novel
aspects of this architecture include the cropping operation which allows for
large amounts of GPU memory to be conserved, and the customised loss frame-
work which addresses the non-differentiability of this sampling operation as
well as ensuring efficient learning across multiple resolutions.

The proposed network outperforms that of deformable registration which
is the state-of-the-art in automatic point localisation for TMS planning and
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borders on expert performance which is the current clinical practice. This
improvement represents a step towards efficient and fully automatic TMS
planning that can be readily used by smaller centres that are increasingly
performing these interventions.
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