Palladium-Catalyzed Direct Diarylation of 2-Benzyl-1,2,3-triazole: a Simple Access to 4-Aryl- or 4,5-Diaryl-2-benzyl-1,2,3-triazoles and Phenanthro[9,10d $][1,2,3]$ triazoles

Xinzhe Shi, Jian Zhang, Thierry Roisnel, Jean-François Soulé, Henri Doucet

To cite this version:

Xinzhe Shi, Jian Zhang, Thierry Roisnel, Jean-François Soulé, Henri Doucet. Palladium-Catalyzed Direct Diarylation of 2-Benzyl-1,2,3-triazole: a Simple Access to 4-Aryl- or 4,5-Diaryl-2-benzyl-1,2,3triazoles and Phenanthro[9,10-d $][1,2,3]$ triazoles. European Journal of Organic Chemistry, 2021, 2021 (17), pp.2375-2382. 10.1002/ejoc.202100324 . hal-03269559

HAL Id: hal-03269559
https://univ-rennes.hal.science/hal-03269559
Submitted on 28 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Palladium-catalyzed direct (di)arylation of 2-benzyl-1,2,3-
 triazole: a simple access to 4-aryl- or 4,5-diaryl-2-benzyl-1,2,3triazoles and phenanthro[9,10- d] $[1,2,3]$ triazoles

Xinzhe Shi, ${ }^{\text {a }}$ Jian Zhang, ${ }^{\text {a }}$ Thierry Roisnel, ${ }^{\text {a }}$ Jean-François Soulé, ${ }^{\text {a* }}$ and Henri Doucet ${ }^{\text {a* }}$

[a] Ms X. Shi, Mr J. Zhang, Dr. T. Roisnel, Dr. J.-F. Soulé, Dr. H. Doucet
Univ Rennes, ISCR-UMR 6226, F-35000 Rennes, France
E-mail: jean-francois.soule@univ-rennes1.fr; henri.doucet@univ-rennes1.fr
Received:

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ \#\#\#\#\#\#.

Abstract

The reactivity of 2-benzyl-1,2,3-triazole in palladium-catalyzed direct arylation was studied. Conditions for the selective synthesis of 2-benzyl-4-aryl-1,2,3-triazoles in moderate to high yields using phosphine-free $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and inexpensive KOAc base have been found. Then, from these 4 -aryl-1,2,3-triazoles, the palladiumcatalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization of the C 5 -position allows the synthesis of the corresponding 4,5-diarylated 2-benzyl-1,2,3-triazoles.

Abstract

This selective 4,5-diarylation of 2-benzyl-1,2,3-triazole was successfully applied for the straightforward building of the π-extended polycyclic heteroaromatic structures phenanthro $[9,10-d][1,2,3]$ triazoles via Pd-catalyzed C4and C5-intermolecular arylations followed by Pd-catalyzed C-H intramolecular arylation.

Keywords: C-H bond functionalization; palladium; triazoles; arylation; polycyclic heteroaromatics

Introduction

Pd-catalyzed so-called direct arylation of 5membered ring heteroaromatics, via a $\mathrm{C}-\mathrm{H}$ bond cleavage step, ${ }^{1,2}$ has led in recent years to a revolution in bi(hetero)aryl and poly(hetero)aromatic synthesis methods. These couplings are very attractive, compared to the more classical reactions catalyzed by palladium such as Stille, Suzuki or Negishi couplings, because they do not require the prior synthesis of organometallic derivatives. ${ }^{2}$ Several examples of Pdcatalyzed direct arylations of various heteroarenes such as pyrazoles, ${ }^{3}$ or imidazoles ${ }^{4}$ with aryl halides have been reported. A few groups have also reported examples of Pd-catalyzed direct arylations of 1substituted 1,2,3-triazoles. ${ }^{5}$ For example, in 2007, Gevorgyan group described the first Pd-catalyzed direct arylations of 1-benzyl- and 1-alkyl-1,2,3triazoles. ${ }^{5 a}$ They observed a strong preference for C5- vs C4-arylation. The same year, similar results were reported by Oshima and Yorimitsu, ${ }^{5 \mathrm{~b}}$ for the arylation of 1-benzyl-1,2,3-triazoles using aryl chlorides under microwave irradiation. In 2008, Ackermann's group reported an other procedure for the C4-arylation of 1,5-disubstituted 1,2,3-triazoles, and C5-arylation of 1,4-disubstituted 1,2,3-triazoles. ${ }^{5 \text { cc }}$

In contrast, to our knowledge, the metal-catalyzed direct arylation of 2 -substituted $1,2,3$-triazoles has attracted much less attention (Scheme 1). ${ }^{6}$ In 2008, Fokin et al. studied the direct arylation of a compound containing both 1 -substituted 4 -phenyl-$1,2,3$-triazole and 2 -substituted 4 -phenyl-1,2,3triazole units (Scheme 1, a). ${ }^{\text {aa }}$ They employed $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ as the catalyst and Bu 4 NOAc as the base. Their study revealed that the 1 -substituted 4 -
phenyl-1,2,3-triazole unit is the most reactive, affording the mono-arylation product in 60% yield; whereas the diarylated compound - arylation of both types of triazole rings - was only obtained in 24% yield.

Scheme 1. Pd-catalyzed direct arylations of 2-substituted 1,2,3-triazoles and 1,2,3-triazole N-oxides.

This procedure was recently employed by Ko et al. for the arylation of another 2 -substituted 4 -phenyl-1,2,3-triazole (Scheme 1, b). ${ }^{6 c}$ In 2013, in the course of their study on the arylation of 2-substituted 1,2,3triazole N-oxides, Kuang et al. attempted to arylate 2-benzyl-1,2,3-triazole with benzene under Pdcatalyzed oxidative coupling conditions, but the reaction was unsuccessful (Scheme 1, c). ${ }^{6 \mathrm{~b}}$ A few examples of C5-arylations of 2 -substituted 1,2,3triazole N-oxides have also been described (Scheme 1 , d). ${ }^{7}$ However, the use of such $1,2,3$-triazole N-oxides requires two more steps due to the nitrogen protection/deprotection sequence.

As the discovery of an effective procedure, for the arylation of 1,2,3-triazole derivatives, using readily available catalyst and base is desirable, the reactivity of 2-benzyl-1,2,3-triazole in direct arylation in the presence of palladium catalysts needed to be investigated. Here, we report (i) conditions for the palladium-catalyzed direct arylation of 1,2,3triazoles; (ii) on the scope of the reaction; (iii) on the subsequent reactivity of these 4 -aryl-1,2,3-triazoles in Pd-catalyzed C-H bond functionalization for access to 4,5 -diaryl-1,2,3-triazoles; and (iv) on the synthesis of the π-extended molecules phenanthro[9,10$d][1,2,3]$ triazoles via Pd-catalyzed intermolecular arylations followed by a C-H intramolecular arylation (Scheme 2).

Scheme 2. Pd-catalyzed direct arylation of 2-substituted 1,2,3-triazoles.

Results and Discussion

4-Bromobenzonitrile (1 equiv.) and 2-benzyl-1,2,3triazole (2 equiv.) were employed as model substrates for our study (Table 1). We initially examined the influence of the base on the aryl bromide conversion and on the selectivity (mono-vs di-arylation) using 2 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and DMA as the solvent. We had previously observed that this combination of catalyst and solvent promoted very effectively the direct arylation of some heteroarenes. ${ }^{2 \mathrm{j}} \mathrm{Cs}_{2} \mathrm{CO}_{3}$ was ineffective and 4-bromobenzonitrile was recovered (Table 1, entry 1).

Table 1. Influence of the reaction conditions on the Pd-catalyzed C4-arylation of 2-benzyl-1,2,3-triazole with 4bromobenzonitrile. ${ }^{\text {a }}$

Entry	Catalyst (mol\%)	Solvent	Base	Conv. (\%)	Ratio 1a:1b	Yield in 1a (\%)
1	$\mathrm{Pd}(\mathrm{OAc})_{2}(2)$	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	-	-	0
2	$\mathrm{Pd}(\mathrm{OAc})_{2}(2)$	DMA	$\mathrm{K}_{2} \mathrm{CO}_{3}$	64	93:7	31
3	$\mathrm{Pd}(\mathrm{OAc})_{2}(2)$	DMA	NaOAc	82	93:7	$25^{\text {b }}$
4	$\mathrm{Pd}(\mathrm{OAc})_{2}(2)$	DMA	KOAc	100	84:16	66
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(2)$	DMA	CsOAc	93	74:26	54
6	$\mathrm{Pd}(\mathrm{OAc})_{2}(2)$	DMA	KOPiv	100	68:32	60
7	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(2)$	DMA	KOAc	100	75:25	45
8	$\mathrm{Pd}(\mathrm{OAc})_{2}(2)$	DMF	KOAc	100	80:20	42
9	$\mathrm{Pd}(\mathrm{OAc})_{2}(1)$	DMA	KOAc	87	93:7	55
10	$\mathrm{Pd}(\mathrm{OAc})_{2}(2)$	DMA	KOAc	74	87:13	$53^{\text {c }}$

${ }^{\text {a) }}$ Conditions: 4-Bromobenzonitrile (1 equiv.), 2-benzyl-1,2,3-triazole (2 equiv.), base (2 equiv.), $16 \mathrm{~h}, 150{ }^{\circ} \mathrm{C}$, conversion of 2-benzyl-1,2,3-triazole, isolated yields. ${ }^{\text {b) }}$ A large amount of homocoupling of 4-bromobenzonitrile was also observed. ${ }^{\text {c) }}$ $120^{\circ} \mathrm{C}$.
$\mathrm{K}_{2} \mathrm{CO}_{3}$ or NaOAc as bases, afforded the desired product 1a in quite low yields due to a partial conversion of 4 -bromobenzonitrile and also to the formation of [1,1'-biphenyl]-4,4'-dicarbonitrile as side-product (Table 1, entries 2 and 3). Conversely, the use of KOAc gave 1a in a high 66% yield with a complete conversion of the aryl bromide (Table 1, entry 4). This result is consistent with a concerted metallation deprotonation mechanism. ${ }^{8,9} \mathrm{CsOAc}$ and KOPiv were found to be less effective bases for this reaction, as 1a was obtained in 54% and 60% yield respectively, due to a lower selectivity (mono- vs diarylation) (Table 1, entries 5 and 6). The use of $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ catalyst ${ }^{10}$ instead of $\mathrm{Pd}(\mathrm{OAc})_{2}$, or the reaction performed in DMF afforded 1a in lower yields (Table 1, entries 7 and 8). Finally, a lower catalyst loading ($1 \mathrm{~mol} \%$) or a lower reaction temperature led to partial conversions of 4bromobenzonitrile (Table 1, entries 9 and 10).

Then, 2-benzyl-1,2,3-triazole was coupled with a set of aryl bromides in the presence of $2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, KOAc as the base in DMA (Scheme 3). Moderate yields in the desired C4-arylation products 2-4 were obtained using aryl bromides bearing formyl, ester or trifluoromethyl para-substituents. With 4(trifluoromethyl)bromobenzene, a significant amount of 4,5-diarylated triazole was observed by GC/MS and ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixtures. Higher yields were obtained for the coupling of the more electron-rich aryl bromides, 4-bromochlorobenzene, 4-bromofluorobenzene and bromobenzene leading to products 5-7 in $74-80 \%$ yields. The structure of 7 was confirmed by X-ray analysis. ${ }^{11}$ tert-Butyl- and methoxy-substituents at para-position on the aryl bromides were also tolerated giving rise to products 8 and 9 in 71% and 65% yield, respectively. Nitrile-, formyl- and acyloxy-substituents at meta-position on the aryl bromide were also tolerated providing the C4-arylated triazoles $\mathbf{1 0 - 1 2}$ in moderate to high yields. Reactions with the more hindered substrates, 2bromobenzonitrile, 2-(trifluoromethyl)bromobenzene, 2-bromochlorobenzene and 1-bromonaphthalene were also successful affording the products $\mathbf{1 3 - 1 5}$ and 18 in $74-83 \%$ yields. Even the very congested 9 bromoanthacene was successfully coupled with 2 -benzyl-1,2,3-triazole to give 19 in 57% yield. The use of the N-containing heterocycles, 3- or 4bromopyridines, 3-bromoquinoline and 4bromoisoquinoline also afforded the desired C 4 arylated triazole derivatives $\mathbf{2 0 - 2 3}$ in 51-78\% yields.

Scheme 3. Scope of the direct C4-arylation of 2-benzyl-1,2,3-triazole.

The reactivity for arylation of the C5-position of 4arylated 2-benzyl-1,2,3-triazoles was then examined (Scheme 4). As seen in the table 1, the 4,5diarylation of 2-benzyl-1,2,3-triazoles using only one equiv. of aryl bromide was generally observed in low yield, revealing that the second arylation is challenging but possible. The reaction of 2-benzyl-4-phenyl-1,2,3-triazole 7 (1 equiv.) with 4bromobenzonitrile or 4-bromochlorobenzene (2 equiv.) in the presence of $2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst afforded the desired products 24 and $\mathbf{2 5}$ in 68% and 51% yield, respectively. Lower yields in 27 and 28 were obtained from the more electron-rich 2-benzyl-4-(4-methoxyphenyl)-1,2,3-triazole 9 using 4bromobenzonitrile and 4(trifluoromethyl)bromobenzene as the coupling partners.

Scheme 4. Scope of the direct C5-arylation of 4-aryl-2-benzyl-1,2,3-triazoles.

The one pot synthesis of 4,5-diarylated 1,2,3-triazoles from 2-benzyl-1,2,3-triazole was then examined (Scheme 5). As described in the table 1, the 4,5diarylation was generally observed in quite low yield in the presence of 1 equiv. of aryl bromide. Conversely, the use of an excess (3 equiv.) of the electron-poor aryl bromides, 4(trifluoromethyl)bromobenzene or 3,5bis(trifluoromethyl)bromobenzene in the presence of $2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and 3 equiv. of KOAc afforded the desired 4,5-diarylated triazoles $\mathbf{3 0}$ and 31 in 43% and 52% yield, respectively.

Scheme 5. C4,C5-Diarylation of 2-benzyl-1,2,3-triazole.

Palladium-catalyzed intermolecular arylation associated with an intramolecular $\mathrm{C}-\mathrm{H}$ bond arylation represents a straightforward method for the stepeconomic synthesis of π-extended (hetero)polyaromatic structures. ${ }^{3 \mathrm{k}, 12 \mathrm{a}}$ Therefore, we applied the Pd-catalyzed triazoles 4,5-diarylation methodology to the synthesis of phenanthro[9,10d] [1,2,3]triazoles (Schemes 6 and 7). From 2-benzyl-

4-(4-(trifluoromethyl)phenyl)-1,2,3-triazole 4 and 1,2-dibromobenzene in the presence of $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ catalyst, the targeted 2-benzyl-6-(trifluoromethyl)-phenanthro[9,10- $d][1,2,3]$ triazole 32 was obtained in 54\% yield (Scheme 6). A lower yield in the π-extended triazole $\mathbf{3 3}$ was obtained using 16 as the triazole source.
It should be mentioned that the one pot synthesis of 2-benzylphenanthro[9,10- $d][1,2,3]$ triazole from $2,2^{\prime}$ dibromobiphenyl (1 equiv.) and 2-benzyl-1,2,3triazole (1 equiv.) was also attempted. ${ }^{12 \mathrm{~b}}$ However, using the reaction conditions of scheme 6 , but with 3 equiv. of base during 24 h , no trace of the desired product was detected in the NMR of the crude mixture.

Scheme 6. Synthesis of 2-benzyl-phenanthro[9,10d] [1,2,3]triazoles.

The use of 1-bromo-2-iodobenzene reagents instead of 1,2-dibromobenzenes should allow to introduce regioselectively a substituent on the phenanthro[9,10$d][1,2,3]$ triazoles, as the oxidative addition to palladium is generally faster for the C-I bond than for the $\mathrm{C}-\mathrm{Br}$ bond. Thus, using 2-benzyl-4-(4-(trifluoromethyl)phenyl)-1,2,3-triazole 4 and 2-bromo-4-chloro-1-iodobenzene, we introduced of a chloro-substituent at C6-position of the phenanthro $[9,10-d][1,2,3]$ triazole 34 potentially allowing for further functionalization (Scheme 7). Similarly, the reaction of 2-benzyl-4-(4-(trifluoromethyl)phenyl)-1,2,3-triazole 4 with 2-bromo-1-iodo-4-(trifluoromethyl)benzene afforded the symmetrical CF_{3}-substitued phenanthro[9,10d] [1,2,3] triazole 35.

34 45\% Bn

Scheme 7. Synthesis of 2-benzyl-phenanthro[9,10d] [1,2,3]triazoles.

Several methods for the deprotection of benzylsubstituted heteroarenes have been reported, ${ }^{13}$ and on this basis, the deprotection of 4-phenyl-2-benzyl-1,2,3-triazole 7 was performed (Scheme 8). The reaction of 7 with $t \mathrm{BuOK}$ and O_{2} bubbling during only 2 hours at $60{ }^{\circ} \mathrm{C}$ afforded the desired 4 -phenyl-1,2,3-triazole 36 in 93% yield.

Scheme 8. Deprotection of 4-phenyl-2-benzyl-1,2,3triazole.

Conclusion

In summary, we demonstrated that the direct arylation of triazoles is not limited to 1 -substituted 1,2,3-triazoles. Using only $2 \mathrm{~mol} \%$ of easily available $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst precursor and KOAc as inexpensive bases, 2-benzyl-1,2,3-triazole can be arylated at C4-position affording a wide variety of 4(hetero)arylated 2-benzyl-1,2,3-triazoles in good yields. The access to symmetrical and nonsymmetrical 4,5-diaryl-2-benzyl-1,2,3-triazoles in moderate yields via two $\mathrm{C}-\mathrm{H}$ bond functionalizations is also described. Finally, this new C-H arylation method was applied to the easy synthesis of π extended phenanthro $[9,10-d][1,2,3]$ triazoles by using two Pd-catalyzed inter-molecular arylations associated to an annulation C-H bond arylation.

Experimental Section

General procedure for palladium-catalyzed direct C4arylations of 2-benzyl-1,2,3-triazole: products 1a, 2-23

The reaction of the aryl bromide (1 mmol), 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$), $\mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol})$ in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}(2.4 \mathrm{mg}, 0.02 \mathrm{mmol})$ in DMA (4 mL) at $150{ }^{\circ} \mathrm{C}$ during 16 h , under argon affords the coupling products 1a, 2-23 after evaporation of the solvent and purification on silica gel. Eluent heptane:diethyl ether 7:3 for compounds 1a, 1b, 2, 13; heptane:diethyl ether 4:1 for compounds 3, 4, 7, 9-12, 14, 19; heptane: diethyl ether $9: 1$ for compounds 5, 6, 8, 17, 18; heptane:diethyl ether 19:1 for compounds $\mathbf{1 5}$ and 16; heptane:diethyl ether 3:7 for compounds 20 and 22; heptane:diethyl ether 1:9 for compound 21; heptane:diethyl ether 2:3 for compound 23.

4-(2-Benzyl-1,2,3-triazol-4-yl)benzonitrile (1a): From 4bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 1a was obtained in 66% yield (0.172 g) as a white solid: mp 101-103 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92$ $(\mathrm{s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.37-7.32 (m, 5H), $5.64(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 146.4,135.0,134.9,132.8,132.1,129.0,128.6$, $128.2,126.5,118.8,112.0,59.2$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{Na} 283.0954$, found 283.0954.

4,4'-(2-Benzyl-1,2,3-triazole-4,5-diyl)dibenzonitrile (1b) was also isolated in low yield as a white solid: mp 111$113{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.67(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 4 \mathrm{H}), 7.62$ (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.65$ (s, 2 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.7,135.1$, 134.5, 132.7, $129.1128 .9,128.8,128.5,118.5,112.6,59.4$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N} 5 \mathrm{Na} 384.1220$, found 384.1224.

4-(2-Benzyl-1,2,3-triazol-4-yl)benzaldehyde (2): From 4bromobenzaldehyde ($0.185 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol})$, product 2 was obtained in 52% yield $(0.137 \mathrm{~g})$ as a white solid: mp 88-90 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.03$ $(\mathrm{s}, 1 \mathrm{H}), 7.99-7.90(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.8,146.9,136.3,136.2$, $135.1,132.3,130.5,129.0,128.6,128.2,126.5,59.2$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3}$ ONa 318.1213, found 318.1210 .

Ethyl 4-(2-benzyl-1,2,3-triazol-4-yl)benzoate (3): From ethyl 4-bromobenzoate ($0.229 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol})$, product 3 was obtained in 56% yield (0.172 g) as a white solid: $\mathrm{mp} 82-84{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $166.4,147.2,135.2,134.7,132.1,130.4,130.3,129.0$, 128.6, 128.2, 125.8, 61.2, 59.1, 14.5. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na} 330.1213$, found 330.1214.

2-Benzyl-4-(4-(trifluoromethyl)phenyl)-1,2,3-triazole

(4): From 4-bromobenzotrifluoride (0.225 g , 1 mmol), 2-benzyl-1,2,3-triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc (0.196 $\mathrm{g}, 2 \mathrm{mmol}$), product 4 was obtained in 54% yield (0.164 g) as a yellow solid: $\mathrm{mp} 55-57{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.92$ (s, 1H), $7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 146.8,135.1,133.9,131.9,130.3$ (q, $J=32.5 \mathrm{~Hz}), 128.9,128.6,128.2,126.2,125.9(\mathrm{q}, J=3.8$ $\mathrm{Hz}), 124.1(\mathrm{q}, J=272.0 \mathrm{~Hz}), 59.0$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{Na} 326.0875$, found 326.0873.

2-Benzyl-4-(4-chlorophenyl)-1,2,3-triazole (5): From 4bromochlorobenzene $(0.191 \mathrm{~g}, 1 \mathrm{mmol})$, 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol})$, product 5 was obtained in 79% yield $(0.212 \mathrm{~g})$ as a white solid: mp $60-62{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84$ (s, 1H), 7.71 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.37-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz ,
CDCl_{3}): $\delta 147.2,135.3,134.5,134.3,131.5,129.2,128.9$, 128.5, 128.1, 127.3, 59.0. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{Na}$ 292.0612, found 292.0615.

2-Benzyl-4-(4-fluorophenyl)-1,2,3-triazole (6): From 4bromofluorobenzene ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 6 was obtained in 74% yield $(0.187 \mathrm{~g})$ as a white solid: mp 53-55 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82$ $(\mathrm{s}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.4,5.3 \mathrm{~Hz}, 2 \mathrm{H}) 7.39-7.32(\mathrm{~m}, 5 \mathrm{H})$, 7.11 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 163.0(\mathrm{~d}, J=247.8 \mathrm{~Hz}), 147.3,135.4,131.3$, $128.9,128.5,128.1,127.8(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=3.3$ Hz , $116.0(\mathrm{~d}, J=21.8 \mathrm{~Hz})$, 58.9. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{Na} 276.0908$, found 276.0908.

2-Benzyl-4-phenyl-1,2,3-triazole (7): ${ }^{14}$ From

 bromobenzene ($0.157 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3-triazole $(0.318 \mathrm{~g}, 2 \mathrm{mmol})$ and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 7 was obtained in 80% yield $(0.188 \mathrm{~g})$ as a white solid: mp $78-80{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87(\mathrm{~s}, 1 \mathrm{H})$, $7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32$ $(\mathrm{m}, 6 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 148.2, 135.5, 131.6, 130.5, 129.0, 128.9, 128.6, 128.4, 128.1, 126.1, 58.9. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{Na}$ 258.1002 , found 258.1000 .2-Benzyl-4-(4-(tert-butyl)phenyl)-1,2,3-triazole (8): From 1-bromo-4-tert-butylbenzene ($0.213 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3-triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc $(0.196$ $\mathrm{g}, 2 \mathrm{mmol}$), product 8 was obtained in 71% yield (0.207 g) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89$ (s, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.39-7.32 (m, 5H), $5.66(\mathrm{~s}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.6,148.1,135.6,131.4,128.8$, 128.3, 128.0, 127.7, 125.8, 125.7, 58.7, 34.7, 31.4. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{Na} 314.1628$, found 314.1630.

2-Benzyl-4-(4-methoxyphenyl)-1,2,3-triazole (9): From 4-bromoanisole ($0.187 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3-triazole $(0.318 \mathrm{~g}, 2 \mathrm{mmol})$ and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 9 was obtained in 65% yield $(0.172 \mathrm{~g})$ as a white solid: mp $79-81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~s}, 1 \mathrm{H})$, $7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.62$ (s, 2H), $3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ${ }^{(100}$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.9,148.0,135.6,131.0,128.8,128.3$, $128.0,127.3,123.2,114.4,58.7,55.4$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{ONa} 288.1107$, found 288.1110.

3-(2-Benzyl-1,2,3-triazol-4-yl)benzonitrile (10): From 3bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 10 was obtained in 67% yield $(0.174 \mathrm{~g})$ as a white solid: mp $80-82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08$ $(\mathrm{s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 5 \mathrm{H})$, $5.63(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.1,135.0$, 131.8, 131.7, 131.6, 130.1, 129.8, 129.5, 129.0, 128.6, $128.2,118.6,113.3,59.1$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{Na} 283.0954$, found 283.0956.

3-(2-Benzyl-1,2,3-triazol-4-yl)benzaldehyde (11): From 3-bromobenzaldehyde $(0.185 \mathrm{~g}, 1 \mathrm{mmol}),(0.182 \mathrm{~g}, 1$ mmol), 2-benzyl-1,2,3-triazole $(0.318 \mathrm{~g}, 2 \mathrm{mmol})$ and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 11 was obtained in 50% yield $(0.132 \mathrm{~g})$ as a white solid: $\mathrm{mp} 85-87{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.07(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.1,146.9,137.0,135.2$, 131.8, 131.7, 131.6, 129.7, 129.6, 129.0, 128.5, 128.2, 127.1, 59.0. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{ONa}$ 286.0951, found 286.0953.

Methyl 3-(2-benzyl-1,2,3-triazol-4-yl)benzoate (12): From methyl 3-bromobenzoate $(0.215 \mathrm{~g}, 1 \mathrm{mmol})$, 2-benzyl-1,2,3-triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc (0.196 $\mathrm{g}, 2 \mathrm{mmol}$), product 12 was obtained in 86% yield (0.252
g) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.44$ (s, 1H), $8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 5 \mathrm{H})$, $5.64(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $166.9,147.3,135.3,131.7,131.0,130.9,130.4,129.6$, 129.1, 129.0, 128.5, 128.2, 127.1, 59.0, 52.4. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na} 316.1057$, found 316.1059.

2-(2-Benzyl-1,2,3-triazol-4-yl)benzonitrile (13): From 2bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 13 was obtained in 79% yield $(0.205 \mathrm{~g})$ as a white solid: mp 58-60 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27$ (s, 1H), 7.97 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 6 \mathrm{H}), 5.66(\mathrm{~s}, 2 \mathrm{H})$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.7,134.9,134.1,133.6$ $133.4,133.1,128.9,128.7,128.6,128.5,128.3,118.8$, 109.7, 59.1. HRMS calcd for $[\mathrm{M}+\mathrm{K}]^{+} \quad \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~K}$ 299.0693, found 299.0687

2-Benzyl-4-(2-(trifluoromethyl)phenyl)-1,2,3-triazole

(14): From 2-bromobenzotrifluoride ($0.225 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3-triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc (0.196 $\mathrm{g}, 2 \mathrm{mmol}$), product 14 was obtained in 83% yield (0.251 g) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82$ ($\mathrm{s}, 1 \mathrm{H}$), $7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32$ $(\mathrm{m}, 5 \mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $145.5,135.3,134.3$ (q, $J=4.2 \mathrm{~Hz}$), 132.0, 131.9, 131.8, 129.6 (q, $J=1.8 \mathrm{~Hz}$), $128.9,128.5(\mathrm{q}, J=32.5 \mathrm{~Hz}), 128.0$, $126.4(\mathrm{q}, J=5.6 \mathrm{~Hz}), 124.0(\mathrm{q}, J=273.5 \mathrm{~Hz}), 58.8$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \quad \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{Na}$ 326.0876, found 326.0877 .

2-Benzyl-4-(2-chlorophenyl)-1,2,3-triazole (15): From $2-$ bromochlorobenzene ($0.191 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 15 was obtained in 78% yield $(0.210 \mathrm{~g})$ as a white solid: mp $50-52{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16$ $(\mathrm{s}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=7.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 7 \mathrm{H}), 5.66(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.3,135.3,134.7,132.2,130.5$, $129.5,129.4,128.9,128.5,128.1,127.1$, 58.9. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{Na}$ 292.0612, found 292.0613

2-Benzyl-4-(3,5-bis(trifluoromethyl)phenyl)-1,2,3-
triazole (16): From 3,5-bis(trifluoromethyl)bromobenzene ($0.293 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3-triazole ($0.318 \mathrm{~g}, 2$ mmol) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 16 was obtained in 44% yield $(0.163 \mathrm{~g})$ as a white solid: mp 111$113{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22$ (s, 2H), 7.97 (s, 1H), $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.6,134.9,132.8,132.4$ (q, $J=32.5 \mathrm{~Hz}), 131.9,129.0,128.7,128.2,125.9$, $123.5(\mathrm{q}, J$ $=272.5 \mathrm{~Hz}), 121.9$ (q, $J=3.8 \mathrm{~Hz})$, 59.2. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{Na} 394.0749$, found 394.0750.

2-Benzyl-4-(naphthalen-2-yl)-1,2,3-triazole (17): From 2-bromonaphthalene ($0.207 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 17 was obtained in 55% yield $(0.157 \mathrm{~g})$ as a white solid: mp 91-93 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.26$ $(\mathrm{s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 148.2,135.4,133.6,133.4,131.8,128.9,128.7$, $128.4,128.3,128.1,127.9,127.8,126.6,126.4,124.9$, 124.1, 58.9. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{Na}$ 308.1158, found 308.1159.

2-Benzyl-4-(naphthalen-1-yl)-1,2,3-triazole (18): From 1-bromonaphthalene ($0.207 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 18 was obtained in 74% yield $(0.211 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~m}, 1 \mathrm{H})$, $7.92(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.58-7.49 (m, 3H), 7.45-7.32 (m, 5H), $5.73(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.5,135.5,134.5,134.1$,
129.2, 129.0, 128.6, 128.5, 128.2, 128.0, 127.4, 126.9, 126.2, 125.6, 125.4, 59.0. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{Na} 308.1158$, found 308.1158 .

4-(Anthracen-9-yl)-2-benzyl-1,2,3-triazole (19): From 9bromoanthracene $(0.257 \mathrm{~g}, 1 \mathrm{mmol})$, 2-benzyl-1,2,3triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 19 was obtained in 57% yield $(0.191 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 100-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~s}$, 1 H), $7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.36(\mathrm{~m}, 9 \mathrm{H}), 5.85(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.8,136.8,135.5$, $131.3,131.2,129.0,128.6,128.5,128.4,128.2,126.3$, $125.9,125.3,124.6,59.0$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{Na} 358.1315$, found 358.1320 .

3-(2-Benzyl-1,2,3-triazol-4-yl)pyridine (20): From 3bromopyridine ($0.158 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3-triazole $(0.318 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol})$, product 20 was obtained in 54% yield $(0.127 \mathrm{~g})$ as a white solid: mp $74-76{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.04$ (bs, $1 \mathrm{H}), 8.60(\mathrm{bs}, 1 \mathrm{H}), 8.09$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H})$, $7.38-7.32(\mathrm{~m}, 6 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$, NMR (100 MHz , CDCl_{3}): $\delta 149.3,147.2,145.2,135.1,133.5,131.7,129.0$, 128.6, 128.2, 126.8, 123.9, 59.0. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{Na} 259.0954$, found 259.0958.

4-(2-Benzyl-1,2,3-triazol-4-yl)pyridine (21): From 4bromopyridine hydrochloride ($0.194 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3-triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and KOAc (0.294 g , 3 $\mathrm{mmol})$, product 21 was obtained in 51% yield (0.120 g) as a white solid: mp 79-81 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.68 (bs, 2H), 7.96 (s, 1H), 7.68 (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $150.6,145.7,137.9,134.9,132.4,129.0,128.7,128.2$, 120.4, 59.2. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{Na}$ 259.0954, found 259.0952 .

3-(2-Benzyl-1,2,3-triazol-4-yl)quinoline (22): From 3bromoquinoline ($0.208 \mathrm{~g}, 1 \mathrm{mmol}$), 2-benzyl-1,2,3-triazole $(0.318 \mathrm{~g}, 2 \mathrm{mmol})$ and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 22 was obtained in 56% yield $(0.160 \mathrm{~g})$ as a white solid: $\mathrm{mp} 65-67{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.35$ (bs, $1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H})$, $7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.6,148.1,145.5,135.1,132.3$, 131.9, 129.9, 129.6, 129.0, 128.6, 128.2, 128.1, 127.3, 59.1. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{Na}$ 309.1111, found 309.1112.

4-(2-Benzyl-1,2,3-triazol-4-yl)isoquinoline (23): From 4bromoisoquinoline $(0.208 \mathrm{~g},(0.182 \mathrm{~g}, 1 \mathrm{mmol})$, 2-benzyl-$1,2,3$-triazole ($0.318 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{KOAc}(0.196 \mathrm{~g}, 2$ mmol), product 23 was obtained in 78% yield (0.223 g) as a white solid: $\mathrm{mp} 127-129{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 9.26(\mathrm{bs}, 1 \mathrm{H}), 8.76(\mathrm{bs}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.73$ $(\mathrm{s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz},{ }^{\mathrm{CDCl}} 3$): $\delta 153.2,144.8$, 143.1, 135.2, 134.2, 133.4, 131.2, 128.9, 128.5, 128.2, $128.1,127.5,124.8,121.7,59.1$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{Na} 309.1111$, found 309.1111 .

General procedure for palladium-catalyzed direct C5arylations of 2-benzyl-4-aryl-1,2,3-triazole: products 24-29

The reaction of the aryl bromide (2 mmol), 2-benzyl-4-aryl-1,2,3-triazole (1 mmol), KOAc $(0.196 \mathrm{~g}, 2 \mathrm{mmol}$) in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}(2.4 \mathrm{mg}, 0.02 \mathrm{mmol})$ in DMA (4 mL) at $150{ }^{\circ} \mathrm{C}$ during 16 h , under argon affords the coupling products 24-29 after evaporation of the solvent and purification on silica gel. Eluent heptane:diethyl ether 4:1 for compounds 24 and 28; heptane:diethyl ether $9: 1$ for compound 25; heptane:diethyl ether 19:1 for compounds 26 and 29; heptane:diethyl ether 7:3 for compound 27.

4-(2-Benzyl-5-phenyl-1,2,3-triazol-4-yl)benzonitrile

(24): From 4-bromobenzonitrile ($0.364 \mathrm{~g}, 2 \mathrm{mmol}$), 2-benzyl-4-phenyl-1,2,3-triazole 7 ($0.235 \mathrm{~g}, 1 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 24 was obtained in 68% yield $(0.228 \mathrm{~g})$ as a white solid: $\mathrm{mp} 97-99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.32(\mathrm{~m}, 10 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz},{ }^{2} \mathrm{CDCl}_{3}$): $\delta 145.7,143.0,135.8,135.0,132.4$, $130.5,129.1,129.0,128.9,128.7,128.6,128.4,118.8$, 111.9 , 59.2. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \quad \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Na}$ 359.1267 , found 359.1270 .

2-Benzyl-4-(4-chlorophenyl)-5-phenyl-1,2,3-triazole

(25): ${ }^{15}$ From 4-bromochlorobenzene ($0.382 \mathrm{~g}, 2 \mathrm{mmol}$), 2-benzyl-4-phenyl-1,2,3-triazole $7(0.235 \mathrm{~g}, 1 \mathrm{mmol})$ and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 25 was obtained in 51% yield $(0.176 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.55-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40-7.31(\mathrm{~m}, 8 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 145.0,143.8,135.3,134.4,130.9,129.7,129.0$, $128.9,128.8,128.6,128.5,128.4,128.3,59.0$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \quad \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{Na} 368.0925$, found 368.0928 .

2-Benzyl-4-(4-(tert-butyl)phenyl)-5-(4-chlorophenyl)-

1,2,3-triazole (26): From 4-bromochlorobenzene (0.382 g , 2 mmol), 2-benzyl-4-(4-(tert-butyl)phenyl)-1,2,3-triazole $\mathbf{8}$ ($0.291 \mathrm{~g}, 1 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 26 was obtained in 42% yield (0.168 g) as a white solid: $\mathrm{mp} 113-115{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.31(\mathrm{~m}, 11 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.7,145.0,143.7$, $135.4,134.3,129.9,129.7,128.9,128.8,128.5,128.3$, 128.0, 127.9, 125.7, 58.9, 34.8, 31.4. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{Na} 424.1551$, found 424.1552 .

4-(2-Benzyl-5-(4-methoxyphenyl)-1,2,3-triazol-4-

yl)benzonitrile (27): From 4-bromobenzonitrile (0.364 g , 2 mmol), 2-benzyl-4-(4-methoxyphenyl)-1,2,3-triazole 9 ($0.265 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 27 was obtained in 40% yield $(0.146 \mathrm{~g})$ as a white solid: $\mathrm{mp} 70-72{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 7 \mathrm{H})$, $6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.2,145.6,142.6,136.0$, 135.1, 132.4, 129.9, 129.0, 128.6, 128.5, 128.4, 122.8, $118.9,114.4,111.8,59.1,55.5$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{ONa} 389.1373$, found 389.1377.

2-Benzyl-4-(4-methoxyphenyl)-5-(4-

(trifluoromethyl)phenyl)-1,2,3-triazole (28): From 4bromobenzotrifluoride ($0.450 \mathrm{~g}, 2 \mathrm{mmol}$), 2-benzyl-4-(4-methoxyphenyl)-1,2,3-triazole $9(0.265 \mathrm{~g}, 1 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 28 was obtained in 53% yield $(0.217 \mathrm{~g})$ as a white solid: $\mathrm{mp} 97-99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H})$, $6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.1,145.3,143.1,135.2$, $135.0,130.1(\mathrm{q}, J=32.5 \mathrm{~Hz}), 129.8,128.9,128.5,128.4$, $128.3,125.6(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.2(\mathrm{q}, J=272.0 \mathrm{~Hz})$, $123.1,114.3,59.0$, 55.4. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{ONa} 432.1294$, found 432.1293 .

2-Benzyl-4-(3,5-bis(trifluoromethyl)phenyl)-5-phenyl-
(29)
From bis(trifluoromethyl)bromobenzene ($0.586 \mathrm{~g}, 2 \mathrm{mmol}$), 2-benzyl-4-phenyl-1,2,3-triazole $7(0.235 \mathrm{~g}, 1 \mathrm{mmol})$ and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 29 was obtained in 60% yield $(0.268 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{~s}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.8,142.0,134.9,133.4$, 132.1 (q, $J=32.5 \mathrm{~Hz}$), 130.1, 129.3 , 129.1, 129.0, 128.7 , $128.5,128.4,128.1,123.1(\mathrm{q}, J=272.5 \mathrm{~Hz}), 121.8(\mathrm{q}, J=$ 3.8 Hz), 59.2. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{Na}$ 470.1062, found 470.1061.

General procedure for palladium-catalyzed direct C4,C5-diarylations of 2-benzyl-1,2,3-triazole: products 30 and 31

The reaction of the aryl bromide (3 mmol), 2-benzyl-1,2,3triazole ($0.159 \mathrm{~g}, 1 \mathrm{mmol}$), KOAc ($0.294 \mathrm{~g}, 3 \mathrm{mmol}$) in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}(2.4 \mathrm{mg}, 0.02 \mathrm{mmol})$ in DMA (4 mL) at $150{ }^{\circ} \mathrm{C}$ during 16 h , under argon affords the coupling products 30 and 31 after evaporation of the solvent and purification on silica gel. Eluent heptane:diethyl ether 19:1.

2-Benzyl-4,5-bis(4-(trifluoromethyl)phenyl)-1,2,3-

triazole (30): From 4-bromobenzotrifluoride ($0.675 \mathrm{~g}, 3$ mmol), 2-benzyl-1,2,3-triazole ($0.159 \mathrm{~g}, 1 \mathrm{mmol}$) and KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 30 was obtained in 43% yield $(0.192 \mathrm{~g})$ as a white solid: $\mathrm{mp} 61-63{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 3 \mathrm{H})$, 5.67 (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.0$, 134.9 , 134.4, 130.7 (q, $J=32.5 \mathrm{~Hz}$), 129.0, 128.8, 128.7, 128.4, $125.8(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.1(\mathrm{q}, J=272.0 \mathrm{~Hz}), 59.3$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \quad \mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{Na} 470.1062$, found 470.1061 .

2-Benzyl-4,5-bis(3,5-bis(trifluoromethyl)phenyl)-1,2,3triazole (31): From 3,5-bis(trifluoromethyl)bromobenzene ($0.879 \mathrm{~g}, 3 \mathrm{mmol}$), 2-benzyl-1,2,3-triazole ($0.159 \mathrm{~g}, 1$ mmol) and KOAc ($0.294 \mathrm{~g}, 3 \mathrm{mmol}$), product 31 was obtained in 52% yield (0.303 g) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03$ (s, 4H), 7.93 (s, 2H), 7.48 (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.6,134.4,132.6(\mathrm{q}, J=32.5 \mathrm{~Hz}$), $129.2,129.0,128.5,128.2,123.1(\mathrm{q}, J=272.5 \mathrm{~Hz}), 122.7$ $(\mathrm{q}, J=3.8 \mathrm{~Hz})$, 59.6. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{25} \mathrm{H}_{13} \mathrm{~F}_{12} \mathrm{~N}_{3} \mathrm{Na}$ 606.0810, found 606.0817.

General procedure for palladium-catalyzed direct C5arylations followed by intramolecular reaction of 2 -benzyl-4-aryl-1,2,3-triazoles: products 32-35

The reaction of the aryl dihalide (2 mmol), 2-benzyl-4-aryl-1,2,3-triazole (1 mmol), KOPiv ($0.280 \mathrm{~g}, 2 \mathrm{mmol}$) in the presence of $\operatorname{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(0.122 \mathrm{~g}, 0.2 \mathrm{mmol})$ in DMA (4 mL) at $150{ }^{\circ} \mathrm{C}$ during 16 h , under argon affords the coupling products $32-35$ after evaporation of the solvent and purification on silica gel. Eluent heptane:diethyl ether $9: 1$ for compound 32; heptane:diethyl ether 19:1 for compounds 33-35.

2-Benzyl-6-(trifluoromethyl)-phenanthro[9,10-

d] $[\mathbf{1 , 2 , 3}]$ triazole (32): From 1,2-dibromobenzene (0.472 g , $2 \mathrm{mmol}), \quad$ 2-benzyl-4-(4-(trifluoromethyl)phenyl)-1,2,3triazole 4 ($0.303 \mathrm{~g}, 1 \mathrm{mmol}$) and KOPiv ($0.280 \mathrm{~g}, 2 \mathrm{mmol}$), product 32 was obtained in 54% yield $(0.203 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 118-120{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.53-8.46$ $(\mathrm{m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.47$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}) .{ }^{3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.1,140.6,135.2,130.3$, 129.7, $129.5(\mathrm{q}, J=32.5 \mathrm{~Hz}), 129.0,128.7,128.5,128.3$, $128.1,127.1,125.0,124.6$ (q. $J=272.0 \mathrm{~Hz}$), 124.5, 123.9 , $123.8(\mathrm{~m}), 121.0(\mathrm{q}, J=4.0 \mathrm{~Hz}), 60.0$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{Na} 400.1032$, found 400.1031 .

2-Benzyl-5,7-bis(trifluoromethyl)-phenanthro[9,10-

d] $[\mathbf{1 , 2 , 3}]$ triazole (33): From 1,2-dibromobenzene (0.472 g , 2 mmol), 2-benzyl-4-(3,5-bis(trifluoromethyl)phenyl)-1,2,3-triazole 16 ($0.371 \mathrm{~g}, 1 \mathrm{mmol}$) and KOPiv ($0.280 \mathrm{~g}, 2$ mmol), product 33 was obtained in 42% yield (0.187 g) as a white solid: $\mathrm{mp} 147-149{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.32(\mathrm{~m}$, $3 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.8$, $140.6,135.0,132.2,130.0(\mathrm{q}, J=32.5 \mathrm{~Hz}$), 129.7, 129.1, $128.8,128.3,127.9,127.3,126.4,124.8(\mathrm{q}, ~ J=272.5 \mathrm{~Hz})$, $124.5(\mathrm{~m}), 123.6,123.5(\mathrm{q}, J=272.5 \mathrm{~Hz})$, 60.2. HRMS
calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \quad \mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{Na}$ 468.0906, found 468.0904.

2-Benzyl-6-chloro-9-(trifluoromethyl)-phenanthro[9,10d] [1,2,3]triazole (34): From 2-bromo-4-chloro-1iodobenzene $(0.634 \mathrm{~g}, \quad 2 \mathrm{mmol})$, 2-benzyl-4-(4-(trifluoromethyl)phenyl)-1,2,3-triazole 4 ' $0.303 \mathrm{~g}, 1 \mathrm{mmol}$) and KOPiv (0.280 g , 2 mmol), product 34 was obtained in 45% yield $(0.185 \mathrm{~g})$ as a white solid: $\mathrm{mp} 179-181{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42-7.33 (m, 3H), $5.91(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.6,140.5,135.0,134.4$, $131.1,129.7(\mathrm{q}, J=32.5 \mathrm{~Hz}), 129.3,129.0,128.9,128.8$, $128.3,127.5,125.4,124.7,124.5(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.4$ (q, $J=272.0 \mathrm{~Hz}), 123.8,123.4,121.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 60.1$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \quad \mathrm{C}_{22} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{Na} 434.0642$, found 434.0646 .

2-Benzyl-6,9-bis(trifluoromethyl)-phenanthro[9,10-

$d][1,2,3]$ triazole (35): From 2-bromo-1-iodo-4(trifluoromethyl)benzene ($0.351 \mathrm{~g}, 2 \mathrm{mmol}$), 2-benzyl-4-(4-(trifluoromethyl)phenyl)-1,2,3-triazole $4(0.303 \mathrm{~g}, 1$ mmol) and KOPiv ($0.280 \mathrm{~g}, 2 \mathrm{mmol}$), product 35 was obtained in 36% yield $(0.160 \mathrm{~g})$ as a white solid: mp 192$194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.82(\mathrm{~s}, 2 \mathrm{H}), 8.66$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.2,134.9,130.1(\mathrm{q}, J=32.5 \mathrm{~Hz})$, 129.6, 129.1, 128.8, $128.4,127.5,124.8,124.7$ (q, $J=3.7$ $\mathrm{Hz}), 124.2(\mathrm{q}, J=272.0 \mathrm{~Hz}), 121.1(\mathrm{q}, J=3.9 \mathrm{~Hz}), 60.3$. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{Na} 468.0906$, found 468.0902 .

4-Phenyl-1,2,3-triazole (36): 2-Benzyl-4-phenyl-1,2,3triazole 7 ($0.118 \mathrm{~g}, 0.5 \mathrm{mmol}$), $t \mathrm{BuOK}$ ($0.280 \mathrm{~g}, 2.5 \mathrm{mmol}$) under O_{2} bubbling were reacted in DMSO at $60^{\circ} \mathrm{C}$ during 2 h . The reaction was quenched with saturated ammonium chloride. The product was extracted three times with EtOAc. The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude mixture was purified on silica gel to afford the product 36 in $93 \%(0.067 \mathrm{~g})$ yield as a white solid: $\mathrm{mp} 141-143{ }^{\circ} \mathrm{C}$. Eluent heptane:diethyl ether 7:3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.27$ (bs, 1 H), 7.99 (s, $1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.5$, 130.0, 129.1, 128.9, 126.3. HRMS calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{Na} 168.0532$, found 168.0534 .

Acknowledgements

We are grateful to the ANR for a grant to X. S. We thank CNRS and "Rennes Metropole" for providing financial support.

References

[1] L. Ackermann, Modern arylation methods, (Eds.: Wiley Online Library), 2009.
[2] For reviews on metal-catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization: a) G. P. Chiusoli, M. Catellani, M. Costa, E. Motti, N. Della Ca, G. Maestri, Coord. Chem. Rev. 2010, 254, 456-469; b) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236-10254; c) R. Rossi, F. Bellina, M. Lessi, C. Manzini, Adv. Synth. Catal. 2014, 356, 17-117; d) L. Theveau, C. Schneider, C. Fruit, C. Hoarau, ChemCatChem 2016, 8, 3183-3194; e) S. Agasti, A. Dey, D. Maiti, Chem. Commun. 2017, 53, 6544-6556; f) T. Gensch, M. J. James, T. Dalton,
F. Glorius, Angew. Chem. Int. Ed. 2018, 57, 22962306; g) J. Kalepu, P. Gandeepan, L. Ackermann, L. T. Pilarski, Chem. Sci. 2018, 9, 4203-4216; h) K. Hirano, M. Miura, Chem. Sci. 2018, 9, 22-32; i) P. Gandeepan, T. Mueller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192-2452; j) S. Mao, H. Li, X. Shi, J.-F. Soulé, H. Doucet, ChemCatChem 2019, 11, 269-286; k) W. Hagui, H. Doucet, J.-F. Soulé, Chem 2019, 5, 2006-2078; 1) S. Rej, Y. Ano, N. Chatani, Chem. Rev. 2020, 120, 1788-1887; m) H.-Y. Huang, A. Benzai, X. Shi, H. Doucet, Chem. Rec. 2021, 21, 343-356.
[3] For selected examples of Pd-catalyzed C-H bond arylation of pyrazoles: a) R. Goikhman, T. L. Jacques, D. Sames, J. Am. Chem. Soc. 2009, 131, 3042-3048; b) C. Mateos, J. Mendiola, M. Carpintero, J. M. Minguez, Org. Lett. 2010, 12, 4924-4927; c) A. Beladhria, K. Beydoun, H. Ben Ammar, R. Ben Salem, H. Doucet, Synthesis 2011, 2553-2560; d) F. Bellina, M. Lessi, C. Manzini, Eur. J. Org. Chem. 2013, 5621-5630; e) E. T. T. Kumpulainen, A. Pohjakallio, Adv. Synth. Catal. 2014, 356, 1555-1561; f) H. Jung, S. Bae, H.-L. Jang, J. M. Joo, Bull. Korean Chem. Soc. 2014, 35, 3009-3014; g) S. Fuse, T. Morita, K. Johmoto, H. Uekusa, H. Tanaka, Chem. Eur. J. 2015, 21, 14370-14375; h) W. F. Vernier, L. Gomez, Tetrahedron Lett. 2017, 58, 4587-4590; i) J. H. Jang, S. Ahn, S. E. Park, S. Kim, H. R. Byon, J. M. Joo, Org. Lett. 2020, 22, 1280-1285.
[4] For selected examples of Pd-catalyzed C-H bond C5arylation of imidazoles: a) Y. Kondo, T. Komine, T. Sakamoto, Org. Lett. 2000, 2, 3111-3113; b) F. Bellina, S. Cauteruccio, L. Mannina, R. Rossi, S. Viel, J. Org. Chem. 2005, 70, 3997-4005; c) B. B. Toure, B. S. Lane, D. Sames, Org. Lett. 2006, 8, 1979-1982; d) H. A. Chiong, O. Daugulis, Org. Lett. 2007, 9, 14491451; e) B. Liégaut, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, J. Org. Chem. 2009, 74, 18261834; f) F. Bellina, M. Lessi, C. Manzini, Eur. J. Org. Chem. 2013, 5621-5630; g) F. Bellina, C. Manzini, G. Marianetti, C. Pezzetta, E. Fanizza, M. Lessi, P. Minei, V. Barone, A. Pucci, Dyes Pigm. 2016, 134, 118-128; h) X. Xu, L. Zhao, Y. Li, J.-F. Soule, H. Doucet, Adv. Syn. Catal. 2015, 357, 2869-2882; i) A. Benzai, X. Shi, F. Derridj, T. Roisnel, H. Doucet, J.-F. Soulé, J. Org. Chem. 2019, 84, 13135-13143.
[5] For selected examples of Pd-catalyzed intermolecular C-H bond arylation of 1-substituted 1,2,3-triazoles: a) S. Chuprakov, N. Chernyak, A. S. Dudnik, V. Gevorgyan, Org. Lett., 2007, 9, 2333-2336; b) M. Iwasaki, H. Yorimitsu, K. Oshima, Chem. Asian J., 2007, 2, 1430-1435; c) L. Ackermann, R. Vicente R. Born, Adv. Synth. Catal., 2008, 350, 741-748; d) B. Liégault, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, J. Org. Chem., 2009, 74, 1826-1834; e) L. Ackermann, A. Althammer, S. Fenner, Angew. Chem. Int. Ed., 2009, 48, 201-204; f) K. D. B. Yamajala, M. Patil, S. Banerjee, J. Org. Chem., 2015, 80, 3003-

3011; g) X. Tian, F. Yang, D. Rasina, M. Bauer, S. Warratz, F. Ferlin, L. Vaccaro, L. Ackermann, Chem. Commun. 2016, 52, 9777-9780; h) W. Liu, Y. Li, R. Wang, Y. Jiang, C. Kuang, Tetrahedron Lett. 2020, 61, 151390; i) A. Punzi, N. Zappimbulso, G. M. Farinola, Eur. J. Org. Chem. 2020, 3229-3234; j) Q.H. Nguyen, S.-M. Guo, T. Royal, O. Baudoin, N. Cramer, J. Am. Chem. Soc. 2020, 142, 2161-2167.
[6] a) J. Kalisiak, K. B. Sharpless, V. V. Fokin, Org. Lett. 2008, 10, 3171-3174; b) W. Liu, Y. Li, B. Xu, C. Kuang, Org. Lett. 2013, 15, 2342-2345; c) J. Seo, D. Kim, H. M. Ko, Adv. Synth. Catal. 2020, 362, 27392743.
[7] For Pd-catalyzed C-H bond arylation of 2-substituted 1,2,3-triazoles N-oxides: a) W. Liu, Y. Li, Y. Wang, C. Kuang, Eur. J. Org. Chem. 2013, 5272-5275; b) W. Liu, Y. Li, Y. Wang, C. Kuang, Org. Lett. 2013, 15, 4682-4685; c) J. Zhu, Y. Chen, F. Lin, B. Wang, Q. Huang, L. Liu, Synlett 2015, 26, 1124-1130; d) W. Liu, Y. Yu, B. Fan, C. Kuang, Tetrahedron Lett. 2017, 58, 2969-2971.
[8] a) S. I. Gorelsky, D. Lapointe, K. Fagnou, J. Org. Chem. 2012, 77, 658-668; b) S. I. Gorelsky, Coord. Chem Rev. 2013, 257, 153-164.
[9] D. L. Davies, S. M. A. Donald, S. A. Macgregor, J. Am. Chem. Soc. 2005, 127, 13754-13755; b) M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496-16497; c) D. Lapointe, K. Fagnou, Chem. Lett. 2010, 39, 1118-1126.
[10] T. Cantat, E. Génin, C. Giroud, G. Meyer, A. Jutand, J. Organomet. Chem. 2003, 687, 365-376.
[11] CCDC of 7: 2038953
[12] For Pd-catalyzed annulation reactions: a) X. Shi, S. Mao, T. Roisnel, H. Doucet, J.-F. Soulé, Org. Chem. Front. 2019, 6, 2398-2403; b) W. Matsuoka, H. Ito, K. Itami, Angew. Chem. Int. Ed. 2017, 56, 12224-12228.
[13] For selected examples of deprotection of benzylsubstituted heteroarenes: a) A. A. Haddach, A. Kelleman, M. V. Deaton-Rewolinski, Tetrahedron Lett. 2002, 43, 399-402; b) R. S. Foster, H. Adams, H. Jakobi, J. P. A. Harrity, J. Org. Chem. 2013, 78, 4049-4064; c) A. W. Brown, M. Fisher, G. M. Tozer, C. Kanthou, J. P. A. Harrity, J. Med. Chem. 2016, 59, 9473-9488.; d) O. Obulesu, K. H. Babu, J. B. Nanubolu, S. Suresh, J. Org. Chem. 2017, 82, 29262934.
[14] W. Yan, T. Liao, O. Tuguldur, C. Zhong, J. L. Petersen, X. Shi, Chem. Asian J. 2011, 6, 2720-2724.
[15] C. G. Oliva, N. Jagerovic, P. Goya, I. Alkorta, J. Elguero, R. Cuberes, A. Dordal, ARKIVOC 2010, 127-147.

Palladium-catalyzed direct (di)arylation of 2-
benzyl-1,2,3-triazole: a simple access to 4 -aryl- or 4,5-diaryl-2-benzyl-1,2,3-triazoles and phenanthro[9,10- $d][1,2,3]$ triazoles

Euj. J. Org. Chem. Year, Volume, Page - Page

Xinzhe Shi, Jian Zhang, Thierry Roisnel, JeanFrançois Soulé,* and Henri Doucet*

Short text : Conditions for the direct mono- or di-arylation of 2-benzyl-1,2,3-triazole using phosphine-free $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst are described. This C-H arylation method was applied to the easy synthesis of π extended phenanthro[9,10- d][1,2,3]triazoles.

